
� �

LEARNING III

� �

� �

Learning in Stochastic Domains

� Last time we looked at using reinforcement learning to handle
choice of actions.

� We showed how to deal, from scratch, with environments in
which we only knew what the outcomes of actions were.

� However, we assumed each action only had one outcome.

� Here we generalise things to stochastic environments.

cis716-spring2003-parsons-lect18 2

� �

� �

State spaecs again

� We can describe a state space search model as:

– a state space

�

;
– an initial state �� ;
– a set of actions,

� 	 � 
� �

, applicable in each state � � �
;

– transition function

 	 ��� � 
 for � � �

and � � �
;

– action costs � 	 �� � 
� �

; and
– a set of goal states

�� �

cis716-spring2003-parsons-lect18 3

� �

� �

� This gives us a problem space that looks like:
� We want a path through this space from initial state to a goal

state.

� We want to do this by learning which action to do.

cis716-spring2003-parsons-lect18 4

� �



� �

� One simple way to operate in this space is greedy search:

1. Evaluate each action � which can be performed in the
current state:

� 	 �� � 
 � � 	 �� � 
 � � 	 ��� 


where �� is the next state.
2. Apply action � that minimises

� 	 �� � 
 ;
3. If ��� is the goal, exit

else �� � ��� , goto 1.

� This just picks the cheapest move at each point.

cis716-spring2003-parsons-lect18 5

� �

� �

� This is a simple approach that uses little (and constant) memory.

� It can be easily adapted to give a closed-loop version:

– Instead of ��� being the state we expect to get, make it the one
we observe.

� Like any depth first approach, it isn’t optimal.

� It might not even find solutions.

� (But we know how to use learning to ensure that it gets better
over time).

cis716-spring2003-parsons-lect18 6

� �

� �

Markov decision processes

� So far, there is nothing really new here.

� But it is only a small step to a much better representation of the
world.

� In a non-deterministic environment, we don’t have a simple
transition function.

� Instead an action can lead to one of a number of states.

� When we can tell which state we are in, then we have a Markov
decision process (MDP)

cis716-spring2003-parsons-lect18 7

� �

� �

� An MDP has the following formal model:

– a state space

�

;
– a set of actions,

� 	 � 
� �

, applicable in each state � � �

;
– transition probabilities

�� �
	 � 	
 � 
 for ��� � 	 � �

and � � �

;
– action costs � 	 �� � 
� �

; and
– a set of goal states

�� �

� Thus for each state we have a set of actions we can apply, and
these take us to other states with some probability.

� We don’t know which state we will end up in, but we know
which one we are in after the action (we have full observability).

cis716-spring2003-parsons-lect18 8

� �



� �

� This gives us a problem space that looks like:

� A solution is now choice of action in every possible state that the
agent might end up in.

cis716-spring2003-parsons-lect18 9

� �

� �

� We can solve the MDP by providing a function � which maps
states into applicable actions, � 	 �� 


� �� .

� This function is called a policy.

� What a policy allows us to compute is a probability distribution
across all the trajectories from a given initial state.

� This is the product of all the transition probabilities,

�� ��
	 �� � � 
 �� 


,
along the trajectory.

� Goal states are taken to have no cost, no effects, so that if � � �

:

– � 	 �� � 
 � �

–

�� 	 � 
 � 
 � �
cis716-spring2003-parsons-lect18 10

� �

� �

� We can then calculate the expected cost of a policy starting in
state �� .

� This is just the probability of the policy multiplied by the cost of
traversing it: ���

�	 � � 	 � 	 �� 
 � �� 


� An optimal policy is then a � 
 that has minimum expected cost
for all states �.

� As with the search version of the problem, we can solve this by
searching, albeit through a much larger space.

cis716-spring2003-parsons-lect18 11

� �

� �

Partially observable MDPs
� Full observability is a big assumption (it requires an accessible

environment). Much more likely is partial observability.

� This means that we don’t know what state we are in, but instead
we have some set of beliefs about which state we are in.

� We represent these beliefs by a probability distribution over the
set of possible states.

� These probabilities are obtained by making observations.

� The effect of observations are modelled as probabilities

�� �
	�� 
 � 
 ,

where � are observations.

cis716-spring2003-parsons-lect18 12

� �



� �

� Formally a POMDP is:

– a state space

�

;
– a set of actions,

� 	 � 
� �

, applicable in each state � � �

;
– transition probabilities

�� �
	 � 	
 � 
 for ��� � 	 � �

and � � �

;
– action costs � 	 �� � 
� �

;
– a set of goal states,

�

;
– an initial belief state

�� ;
– a set of final belief states

�
�;

– observations � after action � with probabilities

�� �
	�� 
 � 


cis716-spring2003-parsons-lect18 13

� �

� �

� So we have a situation which looks like:

� This is just an MDP over belief states.

cis716-spring2003-parsons-lect18 14

� �

� �

� The goal states of an MDP are just replaced by, for example,
states in which we are pretty sure we have reached a goal:

�
� � �

� 	 � 
 � �
� �

� We solve a POMDP by looking for a function which maps belief
states into actions, where belief states

�

are probability
distributions over the set of states

�

.

� Given a belief state

�

, the effect of carrying out action � is:

�
�

	 � 
 � �
� � � �

��
�

	 � 
 � 	 
 � 	 � 	 


cis716-spring2003-parsons-lect18 15

� �

� �

� If we carry out � in �

and then observe � , we get to state

�	
� :

�	
�

	 � 
 �

�� �
	�� 
 � 
 �

�
	 � 




� � � �

�� �
	�� 
 � 	 
 �

�
	 � 	 


� The term on the bottom is the probability of observing � after
doing � in �

.

� Thus actions map between belief states with probability:

�
�

	�� 

� �

� � � �
��

�

	�� 
 � 	 
 �
�

	 � 	 


and we want to find a trajectory from

�� to

�
� at minimum cost.

cis716-spring2003-parsons-lect18 16

� �



� �

Dynamic programming

� We could use greedy search (or any other search technique) to
solve POMDPs.

� However, there are more efficient techniques from dynamic
programming for both MDPs and POMDPs.

� We start from Bellman’s principle of optimality:

If � is the best action in � to reach the goal, and � � is the
resulting state, then the optimal cost from � is the optimal
cost from � plus the cost of doing �

� 
 	 � 
 � � ��

� � � � � �
� � 	 �� � 
 � � 
 	 �� 
�

� This gives us a recursive definition of the optimal cost.

cis716-spring2003-parsons-lect18 17

� �

� �

� This can easily be extended to handle MDPs:

� 
 	 � 
 � � � �

� � � � � �
� � 	 �� � 
 � �

� � � �
��

�

	 � 	
 � 
 � 
 	 � 	 
�
replacing the cost of the path from � � with the expected cost
across all states that might result from �.

� This search depends upon the heuristic estimate for the expect
cost.

� The optimal cost is just

� 
 	 � 
 , so the greedy policy:

� 
 	 � 
 � 	� 
 � ��
� � � � � �

� � 	 �� � 
 � �
� � � �

��
�

	 � 	
 � 
 � 
 	 � 	 
�

is the optimal policy.

cis716-spring2003-parsons-lect18 18

� �

� �

� The problem then is to find

� 
 	�� 


.

� We do this by value interation, solving the recursive equation:

� 
 	 � 
 � � � �

� � � � � �
� � 	 �� � 
 � �

� � � �
��

�

	 � 	
 � 
 � 
 	 � 	 
�

for

� 
 	�� 


iteratively.

� So:

–

�� 	 � 
 � �

;
–

�� � � 	 � 
 � � � � � � � � � �
� � 	 �� � 
 � 


� � � �
�� �
	 � 	
 � 
 �� 	 � 	 
�

cis716-spring2003-parsons-lect18 19

� �

� �

� Value iteration converges on

� 
 	�� 


.

� In other words:

 � �� � �
�� 	 � 
 � � 
 	 � 


� So, if we run the algorithm for long enough, it will give us the
optimal value function, and from this we can recover the optimal
policy.

� Value iteration can solve MDPs with up to

� � �

states.

� This is enough for many purposes.

cis716-spring2003-parsons-lect18 20

� �



� �

� We can combine greedy search with value iteration.

� The algorithm is:

1. Evaluate each action � applicable in current state � as:

� 	 ��� � 
 � � 	 �� � 
 � �
� � � �

��
�

	 � 	
 � 
 �� 	 � 	 


2. Apply � that minimises

� 	 �� � 


3. Update

� 	 � 
 to � 	 ��� � 
 .
4. Observe resulting state � 	

5. Exit if � 	 is goal, else with �� � � 	 go to 1.

cis716-spring2003-parsons-lect18 21

� �

� �

� This process is known as real-time dynamic programming.

� Since we learn the

�

function, it is also known as
�

-learning.

� � 	 � 
 is initialized to

� 	 � 


� If �

is admissible, and after repeated trials, this greedy policy
eventually becomes optimal.

� Thus we are learning the right set of values—this is why MDPs
are considered a form of reinforcement learning.

� If �

is good, very large problems can be solved this way.

cis716-spring2003-parsons-lect18 22

� �

� �

� The same approach can be adopted for POMDPs.

� As we already mentioned, a POMDP is an MDP over belief
states:

– An action � transforms a belief state

�

into

�
�

– An action � and an observation � map

�

into

�	
� with

probability

�
�

	�� 


.

� This makes it easy to come up with a RTDP algorithm.

cis716-spring2003-parsons-lect18 23

� �

� �

� We have:

1. Evaluate each action � applicable in current state

�

as:

� 	 �� � 
 � � 	 �� � 
 � �
	 � �

�
�

	�� 
 � 	 �	
�




2. Apply � that minimises

� 	 �� � 


3. Update

� 	 � 


to

� 	 �� � 
 .
4. Observe �

5. Compute new belief state

�	
�

6. Exit if

�	
� is final belief state, else with

�� � �	
� go to 1.

� POMDPs are much less tractable than MDPs.

� Currently POMDPs with � � �

states are unsolvable.

cis716-spring2003-parsons-lect18 24

� �



� �

Summary

� In this lecture, we have looked at a more sophisticated kind of
reinforcement learning.

� We introduced MDPs and POMDPs as representations which
allow us to capture a wide range of environments.

� We then looked at two techniques for solving them:

– Value iteration; and
–

�

-learning

� These are appropriate in different situations.

cis716-spring2003-parsons-lect18 25

� �


