
LEARNING III



Learning in Stochastic Domains

� Last time we looked at using reinforcement learning to handle
choice of actions.

� We showed how to deal, from scratch, with environments in
which we only knew what the outcomes of actions were.

� However, we assumed each action only had one outcome.

� Here we generalise things to stochastic environments.

cis716-spring2003-parsons-lect18 2



State spaecs again

� We can describe a state space search model as:

– a state space � ;
– an initial state � � ;
– a set of actions, � � � �� � , applicable in each state � � � ;
– transition function � � � 	�
 � for � � � and
 � � ;
– action costs � �
 	 � ��
 � ; and
– a set of goal states � � �

cis716-spring2003-parsons-lect18 3



� This gives us a problem space that looks like:

� We want a path through this space from initial state to a goal
state.

� We want to do this by learning which action to do.

cis716-spring2003-parsons-lect18 4



� One simple way to operate in this space is greedy search:

1. Evaluate each action
 which can be performed in the
current state:

� �
 	 � ��� � �
 	 � ��� � � � � �

where � � is the next state.
2. Apply action
 that minimises � �
 	 � � ;
3. If � � is the goal, exit

else �� � � � , goto 1.

� This just picks the cheapest move at each point.

cis716-spring2003-parsons-lect18 5



� This is a simple approach that uses little (and constant) memory.

� It can be easily adapted to give a closed-loop version:

– Instead of � � being the state we expect to get, make it the one
we observe.

� Like any depth first approach, it isn’t optimal.

� It might not even find solutions.

� (But we know how to use learning to ensure that it gets better
over time).

cis716-spring2003-parsons-lect18 6



Markov decision processes

� So far, there is nothing really new here.

� But it is only a small step to a much better representation of the
world.

� In a non-deterministic environment, we don’t have a simple
transition function.

� Instead an action can lead to one of a number of states.

� When we can tell which state we are in, then we have a Markov
decision process (MDP)

cis716-spring2003-parsons-lect18 7



� An MDP has the following formal model:

– a state space � ;
– a set of actions, � � � �� � , applicable in each state � � � ;
– transition probabilities �� � � ��� � � � for � 	 ��� � � and
 � � ;
– action costs � �
 	 � ��
 � ; and
– a set of goal states � � �

� Thus for each state we have a set of actions we can apply, and
these take us to other states with some probability.

� We don’t know which state we will end up in, but we know
which one we are in after the action (we have full observability).

cis716-spring2003-parsons-lect18 8



� This gives us a problem space that looks like:

� A solution is now choice of action in every possible state that the
agent might end up in.

cis716-spring2003-parsons-lect18 9



� We can solve the MDP by providing a function � which maps
states into applicable actions, � � � � �� 
 � .

� This function is called a policy.

� What a policy allows us to compute is a probability distribution
across all the trajectories from a given initial state.

� This is the product of all the transition probabilities, �� � � � � � �� � � � � ,
along the trajectory.

� Goal states are taken to have no cost, no effects, so that if � � � :

– � �
 	 � ��� �

– �� � � � � ��� �

cis716-spring2003-parsons-lect18 10



� We can then calculate the expected cost of a policy starting in
state � � .

� This is just the probability of the policy multiplied by the cost of
traversing it:

�
�

�� � � � � � � � � 	 � � �

� An optimal policy is then a ��� that has minimum expected cost
for all states � .

� As with the search version of the problem, we can solve this by
searching, albeit through a much larger space.

cis716-spring2003-parsons-lect18 11



Partially observable MDPs

� Full observability is a big assumption (it requires an accessible
environment). Much more likely is partial observability.

� This means that we don’t know what state we are in, but instead
we have some set of beliefs about which state we are in.

� We represent these beliefs by a probability distribution over the
set of possible states.

� These probabilities are obtained by making observations.

� The effect of observations are modelled as probabilities �� � ��� � � � ,
where� are observations.

cis716-spring2003-parsons-lect18 12



� Formally a POMDP is:

– a state space � ;
– a set of actions, � � � �� � , applicable in each state � � � ;
– transition probabilities �� � � �� � � � for � 	 �� � � and
 � � ;
– action costs � �
 	 � ��
 � ;
– a set of goal states, � ;
– an initial belief state � � ;
– a set of final belief states � � ;
– observations� after action
 with probabilities �� � ��� � � �

cis716-spring2003-parsons-lect18 13



� So we have a situation which looks like:

� This is just an MDP over belief states.

cis716-spring2003-parsons-lect18 14



� The goal states of an MDP are just replaced by, for example,
states in which we are pretty sure we have reached a goal:

�
� � �

� � � ��
 � � �

� We solve a POMDP by looking for a function which maps belief
states into actions, where belief states � are probability
distributions over the set of states � .

� Given a belief state � , the effect of carrying out action
 is:

� � � � �� �
��� ��
�� � � � � �
�

� � � �� �

cis716-spring2003-parsons-lect18 15



� If we carry out
 in � and then observe� , we get to state ��� � :

�
� � � � ���

�� � ��� � � � � � � � �

� �� �� �� � � � � �� � � � � �� �

� The term on the bottom is the probability of observing� after
doing
 in � .

� Thus actions map between belief states with probability:

� � ��� ��� �
�� ��
�� � ��� � �
�

� � � � �� �
and we want to find a trajectory from � � to � � at minimum cost.

cis716-spring2003-parsons-lect18 16



Dynamic programming

� We could use greedy search (or any other search technique) to
solve POMDPs.

� However, there are more efficient techniques from dynamic
programming for both MDPs and POMDPs.

� We start from Bellman’s principle of optimality:

If
 is the best action in � to reach the goal, and � � is the
resulting state, then the optimal cost from � is the optimal
cost from � plus the cost of doing


� � � � � � �� �� �� � � ���
� �
 	 � � � � � � � � �	

� This gives us a recursive definition of the optimal cost.

cis716-spring2003-parsons-lect18 17



� This can easily be extended to handle MDPs:
� � � � � � �� �� �� � � ��
� �
 	 � � � �

��� ��
�� � � �� � � � � � � �� �	

replacing the cost of the path from � � with the expected cost
across all states that might result from
 .

� This search depends upon the heuristic estimate for the expect
cost.

� The optimal cost is just � � � � � , so the greedy policy:

�� � � ��� �� � �� � � �� � � � � � �
 	 � � � �
�� ��
�� � � �� � � � � � � �� �	

is the optimal policy.

cis716-spring2003-parsons-lect18 18



� The problem then is to find � � ��� � .

� We do this by value interation, solving the recursive equation:

� � � � � � �� �� �� � � ��
� �
 	 � � � �

��� ��
�� � � �� � � � � � � �� �	

for � � � � � iteratively.

� So:

– � � � � ��� � ;
– � � �� � � � � �� � � �� � � � � � �
 	 � � � � �� �� �� � � �� � � � � � � �� �	

cis716-spring2003-parsons-lect18 19



� Value iteration converges on � � � � � .

� In other words:

�� �
� � � � � � � �� � � � � �

� So, if we run the algorithm for long enough, it will give us the
optimal value function, and from this we can recover the optimal
policy.

� Value iteration can solve MDPs with up to � ��� states.

� This is enough for many purposes.

cis716-spring2003-parsons-lect18 20



� We can combine greedy search with value iteration.

� The algorithm is:

1. Evaluate each action
 applicable in current state � as:

� � � 	
 ��� � � � 	 
 ��� �
��� ��
�� � � �� � � � � � � �� �

2. Apply
 that minimises � � � 	
 �
3. Update � � � � to � � � 	
 � .
4. Observe resulting state � �

5. Exit if � � is goal, else with �� � � � go to 1.

cis716-spring2003-parsons-lect18 21



� This process is known as real-time dynamic programming.

� Since we learn the � function, it is also known as � -learning.

� � � � � is initialized to � � � �

� If � is admissible, and after repeated trials, this greedy policy
eventually becomes optimal.

� Thus we are learning the right set of values—this is why MDPs
are considered a form of reinforcement learning.

� If � is good, very large problems can be solved this way.

cis716-spring2003-parsons-lect18 22



� The same approach can be adopted for POMDPs.

� As we already mentioned, a POMDP is an MDP over belief
states:

– An action
 transforms a belief state � into � �

– An action
 and an observation� map � into �
� � with

probability � � ��� � .

� This makes it easy to come up with a RTDP algorithm.

cis716-spring2003-parsons-lect18 23



� We have:

1. Evaluate each action
 applicable in current state � as:

� � � 	
 �� � � � 	
 �� �
� ��

� � ��� � � � �
� � �

2. Apply
 that minimises � � � 	
 �

3. Update � � � � to � � � 	
 � .
4. Observe�

5. Compute new belief state �
� �

6. Exit if �
� � is final belief state, else with �� � �
� � go to 1.

� POMDPs are much less tractable than MDPs.

� Currently POMDPs with � �� states are unsolvable.

cis716-spring2003-parsons-lect18 24



Summary

� In this lecture, we have looked at a more sophisticated kind of
reinforcement learning.

� We introduced MDPs and POMDPs as representations which
allow us to capture a wide range of environments.

� We then looked at two techniques for solving them:

– Value iteration; and
– � -learning

� These are appropriate in different situations.

cis716-spring2003-parsons-lect18 25


