LEARNING IV




Overview|

e Statistical machine learning
e Brains

e Neural networks

e Perceptrons

e Multilayer perceptrons
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Statistical learning]

¢ View learning as Bayesian updating of probability distribution
over the hypothesis space

e Prior P(H),datae=ey,...,en

e Given the data so far, each hypothesis has a posterior probability:

P(hl\e) = (XP(C‘]’LZ)PULZ)

e Predictions use a likelihood-weighted average over the
hypotheses:

1 1
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Example |

e Suppose there are five kinds of bags of marbles:

— 10% are hy: 100% blue marbles

— 20% are hs: 75% blue marbles + 25% red marbles
— 40% are hs: 50% blue marbles + 50% red marbles
— 20% are h4: 25% blue marbles + 75% red marbles
— 10% are hs: 100% red marbles

e Then we observe marbles drawn from some bag;:

0000000000
e What kind of bag is it? What color will the next marble be?
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Posterior probability of hypotheses|

Posteriors given data generated fromh 5
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Prediction probability|

Sample

P(red|e;...e;)
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MAP approximation

e Summing over the hypothesis space is often intractable

(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

e Maximum a posteriori (MAP) learning: choose hyap maximizing
P(h;le)
I.e., maximize P(e|h;)P(h;) or log P(e|h;) + log P(h;)

e Log terms can be viewed as (negative of) bits to encode data given

hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL)
learning
e For deterministic hypotheses, P(e|h;) is 1 if consistent, 0
otherwise
= MAP = simplest consistent hypothesis (cf. science)
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ML approximation

e For large data sets, prior becomes irrelevant

o Maximum likelihood (ML) learning: choose hy;;, maximizing
P(e|h;)

e Simply get the best fit to the data; identical to MAP for uniform
prior

(which is reasonable if all hypotheses are of the same complexity)

e ML is the “standard” (non-Bayesian) statistical learning method
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Brains

e 10! neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time

e Signals are noisy “spike trains” of electrical potential

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

Nucleus \ /
Synapses

Cell body or Soma
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McCulloch—Pitts “unit”|

e Output is a “squashed” linear function of the inputs:

a; < g(in;) = g (Z Wj,iaj)
J

| Bias Weight
ao=— a.= g(in;
WO,i l g ( l)
Clj .
Input Input  Activation Output
Links Function Function Output Links
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4 )
Activation functions|
g(in;) A g(in;)
+1
. .
inl- in,-
(a) (b)
e (a) is a step function or threshold function
e (b) is a sigmoid function 1/(1 + e™")
e Changing the bias weight I, ; moves the threshold location
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Implementing logical functions

WO == 15 WO == 05 WO - 05

\ \
W O O (O

W2:1 W2:1

AND OR NOT

e McCulloch and Pitts: every Boolean function can be
implemented
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Network structures

e Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

e Feed-forward networks implement functions, have no internal
state

e Recurrent networks:

— Hopfield networks have symmetric weights (W, ; = W, ;)
g(x)=sign(x), a; = £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,

— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example]

e Feed-forward network = a parameterized family of nonlinear
functions:

as = g(Ws5-a3+ Wys - aq)
= g(Ws5-gWis-a1+Was-as) +Wys-g(Wiyg-a1+ Woy-ag))
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Perceptrons
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Expressiveness of perceptrons|

e Consider a perceptron with g = step function (Rosenblatt, 1957,
1960)

e Can represent AND, OR, NOT, majority, etc.

e Represents a linear separator in input space:
>»Wiz; >0 or W-x>0
J

@ Iy and I,
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Perceptron learning|

e [earn by adjusting weights to reduce error on training set

e The squared error for an example with input x and true output y is

1 1
E = §E7°r2 = §(y — hw(x))?,

e Perform optimization search by gradient descent:

E OF 0 n
0 = Brr x il = Brr x (?J — 9( 'Zo ijj))
]:

oW, oW, oW,

= —FErr x ¢'(in) X x;

e Simple weight update rule:
W, « W, + ax Err x ¢'(in) x z;
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Perceptron learning II|

e E.g., +veerror = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

e Perceptron learning rule converges to a consistent function

for any linearly separable data set
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Multilayer perceptrons|

e Layers are usually fully connected

e Numbers of hidden units typically chosen by hand

Output units a;
Wi

Hidden units a;
Wi,

Input units aj
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Expressiveness of MLPs|

e All continuous functions w/ 2 layers, all functions w/ 3 layers

hy, (%, %) i h, (%, %)
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Back-propagation learning|

e Output layer: same as for single-layer perceptron,
Wii< Wii+axaj x A
where A; = Err; x ¢'(in;)
e Hidden layer: back-propagate the error from the output layer:
A; = g'(in;) ?WjﬂAi .

e Update rule for weights in hidden layer:
Wk,j — Wk’j—l—Og X ap X Aj.

e Most neuroscientists deny that back-propagation occurs in the
brain
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Summary|

e Full Bayesian learning gives best possible predictions but is
intractable

e MAP learning balances complexity with accuracy on training
data

e Maximum likelihood assumes uniform prior, OK for large data
sets

e ML for continuous spaces using gradient (etc.) of log likelihood

e Most brains have lots of neurons; each neuron ~
linear—threshold unit (?).

e Perceptrons (one-layer networks) insufficiently expressive.

e Multi-layer networks are sufficiently expressive; can be trained
by gradient descent, i.e., error back-propagation.
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