

Overview

- Statistical machine learning
- Brains
- Neural networks
- Perceptrons
- Multilayer perceptrons

Statistical learning

- View learning as Bayesian updating of probability distribution over the *hypothesis space*
- Prior $\mathbf{P}(H)$, data $\mathbf{e} = e_1, \dots, e_N$
- Given the data so far, each hypothesis has a posterior probability:

$$P(h_i|\mathbf{e}) = \alpha P(\mathbf{e}|h_i)P(h_i)$$

• Predictions use a likelihood-weighted average over the hypotheses:

$$\mathbf{P}(X|\mathbf{e}) = \sum_{i} \mathbf{P}(X|\mathbf{e}, h_i) P(h_i|\mathbf{e}) = \sum_{i} \mathbf{P}(X|h_i) P(h_i|\mathbf{e})$$

Example

- Suppose there are five kinds of bags of marbles:
 - -10% are h_1 : 100% blue marbles
 - -20% are h_2 : 75% blue marbles + 25% red marbles
 - -40% are h_3 : 50% blue marbles + 50% red marbles
 - -20% are h_4 : 25% blue marbles + 75% red marbles
 - -10% are h_5 : 100% red marbles

• Then we observe marbles drawn from some bag:

• What kind of bag is it? What color will the next marble be?

Posterior probability of hypotheses

Posteriors given data generated from h_5

Prediction probability

Sample	$P(red e_1e_t)$
0.	0.5
1.	0.65
2.	0.7307692
3.	0.79605263
4.	0.8471074
5.	0.8859756
6.	0.9150034
7.	0.9364893
8.	0.9523869
9.	0.96420145
10.	x 0.97303146

MAP approximation

- Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
- *Maximum a posteriori* (MAP) learning: choose h_{MAP} maximizing $P(h_i|\mathbf{e})$
 - I.e., maximize $P(\mathbf{e}|h_i)P(h_i)$ or $\log P(\mathbf{e}|h_i) + \log P(h_i)$
- Log terms can be viewed as (negative of) bits to encode data given hypothesis + bits to encode hypothesis
 This is the basic idea of minimum description length (MDL) learning
- For deterministic hypotheses, $P(\mathbf{e}|h_i)$ is 1 if consistent, 0 otherwise
 - \Rightarrow MAP = simplest consistent hypothesis (cf. science)

ML approximation

- For large data sets, prior becomes irrelevant
- Maximum likelihood (ML) learning: choose $h_{\rm ML}$ maximizing $P(\mathbf{e}|h_i)$
- Simply get the best fit to the data; identical to MAP for uniform prior
 (which is reasonable if all hypotheses are of the same complexity)
- ML is the "standard" (non-Bayesian) statistical learning method

Brains

- 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time
- Signals are noisy "spike trains" of electrical potential

cis32-fall2003-parsons-lect19

McCulloch–Pitts "unit"

• Output is a "squashed" linear function of the inputs:

$$a_i \leftarrow g(in_i) = g\left(\sum_j W_{j,i}a_j\right)$$

Activation functions

- (a) is a step function or threshold function
- (b) is a *sigmoid* function $1/(1 + e^{-x})$
- ullet Changing the bias weight $W_{0,i}$ moves the threshold location

Implementing logical functions

• McCulloch and Pitts: every Boolean function can be implemented

Network structures

- Feed-forward networks:
 - single-layer perceptrons
 - multi-layer perceptrons
- Feed-forward networks implement functions, have no internal state
- Recurrent networks:
 - Hopfield networks have symmetric weights ($W_{i,j} = W_{j,i}$) g(x) = sign(x), $a_i = \pm 1$; holographic associative memory
 - Boltzmann machines use stochastic activation functions,
 - recurrent neural nets have directed cycles with delays
 - \Rightarrow have internal state (like flip-flops), can oscillate etc.

Feed-forward example

• Feed-forward network = a parameterized family of nonlinear functions:

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Perceptrons

Expressiveness of perceptrons

- Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
- Can represent AND, OR, NOT, majority, etc.
- Represents a *linear separator* in input space:

$$\sum_{j} W_{j} x_{j} > 0$$
 or $\mathbf{W} \cdot \mathbf{x} > 0$

cis32-fall2003-parsons-lect19

Perceptron learning

- Learn by adjusting weights to reduce error on training set
- The *squared error* for an example with input **x** and true output *y* is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2,$$

• Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

• Simple weight update rule:

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

Perceptron learning II

- E.g., +ve error ⇒ increase network output
 ⇒ increase weights on +ve inputs, decrease on -ve inputs
- Perceptron learning rule converges to a consistent function for any linearly separable data set

cis32-fall2003-parsons-lect19

Multilayer perceptrons

- Layers are usually fully connected
- Numbers of *hidden units* typically chosen by hand

cis32-fall2003-parsons-lect19

Expressiveness of MLPs

• All continuous functions w/ 2 layers, all functions w/ 3 layers

Back-propagation learning

• Output layer: same as for single-layer perceptron,

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

where
$$\Delta_i = Err_i \times g'(in_i)$$

• Hidden layer: *back-propagate* the error from the output layer:

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i$$
.

• Update rule for weights in hidden layer:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

 Most neuroscientists deny that back-propagation occurs in the brain

Summary

- Full Bayesian learning gives best possible predictions but is intractable
- MAP learning balances complexity with accuracy on training data
- Maximum likelihood assumes uniform prior, OK for large data sets
- ML for continuous spaces using gradient (etc.) of log likelihood
- Most brains have lots of neurons; each neuron \approx linear—threshold unit (?).
- Perceptrons (one-layer networks) insufficiently expressive.
- Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation.