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Introduction

� This lecture builds on the description in the previous lecture to
establish how to train neural networks.� We will work out a general approach.� We will then give three particular versions that are commonly
used.� We start with a quick recap.
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– Output is 1 if s = X �W > �
– Output is O otherwise
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Gradient descent methods
� A common way to train a TLU is through an error function.� We define: � = XX2�(di(Xi)� fi(Xi))2� where:

– di(Xi) is the outcome we want for Xi;
– fi(Xi) is the outcome we get.� Often we write these functions as di and fi.� We then minimise �
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� If � is fixed, then the value of � depends on the weights.� (Since these determine the value of fi.)� We minimise by looking at the gradient of � with respect to the
weights. . .� . . . and then altering the weights to move � down the gradient.� Eventually this gradient descent will take us down to the
minimum value of �.
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� The computation of � is complicated by the fact that its value
depends on all the Xi in �.� Often it is easier to do the calculation for one Xi, adjust the
weights to move down the gradient, and then start over with
another Xj.� Thus we do the learning incrementally, taking each member of �

in an order �.� The incremental version only ever approximates the result of
doing it “properly” (the batch way), but often it is a good
approximation.� Here we will just look at the incremental version.
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� When we have a single input vector X , with output f and
desired output d, the error is:� = (d� f)2� The gradient of � with respect to the weights is���W

and ���W = 2664 ���w1; ���w2; : : : ; ���wn+13775
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� Since � depends on W throughs = X �W

it follows that: ���W = ���s �s�W� Since: �s�W = X

it follows that: ���W = ���sX
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� Furthermore we can write:���s = �2(d� f)�f�s

and so: ���W = �2(d� f)�f�sX� This seems to give us a way of working out what the gradient is.� However, we have a problem.
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� The problem is that the TLU output f , cannot be differentiated.� Most times we vary s a little we get no change in f .� Sometimes, though, we get a big change (from 0 to 1 or
vice-versa).� There are several ways around this.

– Ignore the threshold and set f = s.

– Replace the threshold function with something we can
differentiate or otherwise find the gradient of.� We will look at both of these.

cis716-spring-2004-parsons-lect05 10& %' $

The Widrow-Hoff procedure� Let’s try and adjust the weights so that:

– Every training vector labelled with a 1 produces a dot product
of 1; and

– Every training vector labelled with a 0 produces a dot product
of -1.� Then, with f = s

the incremental squared error is:� = (d� f)2 = (d� s)2
and �f�s = 1
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� This makes the gradient:���W = �2(d� f)X� If we want to then move the weight vector down the gradient,
we can set the new value of the weight vector as:W := W + 
(d� f)X� The factor of 2 is combined into the learning rate parameter 
.� As always this controls the speed of the adjustment by
determining the fraction of X added to W .
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� Whenever the error: (d� f)

is positive, then we add a fraction of the input into the weight.� This increases X �W , and so decreases(d� f)� If the error is negative we subtract a fraction of the input and
reverse the effect.� Once we have found the best set of weights, we can go back to
using the threshold function.
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The generalised Delta procedure� Another way to handle the threshold function is to replace it
with something we can differentiate.
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� This function is known as a sigmoid:f(s) = 11 + e�s� With this function, we have the partial derivative:�f�s = f(1� f)� Since ���W = �2(d� f)�f�sX
we have: ���W = �2(d� f)f(1� f)X
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� This gives us another rule for changing weights:W := W + 
(d� f)f(1� f)X� This compares to the Widrow-Hoff procedure as follows:

– In W-H, d is 1 or -1. In generalised Delta it is 1 or 0.

– In W-H, f is equal to s. In generalised Delta, f is the output of
the sigmoid function.

– Generalised Delta has the extra term f(1� f)� With the sigmoid, f(1� f) varies in value from 0 to 1.� It has value 0 when f is 0 or 1.� It has maximum value of 0.25 when f has value 0.5 (and the
input to the sigmoid is 0).

cis716-spring-2004-parsons-lect05 16& %



' $

� The textbook suggests thinking of the sigmoid as a “fuzzy
boundary”.� When the input is a long way from the boundary, f(1� f) has a
value close to 0.� Thus hardly any adjustment is made to the weights.� When the input is closer to the boundary, then weight changes
are more significant.� These changes are always to reduce the error.� Once the weights are established, we can go back to using the
step function.
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A general approach

� Both these techniques have done the same thing.� They have replaced something we couldn’t find the slope of with
something we could.� We could do the same with a gradient function (as we will in the
homework).� This obviously trains the weights approximately.� However, it seems that the approximation is often good enough.� In any case, we are interested in performance on non-training
examples.
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The error-correction procedure

� Another approach keeps the original threshold function.� We then forget about differentiation and just adjust the weights
when the TLU gives a classification error.� In other words we make a change when:(d� f)

has value 1 or -1.� This time the weight change rule is:w := W + 
(d� f)X� Just as before, the change tends to reduce the error.
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� Comparing this with Widrow-Hoff, we note that both d and f

are either 0 or 1.� Whereas in W-H, d is 1 or �1 and f = s.� It is possible to prove that if there is a W that gives a correct
output for all X 2 �,� Then after a finite number of adjustments, this error-correction
procedure will find this weight vector.� Thus the process will terminate, making no more weight
adjustments.� For nonlinearly separable sets of input vectors, the procedure
will not terminate (as opposed to W-H and generalised Delta).
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� Since (as we saw in lecture 5) the rules/network for the
boundary following robot are linearly separable functions. . .� We can use any of these procedures to learn the weights for a
TLU to implement these functions, such as:(s2 + s3)s4s5
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� A suitable training set for training this TLU is

1

2

3

4

5

6

Input	 Sensory	 x1x2

number	 vector	 (move east)


1	 00001100	 0

2	 11100000	 1

3	 00100000	 1

4	 00000000	 0

5	 00001000	 0

6	 01100000	 1
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� Let’s consider training using the error-correction procedure:
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Summary

� In this lecture we looked at methods for training TLUs.� All the methods were gradient descent—they adjusted weights to
reduce the error, step-by-step.� They differed in what they used for the threshold function.� Widrow-Hoff ignores it and sets f = s.� Generalised-delta uses a function that can be differentiated.� Error-correction uses the step function.
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