NEURAL NETWORKS II




Introduction

e This lecture builds on the description in the previous lecture to
establish how to train neural networks.

e We will work out a general approach.

e We will then give three particular versions that are commonly
used.

e We start with a quick recap.
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— Outputis 1 if
s=X-W >4

— Output is O otherwise
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Gradient descent methods]|

e A common way to train a TLU is through an error function.

e We define;

e= 3 (di(X;) — fi(X)

e where:

— d;(X;) is the outcome we want for X;;
— fi(X;) is the outcome we get.

e Often we write these functions as d; and f;.

e We then minimise ¢
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o If 0 is fixed, then the value of € depends on the weights.
e (Since these determine the value of f;.)

¢ We minimise by looking at the gradient of € with respect to the
weights. ..

e ...and then altering the weights to move ¢ down the gradient.

e BEventually this gradient descent will take us down to the
minimum value of e.
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e The computation of € is complicated by the fact that its value
depends on all the X; in ©.

e Often it is easier to do the calculation for one X;, adjust the
weights to move down the gradient, and then start over with
another X;.

e Thus we do the learning incrementally, taking each member of ©
in an order ..

e The incremental version only ever approximates the result of
doing it “properly” (the batch way), but often it is a good
approximation.

e Here we will just look at the incremental version.
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e When we have a single input vector X, with output f and
desired output d, the error is:

e=(d—f)
e The gradient of € with respect to the weights is
Oe
oW
and
Oe Oe  Oe Oe

W B 8w1’8w2"”’8wn+1
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e Since € depends on W through

s=X-W
it follows that:
Oe B Oe 0s
OW  9sOW
Since:
® OInce ﬁ .
ow
it follows that:
Pe o
OW  Os
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e Furthermore we can write:

(96_ f

= o f)
and so: p f

i = —2d= D5

e This seems to give us a way of Workmg out what the gradient is.

e However, we have a problem.
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e The problem is that the TLU output f, cannot be differentiated.
e Most times we vary s a little we get no change in f.

e Sometimes, though, we get a big change (from 0 to 1 or
vice-versa).

e There are several ways around this.

— Ignore the threshold and set f = s.

— Replace the threshold function with something we can
differentiate or otherwise find the gradient of.

e We will look at both of these.
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The Widrow-Hoff procedure|

o [et’s try and adjust the weights so that:
— Every training vector labelled with a 1 produces a dot product
of 1; and
— Every training vector labelled with a 0 produces a dot product
of -1.

e Then, with
f=s

the incremental squared error is:

e=(d— f)?=(d—s)
and
of _

=1
0s
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e This makes the gradient:
de
ow
e If we want to then move the weight vector down the gradient,
we can set the new value of the weight vector as:

W =W +c(d— f)X

—o(d — )X

e The factor of 2 is combined into the learning rate parameter c.

e As always this controls the speed of the adjustment by
determining the fraction of X added to WW.
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e Whenever the error:
(d—f)

is positive, then we add a fraction of the input into the weight.

e This increases X - W, and so decreases
(d—f)

e If the error is negative we subtract a fraction of the input and
reverse the effect.

e Once we have found the best set of weights, we can go back to
using the threshold function.
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The generalised Delta procedure

e Another way to handle the threshold function is to replace it
with something we can differentiate.

—6 _'4 _|2 2 4 6
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e This function is known as a sigmoid:

1
fs) = l4+es
e With this function, we have the partial derivative:
of
i
= f(1- )
e Since
Oe of
ow ~ 21 g
we have:
= —2d— [)f(1 - )X
ow
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e This gives us another rule for changing weights:
W=W+cld-f)f(1-f)X

e This compares to the Widrow-Hoff procedure as follows:

—In W-H, dis 1 or -1. In generalised Delta itis 1 or 0.

— In W-H, f is equal to s. In generalised Delta, f is the output of
the sigmoid function.

— Generalised Delta has the extra term f(1 — f)
e With the sigmoid, f(1 — f) varies in value from 0 to 1.
e It has value O when f is O or 1.

e [t has maximum value of 0.25 when f has value 0.5 (and the
input to the sigmoid is 0).
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e The textbook suggests thinking of the sigmoid as a “fuzzy
boundary”.

e When the input is a long way from the boundary, f(1 — f) has a
value close to 0.

e Thus hardly any adjustment is made to the weights.

e When the input is closer to the boundary, then weight changes
are more significant.

e These changes are always to reduce the error.

e Once the weights are established, we can go back to using the
step function.
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A general approach|

¢ Both these techniques have done the same thing.

e They have replaced something we couldn’t find the slope of with

something we could.

e We could do the same with a gradient function (as we will in the

homework).

e This obviously trains the weights approximately.

e However, it seems that the approximation is often good enough.

¢ In any case, we are interested in performance on non-training
examples.
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The error-correction procedure

e Another approach keeps the original threshold function.

e We then forget about differentiation and just adjust the weights
when the TLU gives a classification error.

e In other words we make a change when:
(d—f)
has value 1 or -1.
e This time the weight change rule is:

wi=W+cd- )X

e Just as before, the change tends to reduce the error.
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e Comparing this with Widrow-Hoff, we note that both d and f
are either 0 or 1.

e Whereasin W-H, dis1 or —1 and f = s.

e It is possible to prove that if there is a W that gives a correct
output for all X € 6,

e Then after a finite number of adjustments, this error-correction
procedure will find this weight vector.

e Thus the process will terminate, making no more weight
adjustments.

e For nonlinearly separable sets of input vectors, the procedure
will not terminate (as opposed to W-H and generalised Delta).
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e Since (as we saw in lecture 5) the rules/network for the
boundary following robot are linearly separable functions. ..

e We can use any of these procedures to learn the weights for a
TLU to implement these functions, such as:

(S92 + $3)54S5

© 1998 Morgan Kaufman Publishers
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e A suitable training set for training this TLU is

2

1 3
6
4
5
Input Sensory x1X2
number vector (move east)
1 00001100 O
2 11100000 1
3 00100000 1
4 00000000 O
5 00001000 O
6 01100000 1
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e Let’s consider training using the error-correction procedure:
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Summary|

e In this lecture we looked at methods for training TLUs.

o All the methods were gradient descent—they adjusted weights to

reduce the error, step-by-step.
e They differed in what they used for the threshold function.
e Widrow-Hoff ignores it and sets f = s.
e Generalised-delta uses a function that can be differentiated.

e Error-correction uses the step function.
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