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Overview

Aims of the this lecture:� introduce problem solving;� introduce goal formulation;� show how problems can be stated as state space search;� show the importance and role of abstraction;� introduce undirected search:

– breadth 1st search;

– depth 1st search.� define main performance measures for search.
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Problem Solving Agents

� Lecture 1 introduced rational agents.� Now consider agents as problem solvers:

Systems which set themselves goals and find sequences of actions
that achieve these goals.� What is a problem?

A goal and a means for achieving the goal.� The goal specifies the state of affairs we want to bring about.� The means specifies the operations we can perform in an attempt
to bring about the means.� The difficulty is deciding what order to carry out the operations.
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� Operation of problem solving agent:

/* s is sequence of actions */
repeat {

percept = observeWorld();
state = updateState(state, p);
if s is empty then {

goal = formulateGoal(state);
prob = formulateProblem(state,p);
s = search(prob);

}
action = recommendation(s);
s = remainder(s, state);

}
until false; /* i.e., forever */

cis716-spring-2004-parsons-lect06 4& %



' $

� Key difficulties:

– formulateGoal(...)

– formulateProblem(...)

– search(...)� It isn’t easy to see how to tackle any of these.� Here we will concentrate mainly on search.
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Goal Formulation

� Where do an agent’s goals come from?

– Agent is a program with a specification.

– Specification is to maximise performance measure.

– Should adopt goal if achievement of that goal will maximise
this measure.� Goals provide a focus and filter for decision-making:

– focus: need to consider how to achieve them;

– filter: need not consider actions that are incompatible with
goals.
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Problem Formulation� Once goal is determined, formulate the problem to be solved.� First determine set of possible states S of the problem.� Then problem has:

– initial state — the starting point, s0;
– operations — the actions that can be performed, fo1; : : : ; ong.

– goal — what you are aiming at — subset of S.� The initial state together with operations determines state space
of problem.� Operations cause changes in state.
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� Solution is a sequence of actions such that when applied to
initial state s0, we have goal state.� Pictorially part of the state space is:
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� The whole space for this problem is:
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Examples of Toy Problems

� Example 1: The 8 puzzle.

Do the following transformation, moving tile from occupied
space to filled space.
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� Initial state as shown above.� Goal state as shown below.� Operations:

– o1: move any tile to left of empty square to right;

– o2: move any tile to right of empty square to left;

– o3: move any tile above empty square down; and

– o4: move any tile below empty square up.� This defines the following state space:
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� Example 2: The n queens problem from chess.� Place n queens on chess board so that no queen can be taken by
another.� Initial state: empty chess board.� Goal state: n queens on chess board, one occupying each space,
so that none can take others.� Operations: place queen in empty square.
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Solution Cost

� For most problems, some solutions are better than others:

– in 8 puzzle, number of moves to get to solution;

– number of moves to checkmate;

– length of distance to travel.� Mechanism for determining cost of solution is path cost function.� This is the length of the path through the state-space from the
initial state to the goal state.
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� As an example, consider the following state in the 8-puzzle:

7 5

2 8 3

1 6 4

� How many moves are there to the solution?
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� Obviously :-) there are five moves:

1. o3

2. o3

3. o1

4. o4

5. o2� And the path through the solution space looks like:
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� The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.� These new states become the children of the initial state in the
tree.� These new states are then examined to see if they are the goal
state.� If not, the process is repeated on the new states.� We can formalise this description by giving an algorithm for it.
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� General algorithm for search:

agenda = initial state;
while agenda not empty do{

pick node from agenda;
new nodes = apply operations to state;
if goal state in new nodes
then {

return solution;
}

add new nodes to agenda;
}� Question: How to pick states for expansion?� Two obvious solutions:

– depth first search;

– breadth first search.
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Breadth First Search

� Start by expanding initial state — gives tree of depth 1.� Then expand all nodes that resulted from previous step — gives
tree of depth 2.� Then expand all nodes that resulted from previous step, and so
on.� Expand nodes at depth n before level n + 1.
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/* Breadth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

APPEND new nodes to END of agenda;
}
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� Advantage: guaranteed to reach a solution if one exists.� If all solutions occur at depth n, then this is good approach.� Disadvantage: time taken to reach solution!� Let b be branching factor — average number of operations that
may be performed from any level.� If solution occurs at depth d, then we will look at1 + b + b2 + � � � + bd

nodes before reaching solution — exponential.
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� Time for breadth first search:

Depth Nodes Time
0 1 1 msec
1 11 .01 sec
2 111 .1 sec
4 11,111 11 secs
6 106 18 mins
8 108 31 hours

10 1010 128 days
12 1012 35 years
14 1014 2500 years
20 1020 315 years� Combinatorial explosion!
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Importance of ABSTRACTION

� When formulating a problem, it is crucial to pick the right level
of abstraction.� Example: Given the task of driving from New York to Boston.� Some possible actions. . .

– depress clutch;

– turn steering wheel right 10 degrees;

. . . inappropriate level of abstraction.

Too much irrelevant detail.
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� Better level of abstraction:

– Take the Henry Hudson Parkway north

– Take the Cross County turnoff

. . . and so on.� Getting abstraction level right lets you focus on the specifics of
problem and is one way to combat the combinatorial explosion.� (Tell that to Mapquest).
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Depth First Search

� Start by expanding initial state.� Pick one of nodes resulting from 1st step, and expand it.� Pick one of nodes resulting from 1nd step, and expand it, and so
on.� Always expand deepest node.� Follow one “branch” of search tree.
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/* Depth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

put new nodes on FRONT of agenda;
}
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� Depth first search is not guaranteed to find a solution if one
exists.� However, if it does find one, amount of time taken is much less
than breadth first search.� Memory requirement is much less than breadth first search.� Solution found is not guaranteed to be the best.
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Performance Measures for Search

� Completeness:

Is the search technique guaranteed to find a solution if one exists?� Time complexity:

How many computations are required to find solution?� Space complexity:

How much memory space is required?� Optimality:

How good is a solution going to be w.r.t. the path cost function.
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Summary

� This lecture introduced the basics of problem solving.� In particular it discussed state space models and looked at the
basic techniques for solving them.

– Search for the goal.

– Path through state space is the solution.� We also looked at two techniques for search:

– Breadth first.

– Depth first.
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