
' $

PROBLEM SOLVING AGENTS

& %
' $

Overview

Aims of the this lecture:� introduce problem solving;� introduce goal formulation;� show how problems can be stated as state space search;� show the importance and role of abstraction;� introduce undirected search:

– breadth 1st search;

– depth 1st search.� define main performance measures for search.

cis716-spring-2004-parsons-lect06 2& %' $
Problem Solving Agents

� Lecture 1 introduced rational agents.� Now consider agents as problem solvers:

Systems which set themselves goals and find sequences of actions
that achieve these goals.� What is a problem?

A goal and a means for achieving the goal.� The goal specifies the state of affairs we want to bring about.� The means specifies the operations we can perform in an attempt
to bring about the means.� The difficulty is deciding what order to carry out the operations.

cis716-spring-2004-parsons-lect06 3& %
' $

� Operation of problem solving agent:

/* s is sequence of actions */
repeat {

percept = observeWorld();
state = updateState(state, p);
if s is empty then {

goal = formulateGoal(state);
prob = formulateProblem(state,p);
s = search(prob);

}
action = recommendation(s);
s = remainder(s, state);

}
until false; /* i.e., forever */

cis716-spring-2004-parsons-lect06 4& %



' $

� Key difficulties:

– formulateGoal(...)

– formulateProblem(...)

– search(...)� It isn’t easy to see how to tackle any of these.� Here we will concentrate mainly on search.

cis716-spring-2004-parsons-lect06 5& %
' $

Goal Formulation

� Where do an agent’s goals come from?

– Agent is a program with a specification.

– Specification is to maximise performance measure.

– Should adopt goal if achievement of that goal will maximise
this measure.� Goals provide a focus and filter for decision-making:

– focus: need to consider how to achieve them;

– filter: need not consider actions that are incompatible with
goals.

cis716-spring-2004-parsons-lect06 6& %' $
Problem Formulation� Once goal is determined, formulate the problem to be solved.� First determine set of possible states S of the problem.� Then problem has:

– initial state — the starting point, s0;
– operations — the actions that can be performed, fo1; : : : ; ong.

– goal — what you are aiming at — subset of S.� The initial state together with operations determines state space
of problem.� Operations cause changes in state.

cis716-spring-2004-parsons-lect06 7& %
' $

� Solution is a sequence of actions such that when applied to
initial state s0, we have goal state.� Pictorially part of the state space is:

B
A

C

((AB)(C))

move (A
, B

)

B C
A

((B)(AC))

m
ov

e 
(A

, C
)

A
B

C

((BA)(C))

A CB

((A)(B)(C))

m
o
ve

 (
B

, A
)

A C
B

((BC)(A))

m
o
ve

 (B
, C

)

A
C

B

((CA)(B))

m
ove (C

, A)

A B
C

((A)(CB))

move (C, B)

© 1998 Morgan Kaufman Publishers

cis716-spring-2004-parsons-lect06 8& %



' $

� The whole space for this problem is:

B
A

C

((AB)(C))

B C
A

((B)(AC))

A
B

C

((BA)(C))

A CB

((A)(B)(C))

move (B, C)

m
o

v
e

 (
C

, 
B

)

m
o

v
e

 (
A

, 
B

)

C
A
B

((BAC))

A
C
B

((BCA))

B
C
A

((ACB))

C
B
A

((ABC))

A
B
C

((CBA))

B
A
C

((CAB))

A
C

B

((CA)(B))

A B
C

((A)(CB))

A C
B

((BC)(A))

m
o
ve

 (
B

, A
) m

o
ve

 (B
, C

)

m
o
ve

 (C
, B

)

move (B
, F

loor)

move (A
, F

loor)

move (C, Floor)m
ov

e 
(C

, F
lo

or
)

m
o
ve

 (
A

, 
C

)

move (B, Floor)

move (C, Floor)

move (A, Floor)

m
ove (A

, Floor)

© 1998 Morgan Kaufman Publishers

cis716-spring-2004-parsons-lect06 9& %
' $

Examples of Toy Problems

� Example 1: The 8 puzzle.

Do the following transformation, moving tile from occupied
space to filled space.

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

cis716-spring-2004-parsons-lect06 10& %' $

� Initial state as shown above.� Goal state as shown below.� Operations:

– o1: move any tile to left of empty square to right;

– o2: move any tile to right of empty square to left;

– o3: move any tile above empty square down; and

– o4: move any tile below empty square up.� This defines the following state space:

cis716-spring-2004-parsons-lect06 11& %
' $

2
85

3
1

6
4

7 4

2
8

3
1

6
4

7
5

1
2

86

3
1

4
7

5

32
87

3
1

6
45

2

2
85

3
1

6
7

4

92
86

3
1

4
7

5

82

6

3
1

8
4

7
5

72
86

3
1

4
7

5

62
87

3
6

4
1

5

5

2
85

1
6

3
7

4

1
9

85

36
27 1

4

1
8

86

3
4

27 1
5

1
7

86 4
35

1
6

36 8

27 127 1
45

1
5

87

3
2

6
4

1
5

1
0 2
87

3
6

4
1

5

1
1

86

3
2

1
4

7
5

1
2 2
86

3
7

1
45

1
3

26

3
1

8
4

7
5

1
4

2

5

8
1

6
3

7
4

2
8

3
1

5
6

7
4

2

5

3
1

8
6

7
4

2
85

3
1

6
7

4

2
8

3
1

4
5

7
6

2

6

8
1

4
3

7
5

2
36

4
1

8
7

5

8

7

3
2

6
4

1
5

2
0 2

7

3
6

8
4

1
5

2
1 2
87

3
6

4
1

5

2
2 2
8

3
6

7
4

1
5

2
3 8

6

3
2

1
4

7
5

2
4 2
8

3
7

1
4

6
5

2
5 1
26

3
8

4
7

5

2
6

2
78
37

2
6

4
1

5

8
67

3
2

4
1

5

27

3
6

8
4

1
5

2
37

6
8

4
1

5

2
87

6
4

3
1

5

2
87

3
6

4
5

1 2
81

3
6

7
45

2
85

3
6

7
4

1 8
36

2
1

4
7

5

8
16

3
2

4
7

5

2
81

3
7

4
6

5

2
85

3
7

1
4

6 1
26

3
8

4
7

5

1
26

3
7

8
45

G
o
al

n
o
d
e

S
tart

n
o
d
e

©
 1

9
9

8
 M

o
rg

an
 K

au
fm

an
 P

u
b

lish
ers

cis716-spring-2004-parsons-lect06 12& %



' $

� Example 2: The n queens problem from chess.� Place n queens on chess board so that no queen can be taken by
another.� Initial state: empty chess board.� Goal state: n queens on chess board, one occupying each space,
so that none can take others.� Operations: place queen in empty square.

cis716-spring-2004-parsons-lect06 13& %
' $

Solution Cost

� For most problems, some solutions are better than others:

– in 8 puzzle, number of moves to get to solution;

– number of moves to checkmate;

– length of distance to travel.� Mechanism for determining cost of solution is path cost function.� This is the length of the path through the state-space from the
initial state to the goal state.

cis716-spring-2004-parsons-lect06 14& %' $

� As an example, consider the following state in the 8-puzzle:

7 5

2 8 3

1 6 4

� How many moves are there to the solution?

cis716-spring-2004-parsons-lect06 15& %
' $

� Obviously :-) there are five moves:

1. o3

2. o3

3. o1

4. o4

5. o2� And the path through the solution space looks like:

cis716-spring-2004-parsons-lect06 16& %



'

$
2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal

node
Start

node

© 1998 Morgan Kaufman Publishers

ci
s7

16
-s

p
ri

n
g

-2
00

4-
p

ar
so

n
s-

le
ct

06
17

&

%
'

$
P

ro
b

le
m

S
o

lv
in

g
as

S
ea

rc
h

�Inthe
st

at
e

sp
ac

e
v

ie
w

o
f

th
e

w
o

rl
d

,fi
n

d
in

g
a

so
lu

ti
o

n
is

fi
n

d
in

g
a

p
at

h
th

ro
u

g
h

th
e

st
at

e
sp

ac
e.

�When
w

e
so

lv
e

a
p

ro
b

le
m

li
k

e
th

e
8-

p
u

zz
le

w
e

h
av

e
so

m
e

id
ea

o
f

w
h

at
co

n
st

it
u

te
s

th
e

n
ex

t
b

es
t

m
o

v
e.

�Itish
ar

d
to

p
ro

g
ra

m
th

is
k

in
d

o
f

ap
p

ro
ac

h
.

�Inste
ad

w
e

st
ar

t
b

y
p

ro
g

ra
m

m
in

g
th

e
k

in
d

o
f

re
p

et
it

iv
e

ta
sk

th
at

co
m

p
u

te
rs

ar
e

g
o

o
d

at
.

�Abru
te

fo
rc

e
ap

p
ro

ac
h

to
p

ro
b

le
m

so
lv

in
g

in
v

o
lv

es
ex

ha
u

st
iv

el
y

se
ar

ch
in

g
th

ro
u

g
h

th
e

sp
ac

e
o

f
al

l
po

ss
ib

le
ac

ti
o

n
se

q
u

en
ce

s
to

fi
n

d
o

n
e

th
at

ac
h

ie
v

es
g

o
al

.

ci
s7

16
-s

p
ri

n
g

-2
00

4-
p

ar
so

n
s-

le
ct

06
18

&

%

'

$

�Syste
m

at
ic

al
ly

g
en

er
at

e
a

se
ar

ch
tr

ee
(w

h
ic

h
is

ju
st

th
e

st
at

e
sp

ac
e

w
e

sa
w

al
re

ad
y

).

�Forth
e

8-
p

u
zz

le
se

tu
p

as
: 7

5

2
8

3

1
6

4

�Thes
ea

rc
h

tr
ee

is
:

ci
s7

16
-s

p
ri

n
g

-2
00

4-
p

ar
so

n
s-

le
ct

06
19

&

%
'

$
2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal

node
Start

node

© 1998 Morgan Kaufman Publishers

ci
s7

16
-s

p
ri

n
g

-2
00

4-
p

ar
so

n
s-

le
ct

06
20

&

%



' $

� The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.� These new states become the children of the initial state in the
tree.� These new states are then examined to see if they are the goal
state.� If not, the process is repeated on the new states.� We can formalise this description by giving an algorithm for it.

cis716-spring-2004-parsons-lect06 21& %
' $

� General algorithm for search:

agenda = initial state;
while agenda not empty do{

pick node from agenda;
new nodes = apply operations to state;
if goal state in new nodes
then {

return solution;
}

add new nodes to agenda;
}� Question: How to pick states for expansion?� Two obvious solutions:

– depth first search;

– breadth first search.

cis716-spring-2004-parsons-lect06 22& %' $
Breadth First Search

� Start by expanding initial state — gives tree of depth 1.� Then expand all nodes that resulted from previous step — gives
tree of depth 2.� Then expand all nodes that resulted from previous step, and so
on.� Expand nodes at depth n before level n + 1.

cis716-spring-2004-parsons-lect06 23& %
' $

/* Breadth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

APPEND new nodes to END of agenda;
}

cis716-spring-2004-parsons-lect06 24& %



' $

� Advantage: guaranteed to reach a solution if one exists.� If all solutions occur at depth n, then this is good approach.� Disadvantage: time taken to reach solution!� Let b be branching factor — average number of operations that
may be performed from any level.� If solution occurs at depth d, then we will look at1 + b + b2 + � � � + bd

nodes before reaching solution — exponential.

cis716-spring-2004-parsons-lect06 25& %
' $

� Time for breadth first search:

Depth Nodes Time
0 1 1 msec
1 11 .01 sec
2 111 .1 sec
4 11,111 11 secs
6 106 18 mins
8 108 31 hours

10 1010 128 days
12 1012 35 years
14 1014 2500 years
20 1020 315 years� Combinatorial explosion!

cis716-spring-2004-parsons-lect06 26& %' $
Importance of ABSTRACTION

� When formulating a problem, it is crucial to pick the right level
of abstraction.� Example: Given the task of driving from New York to Boston.� Some possible actions. . .

– depress clutch;

– turn steering wheel right 10 degrees;

. . . inappropriate level of abstraction.

Too much irrelevant detail.

cis716-spring-2004-parsons-lect06 27& %
' $

� Better level of abstraction:

– Take the Henry Hudson Parkway north

– Take the Cross County turnoff

. . . and so on.� Getting abstraction level right lets you focus on the specifics of
problem and is one way to combat the combinatorial explosion.� (Tell that to Mapquest).

cis716-spring-2004-parsons-lect06 28& %



' $

Depth First Search

� Start by expanding initial state.� Pick one of nodes resulting from 1st step, and expand it.� Pick one of nodes resulting from 1nd step, and expand it, and so
on.� Always expand deepest node.� Follow one “branch” of search tree.

cis716-spring-2004-parsons-lect06 29& %
' $

2 8 3
1 6 4
7 5

2 8 3
1

6
4

7 5

2 3
81 4

7 6 5

2 3
1 8 4
7 6 5

1 32
8 4

7 6 5

1 2
8

3
4

7 6 5Goal node

© 1998 Morgan Kaufman Publishers

cis716-spring-2004-parsons-lect06 30& %' $
/* Depth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

put new nodes on FRONT of agenda;
}

cis716-spring-2004-parsons-lect06 31& %
' $

� Depth first search is not guaranteed to find a solution if one
exists.� However, if it does find one, amount of time taken is much less
than breadth first search.� Memory requirement is much less than breadth first search.� Solution found is not guaranteed to be the best.

cis716-spring-2004-parsons-lect06 32& %



' $

Performance Measures for Search

� Completeness:

Is the search technique guaranteed to find a solution if one exists?� Time complexity:

How many computations are required to find solution?� Space complexity:

How much memory space is required?� Optimality:

How good is a solution going to be w.r.t. the path cost function.

cis716-spring-2004-parsons-lect06 33& %
' $

Summary

� This lecture introduced the basics of problem solving.� In particular it discussed state space models and looked at the
basic techniques for solving them.

– Search for the goal.

– Path through state space is the solution.� We also looked at two techniques for search:

– Breadth first.

– Depth first.

cis716-spring-2004-parsons-lect06 34& %


