PROBLEM SOLVING AGENTS

[Problem Solving Agents|

e Lecture 1 introduced rational agents.

e Now consider agents as problem solvers:

Systems which set themselves goals and find sequences of actions
that achieve these goals.

e What is a problem?
A goal and a means for achieving the goal.

e The goal specifies the state of affairs we want to bring about.

e The means specifies the operations we can perform in an attempt
to bring about the means.

e The difficulty is deciding what order to carry out the operations.

Overview

Aims of the this lecture:
e introduce problem solving;
e introduce goal formulation;
e show how problems can be stated as state space search;
e show the importance and role of abstraction;
e introduce undirected search:
- breadth 1st search;
— depth 1st search.

o define main performance measures for search.

@71 6-spring-2004-parsons-lect06 y

\c\i5716—spring—2004—par50nsflect06

Vs

e Operation of problem solving agent:

/* s is sequence of actions */
repeat {
percept = observeWrld();
state = updateState(state, p);
if sis enpty then {
goal = fornul ateCGoal (state);
prob = fornul ateProbl en(state, p);
s = search(prob);
}
action = reconmendati on(s);
s = remmi nder(s, state);
}

until false; /* i.e., forever */

{is716-spring-2004-parsons-lect06

¢ Key difficulties:

—formul ateGoal (...)
—formul ateProblen(...)
—-search(...)

e It isn’t easy to see how to tackle any of these.

e Here we will concentrate mainly on search.

@7167spring720047parsonsflect06 5
4 N

[Problem Formulation]

e Once goal is determined, formulate the problem to be solved.
e First determine set of possible states S of the problem.
e Then problem has:

— initial state — the starting point, so;

— operations — the actions that can be performed, {0y, ..., 0,}.
- goal — what you are aiming at — subset of S.

e The initial state together with operations determines state space
of problem.

e Operations cause changes in state.

@71 6-spring-2004-parsons-lect06 }

|Goal Formulation]

e Where do an agent’s goals come from?

— Agent is a program with a specification.

— Specification is to maximise performance measure.

— Should adopt goal if achievement of that goal will maximise
this measure.

¢ Goals provide a focus and filter for decision-making:

— focus: need to consider how to achieve them;

— filter: need not consider actions that are incompatible with
goals.

\c\i5716—spring—2004—parsonsflect06

Vs

e Solution is a sequence of actions such that when applied to
initial state sy, we have goal state.

o Pictorially part of the state space is:

[Al [B] [C]
((AB)CY)

(AB)(C))

(B)(AC))

(BAXC))

(BC)A)

((CAYB))

I
[B]
((A)(CB)

© 1998 Morgan Kaufman Publishers

{is716-spring-2004-parsons-lect06

e The whole space for this problem is:

[B] B
cl
((BAC)) ((BCA))

ol

((B)(AC)

im oo
& I

(CAYBY)

Move (4,
. Flo
or) [B] (AXCB)

(ANBYC)

(AB)C)

] [z
(Baycy | move(B,C) | (BOA)
@
<
2
g
((CBA)) ((ABC))

@7167spring720047parsonsflect06

-

e Initial state as shown above.
e Goal state as shown below.
e Operations:

- 01: move any tile to left of empty square to right;
— 09: move any tile to right of empty square to left;
— 03: move any tile above empty square down; and
— 04: move any tile below empty square up.

e This defines the following state space:

@71 6-spring-2004-parsons-lect06

[Examples of Toy Problems|

o Example 1: The 8 puzzle.
Do the following transformation, moving tile from occupied
space to filled space.

2 8 3 1 2 3
1 6 | 4 8 4
7 5 7 6 5

\c\i5716—spring—2004—parsonsflect06

Vs

Sysang Uy WRIOW 8661 ©

z 0
2
&E

{is716-spring-2004-parsons-lect06

¢ Example 2: The n queens problem from chess.

e Place n queens on chess board so that no queen can be taken by
another.

e Initial state: empty chess board.

e Goal state: n queens on chess board, one occupying each space,
so that none can take others.

e Operations: place queen in empty square.

@7167spring720047parsonsflect06 13/
4 N

e As an example, consider the following state in the 8-puzzle:

2 8 3
1 6 4
7 5

e How many moves are there to the solution?

Solution Cost

e For most problems, some solutions are better than others:

— in 8 puzzle, number of moves to get to solution;
— number of moves to checkmate;
— length of distance to travel.
e Mechanism for determining cost of solution is path cost function.

e This is the length of the path through the state-space from the
initial state to the goal state.

@71 6-spring-2004-parsons-lect06 9

\c\i5716—spring—2004—parsonsflect06

Vs

e Obviously :-) there are five moves:

1. o3
2. 03
3. 0
4. o4
5. 09

e And the path through the solution space looks like:

{is716-spring-2004-parsons-lect06

o 90ma]-suosred-500z-Surds-91 5P\

node

=
3
o

© 1998 Morgan Kaufman Publishers

Start
node

- /

7R 901a-suosted-p0Qz-Sunds-g1 5D\

‘[e08 saAdIDE Jey} SUo
puyy 03 seduanbas uonoe ajqissod jjp Jo adeds ayy ySnoayy Suiyoivas
Ajaaysnvyxa saajoaur urajos wapqoid 03 yoeoxdde aosof ajniq v e

‘ye poo3 are sonduod
e ysey aannadar jo puny ayp Surwnwrerdord Aq 3reis om peajsuj e

‘yoeoxdde jo puny snyy werdoxd o3 preysiif e
*9AOU 1S3 IXaU Y} SININSUOD JLUM JO
©apI SWOS dArY dM dzznd-g 9y} aI] wa[qoId B 9AJ0S oM UIYAA @

-9oeds ajeys oy ySnoxyy yyed e
Surpuy st uonnjos e 3urpury “prIom ay} Jo mara adeds aje)s oy uj e

[yoreag se Burajog wapqo1 |

1 09u2.20&&.88.?:%.@Eﬁ

:ST 991} YDILds Y], @

S L
14 9 T
€ 8 4

:se dnjas o[zznd-g a3 10, @

‘(Apeaife mes om
aoeds ayess oy 3snl ST YDIUM) 9247 1j241as © d)eIouadld AT[edT)ewa)sAg e

N J

(i 901ay-suosred-pooz-Surds-grzsP\

node

© 1998 Morgan Kaufiman Publishers

e
273
e

e The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.

e These new states become the children of the initial state in the
tree.

e These new states are then examined to see if they are the goal
state.

o If not, the process is repeated on the new states.

e We can formalise this description by giving an algorithm for it.

@7167spring720047parsonsflect06 21
4 N
|Breadth First Search|

o Start by expanding initial state — gives tree of depth 1.

e Then expand all nodes that resulted from previous step — gives
tree of depth 2.

e Then expand all nodes that resulted from previous step, and so
on.

e Expand nodes at depth n before level n + 1.

¢ General algorithm for search:
agenda = initial state;
whi | e agenda not enpty do{
pi ck node from agenda;
new nodes = apply operations to state;
if goal state in new nodes
then {

}

add new nodes to agenda;

return sol ution;

}

o Question: How to pick states for expansion?
e Two obvious solutions:

— depth first search;
— breadth first search.

@71 6-spring-2004-parsons-lect06 y

\c\i5716—spring—2004—par50nsflect06

Zy

Vs

/* Breadth first search */
agenda = initial state;

whi | e agenda not enpty do
{

pi ck node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then

{
}

APPEND new nodes to END of agenda;

return solution;

{is716-spring-2004-parsons-lect06

y

e Advantage: guaranteed to reach a solution if one exists.
o If all solutions occur at depth n, then this is good approach.
e Disadvantage: time taken to reach solution!

o Let b be branching factor — average number of operations that
may be performed from any level.

e If solution occurs at depth d, then we will look at

T+b+b"+- 41

nodes before reaching solution — exponential.

@7167spring720047parsonsflect06 25/
4 N

Importance of ABSTRACTION]

e When formulating a problem, it is crucial to pick the right level
of abstraction.

e Example: Given the task of driving from New York to Boston.
e Some possible actions. ..

— depress clutch;
— turn steering wheel right 10 degrees;

. inappropriate level of abstraction.
Too much irrelevant detail.

e Time for breadth first search:

Depth | Nodes Time
0 1 1 msec
1 11 .01 sec
2 111 .1 sec
4| 11,111 11 secs
6 106 18 mins

8 108 31 hours
10| 10| 128 days
12| 10*?| 35years
14| 10*|2500 years
20| 10| 3" years

o Combinatorial explosion!

@71 6-spring-2004-parsons-lect06 y

\c\i5716—spring—2004—parsonsflect06 Zy
4 N

e Better level of abstraction:
— Take the Henry Hudson Parkway north
— Take the Cross County turnoff
. and so on.

o Getting abstraction level right lets you focus on the specifics of
problem and is one way to combat the combinatorial explosion.

o (Tell that to Mapquest).

{is716-spring-2004-parsons-lect06 y

S]]
MENE
[Al=]=]

IDepth First Search|

S]]
EYNE
[A]=]=]

[=]]
[oo] |
]

e Start by expanding initial state.
e Pick one of nodes resulting from 1st step, and expand it.

e Pick one of nodes resulting from 1nd step, and expand it, and so 03]
on L1874l
.
¢ Always expand deepest node. b
EImE
e Follow one “branch” of search tree. Goal node
© 1998 Morgan Kaufman Publishers

@716—spring72004—parsons—lectOé 2} \c\i5716—sprir\g—2004—par50ns—lect06 'y

4 N 4 N

/* Depth first search */

agenda = initial state;
whil e agenda not enpty do e Depth first search is not guaranteed to find a solution if one
{ exists.
pi ck node from front of _agenda; e However, if it does find one, amount of time taken is much less
new nodes = apply operations to state; than breadth first search.
if goal state in new nodes then .))
{ o Memory requirement is much less than breadth first search.
return solution; e Solution found is not guaranteed to be the best.
}

put new nodes on FRONT of agenda;

}

@71 6-spring-2004-parsons-lect06 9 {is716-spring-2004-parsons-lect06 y

[Performance Measures for Search]

o Completeness:
Is the search technique guaranteed to find a solution if one exists?
e Time complexity:
How many computations are required to find solution?
& Space complexity:
How much memory space is required?
e Optimality:
How good is a solution going to be w.r.t. the path cost function.

@7167spring720047parsonsflect06 33/

Summary

e This lecture introduced the basics of problem solving.

o In particular it discussed state space models and looked at the
basic techniques for solving them.

— Search for the goal.
— Path through state space is the solution.

e We also looked at two techniques for search:

— Breadth first.
— Depth first.
\c\i5716—spring—2004—parsonsflect06 ’y

