HEURISTIC SEARCH I

Recap]

The last lecture introduced
e Basic problem solving techniqus:

— Breadth-first search
— Depth-first search

e Breadth-first search is complete but expensive.

e Depth-first search is cheap but incomplete
e Can’t we do better than this?

e That is what this lecture is about

@71 6-spring2004-parsons-lect07

Overview|

Aims of this lecture:

e show how basic search (depth 1st, breadth 1st) can be improved;

e introduce:

— depth limited search;
— iterative deepening.

e show that even with such improvements, search is hopelessly
unrealistic for real problems.

@71 6-spring2004-parsons-lect07

Algorithmic Improvements

e Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

e Try to get optimality and completeness of breadth 1st search with
space efficiency of depth 1st.

e Not too much to be done about time complexity :-(

@71 6-spring2004-parsons-lect07

Depth Limited Search]|

e Depth first search has some desirable properties — space
complexity.

e But if wrong branch expanded (with no solution on it), then it
won’t terminate.

e Idea: introduce a depth limit on branches to be expanded.

e Don’t expand a branch below this depth.

@71 6-spring2004-parsons-lect07

e General algorithm for depth limited search:

depth limt = max depth to search to;
agenda = initial state;
whi | e agenda not enpty do
t ake node fromfront of agenda;
new nodes = apply operations to node;
| f goal state in new nodes then {
return sol ution;
}
| f depth(node) < depth [imt then {
add new nodes to front of agenda;
}
}

@71 6-spring2004-parsons-lect07

e For the 8-puzzle setup as:

2 8 3
1 6 4
7 5

e the search will be as follows:

@71 6-spring2004-parsons-lect07

—
@)}
(9,1 BN (BN}

J|C\|co
(9,1 =N (98]

— 9|0
J[\|W
o~

(a)

© 1998 Morgan Kaufman Publishers

@71 6-spring2004-parsons-lect07

2[8[3
1[6]4
%
218[3
1[6]4
1 (1715
21813
614
2 11715
8[3 21813
21614 6] 14
3 [1]7]5 7 1715
8] [3
21614
4 [1]7]5
8[6[3
21 14)
6 [11715] / Discarded before
generating node 7
(b)

—
(@) [e e}
(9,1 E=N (O8]

~J[O\|oo
(9,1 F2N IOV}

(c)

e S50, when we hit the depth bound, we don’t add any more nodes
to the agenda.

e Then we pick the next node off the agenda.

e This has the effect of moving the search back to the last node
above depth limit that that is “partly expanded”.

e This is known as chronological backtracking.

e The effect of the depth limit is to force the search of the whole
state space down to the limit.

e We get the completeness of breadth-first (down to the limit),
with the space cost of depth first.

@71 6-spring2004-parsons-lect07 y

Iterative Deepening]|

e Unfortunately, if we choose a max depth for d.l.s. such that
shortest solution is longer, d.Ls. is not complete.

e [terative deepning an ingenious complete version of it.

e Basic idea is:

— do d.Ls. for depth 1; if solution found, return it;
— otherwise do d.l.s. for depth n; if solution found, return it;
— otherwise, ...

e So we repeat d.1.s. for all depths until solution found.

@71 6-spring2004-parsons-lect07

e General algorithm for depth limited search:

depth limt = 1;
repeat {
result = depth Ilimted search(
max depth = depth limt;
agenda = initial node;
)
|f result contains goal then {
return result,;
}
depth limt = depth imt + 1;
} until false; /* i.e., forever */

e Calls d.l.s. as subroutine.

@71 6-spring2004-parsons-lect07

AA/\

A A

Depth bound = 1

© 1998 Morgan Kaufman Publishers

@,71 6-spring2004-parsons-lect07

fh f

o ©o
Depth bound = 2

o o
Depth bound = 3

Depth bound = 4

e Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we
need to regenerate the tree to depth d — 1.

e Isn’t this inefficient?
e Tradeoff time for memory.

¢ In general we might take a little more time, but we save a lot of
memory.

e Now for breadth-first search to level d:

Nyy = 1+b+b>+b
bd+1_1

b—1

@71 6-spring2004-parsons-lect07

e In contrast a complete depth-limited search to level j:
prt—1

b—1
e (This is just a breadth-first search to depth j.)

¢ In the worst case, then we have to do this to depth d, so
expanding;:

d
Nig = X

b2 — 26— bd +d + 1
(b—1)7

@71 6-spring2004-parsons-lect07

e For large d:

e So for high branching and relatively deep goals we do a small
amount more work.
e Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111,111 nodes,
with memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123,456 nodes to be
searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.

@71 6-spring2004-parsons-lect07

4)
e For the 8-puzzle setup as:
2 8 3 1 3
1 6 4 8 4
7 5 I 5
e What would iterative deepening search look like?
e Well, it would explore the search space:
@716-spring2004—parsons—lect07 y

19

£0391-suosred-Fooz3urids-91 m&y

—
s 3
Q3
O =
o]~ colst]n] [en] colst]o] [en]<]wn <[] [n]= o|<t|n| [o]0 || [oof]n] [eo]] |
foolof] Jof feof=fof foof [=| [=] [[ea]=fo] foo]~fa] foo]emf—| oo]st|e| oofst|es| eofoo]e~f efoo]esf o] v fen] o]
—|~ A [~ [~[o] [e~fo] [eof ool (o]~ (] cfol—| [afo|—| [c]of—] o|—| [oofea|—| [oo]ef—]
| V A
o|on|<t| [oo]ofst]| [enfolt]| |ool| [o]wn]o| [eolenfn| [[o<t o<t o<t col<t[n) o] [»n o<t o<t
o] [oo]n oofn| [oof=[wn| [oof<t] <t|\o| [en]ec] o O [l wn [2= < —|o on 2= N i — oo|~ o o]~
=] [[Q]] [=] [[Q== IR EE A [Q~]o! AV (o] VN [Qo]— A [A [A [oo]o]—
en|<r cnfof<r cnin e <t|n cnl<t|n col<tfn el o<t cal<t|n
oo|\ofin oo | oo|~t|\o oo[<t|\o cnfoof\o foof\o oo —|\o oo —|\o o] [~ oof o[~
oe] ~ \O v <t o N — o
=~ — [—]~ —] — [— —|~ —] — |~ — o]~ — o=
o] [= o] [o[~ o[t co|<t[n)
co|\ofin oo|<t|\o = oo —|\o oof o]
o [o0 |a|—=|~ ~ [~ O | |~ v [|-
oof<r o<t col<tfvn
oo[\ o\ o] | o[\ Ot~ 4]
3}
<+ BEE o BER Na= £
A :
=
=%
=1
s
£
=
G
M
o<t =1
<
o] \0] &
2
— [~ W
- O %
2N
59 e
- O
v = ©

e In the following way.

e States would be expanded in the order:

1. 1

2.1,2,3,4

3.1,2,5,3,6,7,8,4,9.

4. 1,2,5,10,11, 3,6,13,13,7,14, 15,8, 16,17, 4,9, 18, 19.
5. ...

e Note that these are the states visited, not the nodes on the agenda.

@71 6-spring2004-parsons-lect07

Bi-directional Search

e Suppose we search from the goal state backwards as well as from
initial state forwards.

e Involves determining predecessor nodes to goal, and then looking
at predecessor nodes to this, ...

e Rather than doing one search of b¢, we do two b%? searches.

e Much more efficient.

@71 6-spring2004-parsons-lect07 w

e Example:
Suppose b = 10, d = 6.
Breadth first search will examine nodes.
Bidirectional search will examine nodes.

e Can combine different search strategies in different directions.

e For large d, is still impractical!

@71 6-spring2004-parsons-lect07

Summary|

e This lecture has looked at some more efficient techniques than
breadth first and depth first search.

— depth-limited search;
— iterative-deepening search; and
— bidirectional search.

e These all improve on depth-first and breadth-first search.

e However, all fail for big enough problems (too large state space).

e Next lecture, we will look at approaches that cut down the size
of the state-space that is searched.

@71 6-spring2004-parsons-lect07

