HEURISTIC SEARCH II

Recap]

The last lectures introduced
e More advanced problem solving techniques:

— Depth limited search
— Iterative deepening
— Bidirectional search

e These improved on basic techniques like breadth-first and
depth-first search.

e However, they still aren’t powerful enough to give solutions for
realistic problems.

e Are there more improvements we can make?

@71 6-spring2004-parsons-lect08 y

Overview|

Aims of this lecture:

e To show how applying some knowledge of the problem can help.
e Introduce heuristics — rules of thumb.

e Introduce heuristic search: guided by rules of thumb which help
to decide which node to expand:

— uniform-cost search;
— greedy search;
— A% search.

@71 6-spring2004-parsons-lect08 y

Heuristic (Informed) Search|

e Whatever search technique we use, exponential time complexity.
e Tweaks to the algorithm will not reduce this to polynomial.

e We need problem specific knowledge to guide the search.

e Simplest form of problem specific knowledge is heuristic.

e Usual implementation in search is via an evaluation function
which indicates desirability of expanding node.

@71 6-spring2004-parsons-lect08

Uniform Cost Search|

e Recall we have a path cost function,

g: Nodes — R
which gives cost to each path.
e Why not expand the cheapest path first?

e Intuition: cheapest is likely to be best!

@71 6-spring2004-parsons-lect08

e General algorithm for uniform search:

agenda = initial state;
whi | e agenda not enpty do
{

t ake node from agenda such that
g(node) = mn { g(n) | n in agenda}

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

@71 6-spring2004-parsons-lect08

e Uniform cost search guaranteed to find cheapest solution
assuming path costs grow monotonically.

¢ In other words, adding another step to the solution makes it
more costly.

e If path costs don’t grow monotonically, then exhaustive search is
required.

@71 6-spring2004-parsons-lect08 }

4)
e Once again we can illustrate this on the 8-puzzle:
2 8 3 1 3
1 | 6 | 4 | 1
7 5 7 5
e For this set up, the search of the space:
@716-spring2004—parsons—lectOS y

g0109[-suosred-Fooz3urids-91 m&y

19

11
s 3
=gt
O s
on|<tH v on|<t | on|<t on|<t v on|<t v <t | on |t on <t | N sells] <t | o<t | o)<t | <t ||
oo\ 72 \O o0|— | 0| — — \O on|—|\o oo~y oo|r~|— oo|<t |t~ oo|<t |t~ cnjoo|r~ aljoo|r~ \O| o~ cn|\o|r~
—|~ 2187 (o] el N (o] ol e oo~ oo~ \O|— |\O |\O|— |\O|— O~ \O|—| el (o] Bl ool | —
| V A
cn|<t o |\O| <t o |\O| <t o |\O| <t on |\ |\O o0|en vy <t kel o<t | o<t | o<t || o)<t | agl kal cn| <t o)<t |
—|~ [[[S [=] = Q= = A o] NS A [ofe]—= A [o[—= o [Qo[—= N ENE
cn|<t cn|\ o<+ oy vy <t |\ on|<t v o<t cn|<t v on|<t v cn|<t v
[ele] N} Vol 0 sl oo|<t|\O ool |\ cnjoo|\o (o] [=] No] oo|—|\O oo|—|\O 0| o~ oo|\o|~
[o2e) ~ \O w <t on (q\l — (e]
o —[~ — (o=~ — (] =~ ey I o — [=~ — —|~ —] — e~ — ||~ — o|—
(sg] <t (sg] Vgl en| <t v co|<t|v o<t v
oo|\o|vy 00| <t |\O| [ee] N} o0|—|\O [ere] Nl | ol
o ||~ o0 |— |~ ™~ |~ O [| v [|~
o<t cn|<t | col<t |
[sle] Ne] Vol 00| \O)| oo|\o|t~
< [Sl== en [Sl=E= o [=

1
7

© 1998 Morgan Kaufman Publishers

Start [2[3]3
node

e Will happen in the following way.

e States would be expanded in the order:

1. 1

2. 2,3,4

3.5,6,7,8,9

4. 10,11, 12,13, 14, 15, 16, 17, 18, 19
5. ...

e Note that this is just like breadth first search (because the path
costs are just the same).

@71 6-spring2004-parsons-lect08

e Instead, assume up/down moves cost 2 and left/right moves
cost 1.

e States would be expanded in the order:

1. 1
. 2,3,4
5
9
. 6,7,8

Ul N

@71 6-spring2004-parsons-lect08

Greedy Search

e Most heuristics estimate cost of cheapest path from node to solution.

e We have a heuristic function,

h: Nodes — R

which estimates the distance from the node to the goal.

e Example: In route finding, heuristic might be straight line
distance from node to destination.

e Heuristic is said to be admissible if it never overestimates cheapest
solution.
Admissible = optimistic.

e Greedy search involves expanding node with cheapest expected cost
to solution.

@71 6-spring2004-parsons-lect08 y

e General algorithm for greedy search:

agenda = initial state;
whi | e agenda not enpty do
{

t ake node from agenda such that
h(node) = mn { h(n) | n in agenda}

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

@71 6-spring2004-parsons-lect08

e Greedy search finds solutions quickly.
e Doesn’t always find best.
e Susceptible to false starts.
— Chases good looking options that turn out to be bad.
e Only looks at current node. Ignores past!

o Also myopic (shortsighted).

@71 6-spring2004-parsons-lect08

e For the 8-puzzle one good heuristic is:
— count tiles out of place.
e Another is:
— Manhattan blocks’ distance
e The latter works for other problems as well:

— Robot navigation.

@71 6-spring2004-parsons-lect08

21813
1|64
47¢5
21813 21813 21813
1164 1] 4 11614
511715 37i5 5 [7]5
21813 21 T3 21813
114 118]4 114
‘3/76\ 3 [7]6]5 4 71615
’ 2
2?2 7§i To the goal
37i5 4 [T6]5
8] I3
21114
317

615
\ To more fruitless wandering

© 1998 Morgan Kaufman Publishers

@71 6-spring2004-parsons-lect08

A* Search|

e A*is very efficient search strategy.

e Basic idea is to combine

uniform cost search
and
greedy search.

e We look at the cost so far and the estimated cost to goal.

e Gives heuristic f:
f(n)=g(n)+ h(n)
where

— g(n) is path cost of n;
— h(n) is expected cost of cheapest solution from n.

e Aims to mimimise overall cost.

@71 6-spring2004-parsons-lect08

e General algorithm for A* search:

agenda = initial state;
whi | e agenda not enpty do
{

t ake node from agenda such that
f(node) = mn { f(n) | n in agenda}
where f(n) = g(n) + h(n)

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

@71 6-spring2004-parsons-lect08

e Considering the 8-puzzle (for the last time :-):
e We combine:

— Path cost function:

* number of moves.
— Heuristic function:

x tiles out of places.

e This gives the following search.

@71 6-spring2004-parsons-lect08

1+5

(9,1 E-N (98]

2+ 3[2le

(9] EXN (98]

[—[oo]

(9,1 E~N 98]

~J|[bo
—

(9,1 EEN (O8]
N

3+3 3+4

2+3

3+2

4+1

Goal1

8
5+0[z]e

(9] E2N (O8]

© 1998 Morgan Kaufman Publishers

@71 6-spring2004-parsons-lect08

5+2

W

[\)
—o| |oo]lt—] [0

—

(O] FEN (98]

—

(O] =N [98]

(O] E=N (98]

o[oo[vo|—— oo [ro | —— oo ro | —— o0

(O] EEN (O8]

#w/m#w

[y

1+517

2+4

3+4

BN (98}

|\ |oo

—_

(@) Ex [oe]

—_

(@)} [¢.e] I9V)

The optimality of A*]

e A*is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.

e There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.
2. All arcs have a cost greater than some positive e.

3. For all nodes in the graph h(n) always underestimates the
true distance to the goal.

e The key here is the notion of admissibility.
e We will express this by saying a heuristic A (-) is admissible if

h(n) < hr(n)

@71 6-spring2004-parsons-lect08

More informed search

o IF two versions of A*, A} and Aj use different functions ~; and
hZ/

e AND
h1<n> < hz(%)

for all non-goal nodes,

e THEN we say that A} is more informed than Aj.

e The better informed A* is, the less nodes it has to expand to find

the minimum cost path.

@71 6-spring2004-parsons-lect08

e As an example of “more informed” consider the 8-puzzle:

— tiles out of place; and
— Manhattan blocks distance.

e We need h(n) to underestimate hp(n) to ensure admissibility.

e But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.

e This means less nodes need to be searched.

@71 6-spring2004-parsons-lect08

Iterative deepening A*

e When we do heuristic search, we search some portion of the full
search space.

e "Focussed breadth first search”.
e S0 we can still hit intractability.
e Adapting iterative deepening can help us.

e Instead of a depth limit, we impose a cost limit, and do a depth
first search until it is exceeded.

e Then we backtrack, and extend the limit if we don’t find the goal.

@71 6-spring2004-parsons-lect08 y

e The initial cost cut off is set to f(ny).
e This is just the estimated cost of finding a solution h(ny).

e This will never overestimate the cost, so is a good start point.

e [f this cost-limit does not provide a solution, what is the next cost

limit.
e Well, if the heuristic is a good one, the cost of the cheapest path
to the goal will be the lowest f(n) of an unexpanded node.

e SO0 we set the new cost bound to this.

e This, then is iterative deepening A* (IDA¥).

@71 6-spring2004-parsons-lect08

Summary|

e This lecture has looked at some techniques for refining the
search space:

e When these work they explore just the relevant part of the search

space.

e There are also techniques that go further than those we have
studied.

— iterative deepening A* search

e There are three directions we will take from here:

— Adversarial search
— Learning the state space.
— Adding in more knowledge about the domain.

@71 6-spring2004-parsons-lect08

