
' $

HEURISTIC SEARCH II

& %

' $

Recap

The last lectures introduced� More advanced problem solving techniques:

– Depth limited search

– Iterative deepening

– Bidirectional search� These improved on basic techniques like breadth-first and
depth-first search.� However, they still aren’t powerful enough to give solutions for
realistic problems.� Are there more improvements we can make?

cis716-spring2004-parsons-lect08 2& %

' $

Overview

Aims of this lecture:� To show how applying some knowledge of the problem can help.� Introduce heuristics — rules of thumb.� Introduce heuristic search: guided by rules of thumb which help
to decide which node to expand:

– uniform-cost search;

– greedy search;

– A* search.

cis716-spring2004-parsons-lect08 3& %

' $

Heuristic (Informed) Search

� Whatever search technique we use, exponential time complexity.� Tweaks to the algorithm will not reduce this to polynomial.� We need problem specific knowledge to guide the search.� Simplest form of problem specific knowledge is heuristic.� Usual implementation in search is via an evaluation function
which indicates desirability of expanding node.

cis716-spring2004-parsons-lect08 4& %

' $

Uniform Cost Search

� Recall we have a path cost function,g : Nodes! R
which gives cost to each path.� Why not expand the cheapest path first?� Intuition: cheapest is likely to be best!

cis716-spring2004-parsons-lect08 5& %

' $

� General algorithm for uniform search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
g(node) = min { g(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis716-spring2004-parsons-lect08 6& %

' $

� Uniform cost search guaranteed to find cheapest solution
assuming path costs grow monotonically.� In other words, adding another step to the solution makes it
more costly.� If path costs don’t grow monotonically, then exhaustive search is
required.

cis716-spring2004-parsons-lect08 7& %

' $

� Once again we can illustrate this on the 8-puzzle:

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

� For this set up, the search of the space:

cis716-spring2004-parsons-lect08 8& %

'

$

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal

node
Start

node

© 1998 Morgan Kaufman Publishers

ci
s7

16
-s

p
ri

n
g

20
04

-p
ar

so
n

s-
le

ct
08

9

&

%

' $

� Will happen in the following way.� States would be expanded in the order:

1. 1

2. 2, 3, 4

3. 5, 6, 7, 8, 9

4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

5. . . .� Note that this is just like breadth first search (because the path
costs are just the same).

cis716-spring2004-parsons-lect08 10& %

' $

� Instead, assume up/down moves cost 2 and left/right moves
cost 1.� States would be expanded in the order:

1. 1

2. 2, 3, 4

3. 5

4. 9

5. 6, 7, 8

6. . . .

cis716-spring2004-parsons-lect08 11& %

' $

Greedy Search� Most heuristics estimate cost of cheapest path from node to solution.� We have a heuristic function,h : Nodes! R
which estimates the distance from the node to the goal.� Example: In route finding, heuristic might be straight line
distance from node to destination.� Heuristic is said to be admissible if it never overestimates cheapest
solution.

Admissible = optimistic.� Greedy search involves expanding node with cheapest expected cost
to solution.

cis716-spring2004-parsons-lect08 12& %

' $

� General algorithm for greedy search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
h(node) = min { h(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis716-spring2004-parsons-lect08 13& %

' $

� Greedy search finds solutions quickly.� Doesn’t always find best.� Susceptible to false starts.

– Chases good looking options that turn out to be bad.� Only looks at current node. Ignores past!� Also myopic (shortsighted).

cis716-spring2004-parsons-lect08 14& %

' $

� For the 8-puzzle one good heuristic is:

– count tiles out of place.� Another is:

– Manhattan blocks’ distance� The latter works for other problems as well:

– Robot navigation.

cis716-spring2004-parsons-lect08 15& %

' $

2 8 3
1 6 4
7 54

2 8 3
1

6
4

7 53

2
8

3

6
41

7 53

2 8 3
1 6 4
7 55

2 8 3

6
41

7 54

2 8 3
1 6 4

7 55

2 8 3

6
41

7 53

8 3
2 1 4
7 6 5

8 32

6 5
7 1 4

3 4

8 3
2 1 4
7 6 53

To the goal

To more fruitless wandering

© 1998 Morgan Kaufman Publishers

cis716-spring2004-parsons-lect08 16& %

' $

A* Search� A* is very efficient search strategy.� Basic idea is to combine

uniform cost search
and

greedy search.� We look at the cost so far and the estimated cost to goal.� Gives heuristic f : f(n) = g(n) + h(n)
where

– g(n) is path cost of n;

– h(n) is expected cost of cheapest solution from n.� Aims to mimimise overall cost.

cis716-spring2004-parsons-lect08 17& %

' $

� General algorithm for A* search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
f(node) = min { f(n) | n in agenda}
where f(n) = g(n) + h(n)

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis716-spring2004-parsons-lect08 18& %

' $

� Considering the 8-puzzle (for the last time :-):� We combine:

– Path cost function:� number of moves.

– Heuristic function:� tiles out of places.� This gives the following search.

cis716-spring2004-parsons-lect08 19& %

' $

2 8 3
1 6 4
7 50 + 4

2 8 3
1

6
4

7 51 + 3

2
8

3

6
41

7 52 + 3

2 8 3
1 6 4
7 51 + 5

2 8 3

6
41

7 52 + 4

2
8

3

6
41

7 53 + 2

2
8
3

6
41

7 53 + 4

2
8

3

6
4

1

7 54 + 1

2 8 3
1 6 4

7 51 + 5

2 8 3

6
41

7 52 + 3

2 8 3

6
417
53 + 4

2
8 3

6
41

7 53 + 3

1
8

3

6
47

2

55 + 2

1 2 3

6
48

7 55 + 0

Goal

© 1998 Morgan Kaufman Publishers

cis716-spring2004-parsons-lect08 20& %

' $

The optimality of A*� A* is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.� There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.

2. All arcs have a cost greater than some positive �.
3. For all nodes in the graph h(n) always underestimates the

true distance to the goal.� The key here is the notion of admissibility.� We will express this by saying a heuristic h(�) is admissible ifh(n) � hT (n)
cis716-spring2004-parsons-lect08 21& %

' $

More informed search

� IF two versions of A*, A�1 and A�2 use different functions h1 andh2,� AND h1(n) < h2(n)
for all non-goal nodes,� THEN we say that A�2 is more informed than A�1.� The better informed A* is, the less nodes it has to expand to find
the minimum cost path.

cis716-spring2004-parsons-lect08 22& %

' $

� As an example of ”more informed” consider the 8-puzzle:

– tiles out of place; and

– Manhattan blocks distance.� We need h(n) to underestimate hT (n) to ensure admissibility.� But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.� This means less nodes need to be searched.

cis716-spring2004-parsons-lect08 23& %

' $

Iterative deepening A*

� When we do heuristic search, we search some portion of the full
search space.� ”Focussed breadth first search”.� So we can still hit intractability.� Adapting iterative deepening can help us.� Instead of a depth limit, we impose a cost limit, and do a depth
first search until it is exceeded.� Then we backtrack, and extend the limit if we don’t find the goal.

cis716-spring2004-parsons-lect08 24& %

' $

� The initial cost cut off is set to f(n0).� This is just the estimated cost of finding a solution h(n0).� This will never overestimate the cost, so is a good start point.� If this cost-limit does not provide a solution, what is the next cost
limit.� Well, if the heuristic is a good one, the cost of the cheapest path
to the goal will be the lowest f(n) of an unexpanded node.� So we set the new cost bound to this.� This, then is iterative deepening A* (IDA*).

cis716-spring2004-parsons-lect08 25& %

' $

Summary� This lecture has looked at some techniques for refining the
search space:� When these work they explore just the relevant part of the search
space.� There are also techniques that go further than those we have
studied.

– iterative deepening A* search� There are three directions we will take from here:

– Adversarial search

– Learning the state space.

– Adding in more knowledge about the domain.

cis716-spring2004-parsons-lect08 26& %

