#### HEURISTIC SEARCH II

# Recap

The last lectures introduced

- More advanced problem solving techniques:
  - Depth limited search
  - Iterative deepening
  - Bidirectional search
- These improved on basic techniques like breadth-first and depth-first search.
- However, they still aren't powerful enough to give solutions for realistic problems.
- Are there more improvements we can make?

#### Overview

Aims of this lecture:

- To show how applying some knowledge of the problem can help.
- Introduce *heuristics* rules of thumb.
- Introduce *heuristic search*: guided by rules of thumb which help to decide which node to expand:
  - *uniform-cost search*;
  - greedy search;
  - $-A^*$  search.

#### Heuristic (Informed) Search

- Whatever search technique we use, *exponential time complexity*.
- Tweaks to the algorithm will not reduce this to polynomial.
- We need problem specific knowledge to guide the search.
- Simplest form of problem specific knowledge is *heuristic*.
- Usual implementation in search is via an *evaluation function* which indicates desirability of expanding node.

#### Uniform Cost Search

• Recall we have a *path cost function*,

 $g: Nodes \to R$ 

which gives cost to each path.

- Why not expand the *cheapest* path first?
- Intuition: cheapest is likely to be best!

• General algorithm for uniform search:

```
agenda = initial state;
while agenda not empty do
{
  take node from agenda such that
    g(node) = min { g(n) | n in agenda}
    new nodes = apply operations to node;
    if goal state in new nodes then {
       return solution;
    }
    else add new nodes to agenda
}
```

- Uniform cost search guaranteed to find cheapest solution *assuming path costs grow monotonically*.
- In other words, adding another step to the solution makes it more costly.
- If path costs *don't* grow monotonically, then exhaustive search is required.

• Once again we can illustrate this on the 8-puzzle:

| 2 | 8 | 3 |  |
|---|---|---|--|
| 1 | 6 | 4 |  |
| 7 |   | 5 |  |

| 1 | 2 | 3 |  |
|---|---|---|--|
| 8 |   | 4 |  |
| 7 | 6 | 5 |  |

• For this set up, the search of the space:



- Will happen in the following way.
- States would be expanded in the order:

```
    1. 1
    2. 2, 3, 4
    3. 5, 6, 7, 8, 9
    4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
    5. ...
```

• Note that this is just like breadth first search (because the path costs are just the same).

- Instead, assume up/down moves cost 2 and left/right moves cost 1.
- States would be expanded in the order:

1.
 2, 3, 4
 3.
 5.
 6, 7, 8
 6.

cis716-spring2004-parsons-lect08

11/

### Greedy Search

- Most heuristics *estimate cost of cheapest path from node to solution*.
- We have a *heuristic function*,

 $h: Nodes \to R$ 

which estimates the distance from the node to the goal.

- Example: In route finding, heuristic might be straight line distance from node to destination.
- Heuristic is said to be *admissible* if it *never overestimates* cheapest solution.

Admissible = optimistic.

• Greedy search involves *expanding node with cheapest expected cost to solution*.

```
• General algorithm for greedy search:
```

```
agenda = initial state;
while agenda not empty do
{
  take node from agenda such that
    h(node) = min { h(n) | n in agenda}
    new nodes = apply operations to node;
    if goal state in new nodes then {
       return solution;
    }
    else add new nodes to agenda
}
```

- Greedy search finds solutions quickly.
- Doesn't always find best.
- Susceptible to false starts.
  - Chases good looking options that turn out to be bad.
- Only looks at *current* node. Ignores past!
- Also *myopic* (shortsighted).

- For the 8-puzzle one good heuristic is:
  - count tiles out of place.
- Another is:
  - Manhattan blocks' distance
- The latter works for other problems as well:
  - Robot navigation.



#### A\* Search

- A\* is very efficient search strategy.
- Basic idea is to *combine*

uniform cost search *and* greedy search.

- We look at the *cost so far* and the *estimated cost to goal*.
- Gives heuristic *f*:

$$f(n) = g(n) + h(n)$$

where

- g(n) is path cost of n;
- h(n) is expected cost of cheapest solution from n.
- Aims to mimimise *overall cost*.

```
• General algorithm for A* search:
agenda = initial state;
while agenda not empty do
   take node from agenda such that
     f(node) = min \{ f(n) | n in agenda \}
     where f(n) = g(n) + h(n)
   new nodes = apply operations to node;
   if goal state in new nodes then {
     return solution;
   else add new nodes to agenda
```

- Considering the 8-puzzle (for the last time :-):
- We combine:
  - Path cost function:
    - \* number of moves.
  - Heuristic function:
    - \* tiles out of places.
- This gives the following search.



### The optimality of A\*

- A\* is optimal in precise sense—it is guaranteed to find a minimum cost path to the goal.
- There are a set of conditions under which A\* will find such a path:
  - 1. Each node in the graph has a finite number of children.
  - 2. All arcs have a cost greater than some positive  $\epsilon$ .
  - 3. For all nodes in the graph h(n) always underestimates the true distance to the goal.
- The key here is the notion of *admissibility*.
- We will express this by saying a heuristic  $h(\cdot)$  is admissible if

 $h(n) \le h_T(n)$ 

#### More informed search

- IF two versions of A\*, A<sup>\*</sup><sub>1</sub> and A<sup>\*</sup><sub>2</sub> use different functions h<sub>1</sub> and h<sub>2</sub>,
- AND

$$h_1(n) < h_2(n)$$

for all non-goal nodes,

- THEN we say that  $A_2^*$  is more informed than  $A_1^*$ .
- The better informed A\* is, the less nodes it has to expand to find the minimum cost path.

- As an example of "more informed" consider the 8-puzzle:
  - tiles out of place; and
  - Manhattan blocks distance.
- We need h(n) to underestimate  $h_T(n)$  to ensure admissibility.
- But, the closer the estimate, the easier it is to reject nodes which are not on the optimal path.
- This means less nodes need to be searched.

### Iterative deepening A\*

- When we do heuristic search, we search some portion of the full search space.
- "Focussed breadth first search".
- So we can still hit intractability.
- Adapting iterative deepening can help us.
- Instead of a depth limit, we impose a cost limit, and do a depth first search until it is exceeded.
- Then we backtrack, and extend the limit if we don't find the goal.

- The initial cost cut off is set to  $f(n_0)$ .
- This is just the estimated cost of finding a solution  $h(n_0)$ .
- This will never overestimate the cost, so is a good start point.
- If this cost-limit does not provide a solution, what is the next cost limit.
- Well, if the heuristic is a good one, the cost of the cheapest path to the goal will be the lowest *f*(*n*) of an unexpanded node.
- So we set the new cost bound to this.
- This, then is iterative deepening A\* (IDA\*).

## Summary

- This lecture has looked at some techniques for refining the search space:
- When these work they explore just the relevant part of the search space.
- There are also techniques that go further than those we have studied.
  - iterative deepening A\* search
- There are three directions we will take from here:
  - Adversarial search
  - Learning the state space.
  - Adding in more knowledge about the domain.