
' $

PLANNING

& %

' $

1 What is Planning?

• Key problem facing agent is deciding what to do.

• We want agents to be taskable: give them goals to achieve, have
them decide for themselves how to achieve them.

• Basic idea is to give an agent:

– representation of goal to achieve;

– knowledge about what actions it can perform; and

– knowledge about state of the world;

and to have it generate a plan to achieve the goal.

• Essentially, this is

automatic programming.

cis716-spring2004-parsons-lect17 2& %

' $

Planner

goal environment
state of

possible actions

plan to achieve goal

cis716-spring2004-parsons-lect17 3& %

' $

• Question: How do we represent. . .

– goal to be achieved;

– state of environment;

– actions available to agent;

– plan itself.

• We show how all this can be done in first-order logic. . .

cis716-spring2004-parsons-lect17 4& %

' $

• We’ll illustrate the techniques with reference to the blocks world.

• Contains a robot arm, 3 blocks (A, B and C) of equal size, and a
table-top.

• Initial state:

A

B C

cis716-spring2004-parsons-lect17 5& %

' $

• To represent this environment, need an ontology.

On(x, y) obj x on top of obj y

OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x

Holding(x) arm is holding x

cis716-spring2004-parsons-lect17 6& %

' $

• Here is a FOL representation of the blocks world described
above:

Clear(A)
On(A, B)
OnTable(B)
OnTable(C)
Clear(C)

• Use the closed world assumption: anything not stated is assumed
to be false.

cis716-spring2004-parsons-lect17 7& %

' $

• A goal is represented as a FOL formula.

• Here is a goal:

OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

• Which corresponds to the state:

B CA

• Actions are represented using a technique that was developed in
the STRIPS planner.

cis716-spring2004-parsons-lect17 8& %

' $

• Each action has:

– a name

which may have arguments;

– a pre-condition list

list of facts which must be true for action to be executed;

– a delete list

list of facts that are no longer true after action is performed;

– an add list

list of facts made true by executing the action.

Each of these may contain variables.

cis716-spring2004-parsons-lect17 9& %

' $

• Example 1:

The stack action occurs when the robot arm places the object x it
is holding is placed on top of object y.

Stack(x, y)
pre Clear(y) ∧ Holding(x)
del Clear(y) ∧ Holding(x)
add ArmEmpty ∧ On(x, y)

cis716-spring2004-parsons-lect17 10& %

' $

• Example 2:

The unstack action occurs when the robot arm picks an object x

up from on top of another object y.

UnStack(x, y)
pre On(x, y) ∧ Clear(x) ∧ ArmEmpty

del On(x, y) ∧ ArmEmpty

add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

cis716-spring2004-parsons-lect17 11& %

' $

• Example 3:

The pickup action occurs when the arm picks up an object x from
the table.

Pickup(x)
pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty

del OnTable(x) ∧ ArmEmpty

add Holding(x)

• Example 4:

The putdown action occurs when the arm places the object x onto
the table.

PutDown(x)
pre Holding(x)
del Holding(x)
add Holding(x) ∧ ArmEmpty

cis716-spring2004-parsons-lect17 12& %

' $

• What is a plan?

A sequence (list) of actions, with variables replaced by constants.

• So, to get from:

A

B C
to

B

C

A

cis716-spring2004-parsons-lect17 13& %

' $

• We need the set of actions:

Unstack(A)
Putdown(A)
Pickup(B)
Stack(B,C)
Pickup(A)
Stack(A,B)

cis716-spring2004-parsons-lect17 14& %

' $

• In “real life”, plans contain conditionals (IF .. THEN...) and
loops (WHILE... DO...), but most simple planners cannot
handle such constructs — they construct linear plans.

• Simplest approach to planning: means-ends analysis.

• Involves backward chaining from goal to original state.

• Start by finding an action that has goal as post-condition.

Assume this is the last action in plan.

• Then figure out what the previous state would have been.

Try to find action that has this state as post-condition.

• Recurse until we end up (hopefully!) in original state.

cis716-spring2004-parsons-lect17 15& %

' $

function plan(
d : WorldDesc, // initial env state
g : Goal, // goal to be achieved
p : Plan, // plan so far
A : set of actions // actions available)

1. if d |= g then
2. return p

3. else
4. choose a in A such that
5. add(a) |= g and
6. del(a) 6|= g

7. set g = pre(a)
8. append a to p

9. return plan(d, g, p, A)

cis716-spring2004-parsons-lect17 16& %

' $

• How does this work on the previous example?

cis716-spring2004-parsons-lect17 17& %

' $

• This algorithm not guaranteed to find the plan. . .

• . . . but it is sound: If it finds the plan is correct.

• Some problems:

– negative goals;

– maintenance goals;

– conditionals & loops;

– exponential search space;

– logical consequence tests;

cis716-spring2004-parsons-lect17 18& %

' $

The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

• One solution is to write frame axioms.

Here is a frame axiom, which states that SP’s hair colour is the
same in all the situations s′ that result from performing
Pickup(x) in situation s as it is in s.

∀s, s′.Result(SP, P ickup(x), s) = s′ ⇒
HCol(SP, s) = HCol(SP, s′)

cis716-spring2004-parsons-lect17 19& %

' $

• Stating frame axioms in this way is unfeasible for real problems.

• (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

• STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

• We will revisit this problem in a few lectures’ time.

• It connects with the general problem of handling incomplete
information, and non-monotonic reasoning.

cis716-spring2004-parsons-lect17 20& %

' $

Sussman’s Anomaly

• Consider we have the following initial state and goal state:

B C

A

to

B

C

A

• What operations will be in the plan?

cis716-spring2004-parsons-lect17 21& %

' $

• Clearly we need to Stack B on C at some point, and we also need
to Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the UnStack first, and the Stack B on
C, but the planner has no way of knowing this.

• It also has no way of “undoing” a partial plan if it leads into a
dead end.

• So if it chooses to Stack(A,C) after the Unstack, it is sunk.

• This is a big problem with linear planners

• How could we modify our planning algorithm?

cis716-spring2004-parsons-lect17 22& %

' $

• Modify the middle of the algorithm to be:

1. if d |= g then
2. return p

3. else
4. choose a in A such that
5. add(a) |= g and
6. del(a) 6|= g

6a. no clobber(add(a), del(a), rest of plan)
7. set g = pre(a)
8. append a to p

9. return plan(d, g, p, A)

• But how can we do this?

cis716-spring2004-parsons-lect17 23& %

' $

Partial Order Planning

• The answer to the problem on the previous slide is to use partial
order planning.

• Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.

• The problem is that in this recursive process, we don’t know
what the rest of the plan is.

• Need a new representation partially ordered plans.

cis716-spring2004-parsons-lect17 24& %

' $

Representation

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

cis716-spring2004-parsons-lect17 25& %

' $

Partially ordered plans

• Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of
another

– temporal ordering between pairs of steps

• Open condition = precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier step and
no possibly intervening step undoes it

cis716-spring2004-parsons-lect17 26& %

' $

Example

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

cis716-spring2004-parsons-lect17 27& %

' $

Example (2)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

cis716-spring2004-parsons-lect17 28& %

' $

Planning process

• Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts

• Gradually move from incomplete/vague plans to complete,
correct plans

• Backtrack if an open condition is unachievable or if a conflict is
unresolvable

cis716-spring2004-parsons-lect17 29& %

' $

Example (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

cis716-spring2004-parsons-lect17 30& %

' $

Example (4)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

cis716-spring2004-parsons-lect17 31& %

' $

Example (5)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

cis716-spring2004-parsons-lect17 32& %

' $

Summary

• This lecture has looked at planning.

• We looked mainly at a logical view of planning, using STRIPS
operators.

• We also discussed the frame problem, and Sussman’s anomaly.

• Sussman’s anomaly motivated some thoughts about
partial-order planning.

cis716-spring2004-parsons-lect17 33& %

