1 What is Planning?|

o Key problem facing agent is deciding what to do.

o We want agents to be faskable: give them goals to achieve, have
them decide for themselves how to achieve them.

e Basic idea is to give an agent:

- representation of goal to achieve;
- knowledge about what actions it can perform; and
- knowledge about state of the world;

and to have it generate a plan to achieve the goal.

o Essentially, this is

automatic programming.

4 ~

PLANNING
- Y,
s

state of . .

goal environment POSS ble actions
Planner
plan to achieve goal

@716-springZOO4—parsons—lect17 y

Cis716-spring2004-parsons-lect17

s

o Question: How do we represent. ..

— goal to be achieved;

— state of environment;

- actions available to agent;
- plan itself.

o We show how all this can be done in first-order logic. ..

@716-spring2004-parsons-lectl 7

o We'll illustrate the techniques with reference to the blocks world.

¢ Contains a robot arm, 3 blocks (A, B and C) of equal size, and a
table-top.

e Initial state:

A

@71 6-spring2004-parsons-lect17

-

e Here is a FOL representation of the blocks world described
above:

Clear(A)
On(A, B)
OnTable(B)
OnTable(C)
Clear(C)

e Use the closed world assumption: anything not stated is assumed
to be false.

@71 6-spring2004-parsons-lect17

o To represent this environment, need an ontology.

On(x,y) obj z on top of obj y
OnTable(x) objz is on the table
Clear(z) nothing is on top of obj =
Holding(z) armis holding

Cis716-spring2004-parsons-lect17 y

s

e A goal is represented as a FOL formula.

e Here is a goal:

OnTable(A) A OnTable(B) A OnTable(C')

e Which corresponds to the state:

A B C

e Actions are represented using a technique that was developed in
the STRIPS planner.

{is716-spring2004-parsons-lectl7 y

e Each action has:

— a name
which may have arguments;
— a pre-condition list
list of facts which must be true for action to be executed;
— a delete list
list of facts that are no longer true after action is performed;
— an add list
list of facts made true by executing the action.

Each of these may contain variables.

@71 6-spring2004-parsons-lect17

-

e Example 2:

The unstack action occurs when the robot arm picks an object =
up from on top of another object y.

UnStack(z,y)
pre On(z,y) A Clear(z) A ArmEmpty
del On(z,y) N ArmEmpty
add Holding(x) A Clear(y)

Stack and UnStack are inverses of one-another.

@71 6-spring2004-parsons-lect17

e Example 1:

The stack action occurs when the robot arm places the object x it
is holding is placed on top of object y.

Stack(z,y)
pre Clear(y) A Holding(x)
del Clear(y) N Holding(x)
add ArmEmpty A On(z,y)

Cis716-spring2004-parsons-lect17 y

s

e Example 3:

The pickup action occurs when the arm picks up an object « from
the table.

Pickup(x)
pre Clear(z) A OnTable(x) A ArmEmpty
del OnTable(x) N ArmEmpty
add Holding(z)

e Example 4:
The putdown action occurs when the arm places the object « onto
the table.
PutDown(x)
pre Holding(x)
del Holding(x)
add Holding(z) AN ArmEmpty

{is716-spring2004-parsons-lectl7 9

e What is a plan?
A sequence (list) of actions, with variables replaced by constants.

e So, to get from:

to

@716—springZ[]O/lfparsonsflectl7 y

-

o In “real life”, plans contain conditionals (I F .. THEN...)and
loops (WHI LE. .. DO . .), but most simple planners cannot
handle such constructs — they construct linear plans.

e Simplest approach to planning: means-ends analysis.
e Involves backward chaining from goal to original state.

e Start by finding an action that has goal as post-condition.
Assume this is the last action in plan.

e Then figure out what the previous state would have been.
Try to find action that has this state as post-condition.

o Recurse until we end up (hopefully!) in original state.

e We need the set of actions:

Cis716-spring2004-parsons-lect17

Unstack(A)
Putdown(A)
Pickup(B)
Stack(B,C)
Pickup(A)
Stack(A, B)

s

function plan(

d . WorldDesc,

g : Goal,

p: Plan,

A : set of actions

if d = g then
return p

else

del(a) £ g
set g = pre(a)
append a to p

©CoNOURA~WDE

@71 6-spring2004-parsons-lect17 y

@716-spring2004-parsons-lectl 7

/I initial env state

/I goal to be achieved
// plan so far

/l actions available)

choose a in A such that
add(a) = g and

return plan(d, g, p, A)

e How does this work on the previous example?

@71 6-spring2004-parsons-lect17

-

|The Frame Problem|

o A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

e One solution is to write frame axioms.

Here is a frame axiom, which states that SP’s hair colour is the
same in all the situations s’ that result from performing
Pickup(x) in situation s as it is in s.

Vs, s'.Result(S P, Pickup(x),s) = ' =
HCOl(SP,s) = HCol(SP,)

@71 6-spring2004-parsons-lect17

o This algorithm not guaranteed to find the plan...
e ... but it is sound: If it finds the plan is correct.
e Some problems:

- negative goals;

- maintenance goals;

- conditionals & loops;

- exponential search space;

- logical consequence tests;

Cis716-spring2004-parsons-lect17 y

s

e Stating frame axioms in this way is unfeasible for real problems.

o (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

o STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

o We will revisit this problem in a few lectures’ time.

o It connects with the general problem of handling incomplete
information, and non-monotonic reasoning.

{is716-spring2004-parsons-lectl7 y

’Sussman’s Anomaly|

e Consider we have the following initial state and goal state:

A

A B

to

e What operations will be in the plan?

@71 6-spring2004-parsons-lect17

B C C

o Clearly we need to Stack B on C at some point, and we also need
to Unstack A from C and Stack it on B.

e Which operation goes first?

e Obviously we need to do the UnStack first, and the Stack B on
C, but the planner has no way of knowing this.

o It also has no way of “undoing” a partial plan if it leads into a
dead end.

e So if it chooses to Stack(A, C) after the Unstack, it is sunk.
o This is a big problem with linear planners

e How could we modify our planning algorithm?

Zy Cis716-spring2004-parsons-lect17 9

-

e Modify the middle of the algorithm to be:

if d = g then
return p
else
choose «a in A such that
add(a) E g and
del(a) - g
a. no_clobber(add(a),del(a), rest_of plan)
set g = pre(a)
append a to p
return plan(d, g, p, A)

COeNIOORWONE

e But how can we do this?

@71 6-spring2004-parsons-lect17

s

[Partial Order Planning|

e The answer to the problem on the previous slide is to use partial
order planning.

o Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.

o The problem is that in this recursive process, we don’t know
what the rest of the plan is.

o Need a new representation partially ordered plans.

y {is716-spring2004-parsons-lectl7 y

[Representation|

Partial Order Plan:

Total Order Plans:

-

Partially ordered plans|

o Partially ordered collection of steps with

— Start step has the initial state description as its effect
— Finish step has the goal description as its precondition
— causal links from outcome of one step to precondition of

another

— temporal ordering between pairs of steps
e Open condition = precondition of a step not yet causally linked
o A plan is complete iff every precondition is achieved

¢ A precondition is achieved iff it is the effect of an earlier step and

no possibly intervening step undoes it

Cis716-spring2004-parsons-lect17

s

START
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

On(AB) On(B,C)

FINISH

Start Start Start Start Start Start
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
i
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn _
- Right Left Right Left Left Right
Left Right
Sh‘oe Shfe Sh‘oe Sh&oe Sock Sock
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn ‘ ‘ + * * ‘
Finish Finish Finish Finish Finish Finish
@716—spring20047parsonsflectl7 29
\
Example
"Sussman anomaly" problem A
C B
| B | A C
Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0n(x,z) Clear(z) On(x,Table)
Clear(z) On(x,y)
+ several inequality constraints
@716-spring2004-parsons-lect17 y

\ci\s716-spring2004-parsons-lectl 7

Example (2)

[=]]4]

[o]=]>]

[Planning process|

e Operators on partial plans:
— add a link from an existing action to an open condition
— add a step to fulfill an open condition
— order one step wrt another to remove possible conflicts
e Gradually move from incomplete/vague plans to complete,
correct plans

e Backtrack if an open condition is unachievable or if a conflict is
unresolvable

@71 6-spring2004-parsons-lect17

Zy

P
Example (4)

oF

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

PutON(A,B)

clobbers CI(B)

=> order after
PutON(B,C)

cﬁa) oNE.2) CIO)

CI(A) On(A 2) c|(s)
PutOn(B,C)
PulOn(A B)

onéo)

S .~
j)?‘
@

FINISH

@71 6-spring2004-parsons-lect17

Example (3)
oF

On(C,A) On(A,Table) CI(B) On(B, Table) CI(C)

\)

CI\B) OnEB z) Cl| C)

PutOn(B,C)

onAaB) onEC)

FINISH

Cis716-spring2004-parsons-lect17

s

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

PUtON(A,B)

clobbers CI(B)

=> order after
Puton(B,C)

-
on(C2) clC)

PutOn(B,C)

clobbers CI(C)

=> order after
I PutOnTable(C)

o) On(“:l.z) o)

PutOn(B,C)

citw ond) cid)

PutOn(A,B)
\

bl ¥
on(AB) On(B,C)
FINISH

\ci\s716-spring2004-parsons-lectl 7

Summary

e This lecture has looked at planning.

o We looked mainly at a logical view of planning, using STRIPS
operators.

e We also discussed the frame problem, and Sussman’s anomaly.

e Sussman’s anomaly motivated some thoughts about
partial-order planning.

@71 6-spring2004-parsons-lect17

33/

