LECTURE 4: DEDUCTIVE REASONING AGENTS

An Introduction to Multiagent Systems
CIS 716.5, Spring 2005

Lecture 4 An Introduction to Multiagent Systems

1 Agent Architectures

e Pattie Maes (1991):

‘[A] particular methodology for building [agents]. It specifies how ... the agent can be decomposed
into the construction of a set of component modules and how these modules should be made to
interact. The total set of modules and their interactions has to provide an answer to the question of
how the sensor data and the current internal state of the agent determine the actions ... and future
internal state of the agent. An architecture encompasses techniques and algorithms that support this
methodology.

e | eslie Kaelbling (1991):

‘[A] specific collection of software (or hardware) modules, typically designated by boxes with arrows
indicating the data and control flow among the modules. A more abstract view of an architecture is as
a general methodology for designing particular modular decompositions for particular tasks.

©M. J. Wooldridge, used by permission 1

Lecture 4 An Introduction to Multiagent Systems

2 Types of Agents

e 1956—present: Symbolic Reasoning Agents

Agents make decisions about what to do via symbol
manipulation.

Its purest expression, proposes that agents use explicit logical
reasoning in order to decide what to do.

e 1985—present: Reactive Agents

Problems with symbolic reasoning led to a reaction against this
— led to the reactive agents movement, 1985—present.

e 1990-present. Hybrid Agents

Hybrid architectures attempt to combine the best of reasoning
and reactive architectures.

©M. J. Wooldridge, used by permission 2

Lecture 4 An Introduction to Multiagent Systems

3 Symbolic Reasoning Agents

e The classical approach to building agents is to view them as a
particular type of knowledge-based system, and bring all the
associated methodologies of such systems to bear.

e This paradigm is known as symbolic Al.

¢ \We define a deliberative agent or agent architecture to be one
that:

— contains an explicitly represented, symbolic model of the
world,;

— makes decisions (for example about what actions to perform)
via symbolic reasoning.

©M. J. Wooldridge, used by permission 3

Lecture 4 An Introduction to Multiagent Systems

Two Issues

1. The transduction problem:

that of translating the real world into an accurate, adequate
symbolic description, in time for that description to be useful.

. vision, speech understanding, learning.

2. The representation/reasoning problem:

that of how to symbolically represent information about complex
real-world entities and processes, and how to get agents to
reason with this information in time for the results to be useful.

... knowledge representation, automated reasoning, automatic
planning.

©M. J. Wooldridge, used by permission 4

Lecture 4 An Introduction to Multiagent Systems

e Most researchers accept that neither problem is anywhere near
solved.

e Underlying problem lies with the complexity of symbol
manipulation algorithms in general: many (most) search-based
symbol manipulation algorithms of interest are highly intractable.

e Because of these problems, some researchers have looked to
alternative techniques for building agents; we look at these later.

©M. J. Wooldridge, used by permission 5

Lecture 4 An Introduction to Multiagent Systems

Deductive Reasoning Agents

e How can an agent decide what to do using theorem proving?

e Basic idea is to use logic to encode a theory stating the best
action to perform in any given situation.

® | et:

— p be this theory (typically a set of rules);

— A be a logical database that describes the current state of the
world;

— Ac be the set of actions the agent can perform;
— A I, ¢ mean that ¢ can be proved from A using p.

©M. J. Wooldridge, used by permission 6

Lecture 4 An Introduction to Multiagent Systems

[* try to find an action explicitly prescribed */
for each o € Ac do
if A -, Do(«) then
return a
end-if
end-for
[* try to find an action not excluded */
for each o € Ac do
if A7, -Do(«) then
return o
end-if
end-for
return nul I /* no action found */

©M. J. Wooldridge, used by permission 7

Lecture 4

An Introduction to Multiagent Systems

An Example: The Vacuum World

e Goal is for the robot to clear up all dirt.

,,,,,,,,,,,,,,,,,, 2. . @ax» @
,,,,,,,,,,,,,,,,,, ©n. . @an. @D
(0,0 (€N} 2,09

©M. J. Wooldridge, used by permission 8

Lecture 4 An Introduction to Multiagent Systems

e Use 3 domain predicates in this exercise:

In(x,y) agentis at (X,y)
Dirt(x,y) there is dirt at (x,y)
Facing(d) the agent is facing direction d

¢ Possible actions:
Ac = {turn, forward, suck}

NB: turn means “turn right”.

©M. J. Wooldridge, used by permission 9

Lecture 4 An Introduction to Multiagent Systems

e Rules p for determining what to do:

In(0, 0) A Facing(north) A =Dirt(0,0) — Do(forward)

In(0, 1) A Facing(north) A =Dirt(0,1) — Do(forward)

In(0,2) A Facing(north) A =Dirt(0,2) — Do(turn)
In(0,2) A Facing(east) — Do(forward)

e .. and so on!

e Using these rules (+ other obvious ones), starting at (0, 0) the
robot will clear up dirt.

©M. J. Wooldridge, used by permission 10

Lecture 4 An Introduction to Multiagent Systems

e Problems:

— how to convert video camera input to Dirt(0, 1)?

— decision making assumes a static environment: calculative
rationality.

— decision making using first-order logic is undecidable!

e Even where we use propositional logic, decision making in the
worst case means solving co-NP-complete problems.

(NB: co-NP-complete = bad news!)
¢ Typical solutions:

— weaken the logic;
— use symbolic, non-logical representations;
— shift the emphasis of reasoning from run time to design time.

e \We now look at some examples of these approaches.

©M. J. Wooldridge, used by permission 11

Lecture 4 An Introduction to Multiagent Systems

AGENTO and PLACA

¢ Yoav Shoham introduced “agent-oriented programming” in 1990:

“new programming paradigm, based on a societal view of
computation”.

® The key idea:

directly programming agents in terms of intentional notions like
belief, commitment, and intention.

©M. J. Wooldridge, used by permission 12

Lecture 4 An Introduction to Multiagent Systems

AgentO

® AGENTO is implemented as an extension to LISP.
Each agent in AGENTO has 4 components:

— a set of capabillities (things the agent can do);

— a set of initial beliefs;

— a set of initial commitments (things the agent will do); and
—a set of commitment rules.

e The key component, which determines how the agent acts, is the
commitment rule set.

©M. J. Wooldridge, used by permission 13

Lecture 4 An Introduction to Multiagent Systems

e Each commitment rule contains

—a message condition;
— a mental condition; and
— an action.

e On each ‘decision cycle’ ...

The message condition is matched against the messages the
agent has received,;

The mental condition is matched against the beliefs of the agent.

If the rule fires, then the agent becomes committed to the action
(the action gets added to the agents commitment set).

©M. J. Wooldridge, used by permission 14

Lecture 4 An Introduction to Multiagent Systems

e Actions may be

— private:

an internally executed computation, or
— communicative:

sending messages.

e Messages are constrained to be one of three types:

—“requests” to commit to action;
—“unrequests” to refrain from actions;
—“informs” which pass on information.

©M. J. Wooldridge, used by permission

15

Lecture 4 An Introduction to Multiagent Systems
initialise | messages in
|
|
N I
' N |
| .
beliefs == - -
[- l
update -
. = - - — - |
beliefs I |
N o’
| |
J{ | _ = commitments [—— —==i
update =" |
. i] — — — — |
commitments
— _ |
- _ abilities - == —=
|
|
|
WV |
|
EXECUTE |
N T~
N S~ -
AN -~
N = messagess out
XY
iNternal actions
©M. J. Wooldridge, used by permission 16

Lecture 4

e A commitment rule:

COW T(
(agent, REQUEST, DQ(tine, action)
), ;;; nBg condition
(B

[now, Friend agent] AND

CAN(sel f, action) AND

NOT [tinme, CMI(self, anyaction)]
), ::; mental condition
sel f,
DO(time, action)

©M. J. Wooldridge, used by permission

An Introduction to Multiagent Systems

17

Lecture 4 An Introduction to Multiagent Systems

e This rule may be paraphrased as follows:

If | receive a message from agent which requests me to do action
at time, and | believe that:

—agent is currently a friend,;
— | can do the action;
—at time, | am not committed to doing any other action,

then commit to doing action at time.

©M. J. Wooldridge, used by permission 18

Lecture 4 An Introduction to Multiagent Systems

PLACA

e A more refined implementation was developed by Thomas, for
her 1993 doctoral thesis.

e Her Planning Communicating Agents (PLACA) language was
Intended to address one severe drawback to AGENTO: the
Inability of agents to plan, and communicate requests for action
via high-level goals.

e Agents in PLACA are programmed in much the same way as in
AGENTO, in terms of mental change rules.

©M. J. Wooldridge, used by permission 19

Lecture 4 An Introduction to Multiagent Systems

e An example mental change rule:

(((self ?agent REQUEST (?t (xeroxed ?x)))
(AND (CAN- ACHI EVE (?t xeroxed ?x)))

(NOT (BEL (*now* shelving)))

(NOT (BEL (*now* (vip ?agent))))
((ADOPT (I NTEND (5pm (xeroxed ?x)))))
((?agent self | NFORM

(*now* (I NTEND (5pm (xeroxed ?x)))))))

e Paraphrased:

If someone asks you to xerox something, and you can, and you
don’t believe that they’re a VIP, or that you're supposed to be
shelving books, then

— adopt the intention to xerox it by 5pm, and
—Iinform them of your newly adopted intention.

©M. J. Wooldridge, used by permission 20

Lecture 4 An Introduction to Multiagent Systems

Concurrent METATEM

e Concurrent METATEM is a multi-agent language in which each
agent is programmed by giving it a temporal logic specification of
the behaviour it should exhibit.

e These specifications are executed directly in order to generate
the behaviour of the agent.

e Temporal logic is classical logic augmented by modal operators
for describing how the truth of propositions changes over time.

©M. J. Wooldridge, used by permission 21

Lecture 4 An Introduction to Multiagent Systems

e For example. ..

Important(agents)
means “it is now, and will always be true that agents are
Important”

simportant(ConcurrentMetateM)

means “sometime in the future, ConcurrentMetateM will be
Important”
¢ important(Prolog)

means “sometime in the past it was true that Prolog was
Important”
(—friends(us)) U apologise(you)
means “we are not friends until you apologise”
(D apologise(you)
means “tomorrow (in the next state), you apologise”.

©M. J. Wooldridge, used by permission 22

Lecture 4 An Introduction to Multiagent Systems

e MetateM program is a collection of
past = future

rules.

e Execution proceeds by a process of continually matching rules
against a “history”, and firing those rules whose antecedents are
satisfied.

¢ The instantiated future-time consequents become commitments
which must subsequently be satisfied.

©M. J. Wooldridge, used by permission 23

Lecture 4 An Introduction to Multiagent Systems

e An example MetateM program: the resource controller. ..
ask(x) = ¢ give(X)
give(x) A give(y) = (Xx=y)
— First rule ensure that an ‘ask’ is eventually followed by a ‘give’.

— Second rule ensures that only one ‘give’ is ever performed at
any one time.

©M. J. Wooldridge, used by permission 24

Lecture 4 An Introduction to Multiagent Systems

e A Concurrent MetateM system contains a number of agents
(objects), each object has 3 attributes:

—a name;
— an interface;
— a MetateM program.

©M. J. Wooldridge, used by permission

25

Lecture 4 An Introduction to Multiagent Systems

e An agent’s interface contains two sets:

— messages the agent will accept;
— messages the agent may send.

e For example, a ‘stack’ object’s interface:
stack(pop, push)[popped, stackfull]

{pop, push} = messages received
{popped, stackfull} = messages sent

©M. J. Wooldridge, used by permission 26

Lecture 4 An Introduction to Multiagent Systems

Snow White & The Dwarves

e To illustrate the language Concurrent MetateM in more detall,
here are some example programs. ..

e Snow White has some sweets (resources), which she will give to
the Dwarves (resource consumers).

e She will only give to one dwarf at a time.

e She will always eventually give to a dwarf that asks.

©M. J. Wooldridge, used by permission 27

Lecture 4 An Introduction to Multiagent Systems

e Here is Snow White, written in Concurrent MetateM:

Snow-White(ask)[give]:
ask(x) = ¢ give(x)

give(x) A give(y) = (X=Y)

©M. J. Wooldridge, used by permission

28

Lecture 4 An Introduction to Multiagent Systems

e The dwarf ‘eager’ asks for a sweet initially, and then whenever he
has just received one, asks again.

eager(give)[ask]:
start = ask(eager)
give(eager) = ask(eager)

©M. J. Wooldridge, used by permission 29

Lecture 4 An Introduction to Multiagent Systems

e Some dwarves are even less polite: ‘greedy’ just asks every time.

greedy(give)[ask]:
start = ask(greedy)

©M. J. Wooldridge, used by permission 30

Lecture 4 An Introduction to Multiagent Systems

¢ Fortunately, some have better manners; ‘courteous’ only asks
when ‘eager’ and ‘greedy’ have eaten.

courteous(give)[ask]:

((— ask(courteous) S give(eager)) A

(— ask(courteous) S give(greedy))) =
ask(courteous)

©M. J. Wooldridge, used by permission 31

Lecture 4 An Introduction to Multiagent Systems

e And finally, ‘shy’ will only ask for a sweet when no-one else has
just asked.

shy(give)[ask]:
start = ¢ ask(shy)
ask(x) = - ask(shy)
give(shy) = ¢ ask(shy)

©M. J. Wooldridge, used by permission

32

Lecture 4 An Introduction to Multiagent Systems

e Summary:

— an(other) experimental language,;
—very nice underlying theory. ..

— ... but unfortunately, lacks many desirable features — could
not be used in current state to implement ‘full’ system.

— currently prototype only, full version on the way!

©M. J. Wooldridge, used by permission 33

Lecture 4 An Introduction to Multiagent Systems

4 Summary

e This lecture has looked at how one might build an agent in
symbolic logic.

e \We discussed several ways of doing this:
— Using simple propositional logic
— Using the logic-inspired approach of AgentO and PLACA.
— In the exectable temporal logic of METATEM.

©M. J. Wooldridge, used by permission 34

