LECTURE 5: PRACTICAL REASONING AGENTS

An Introduction to Multiagent Systems CIS 716.5, Spring 2005

An Introduction to Multiagent Systems

The Components of Practical Reasoning

• Human practical reasoning consists of two activities:

- deliberation

Lecture 5

deciding *what* state of affairs we want to achieve — the outputs of deliberation are *intentions*;

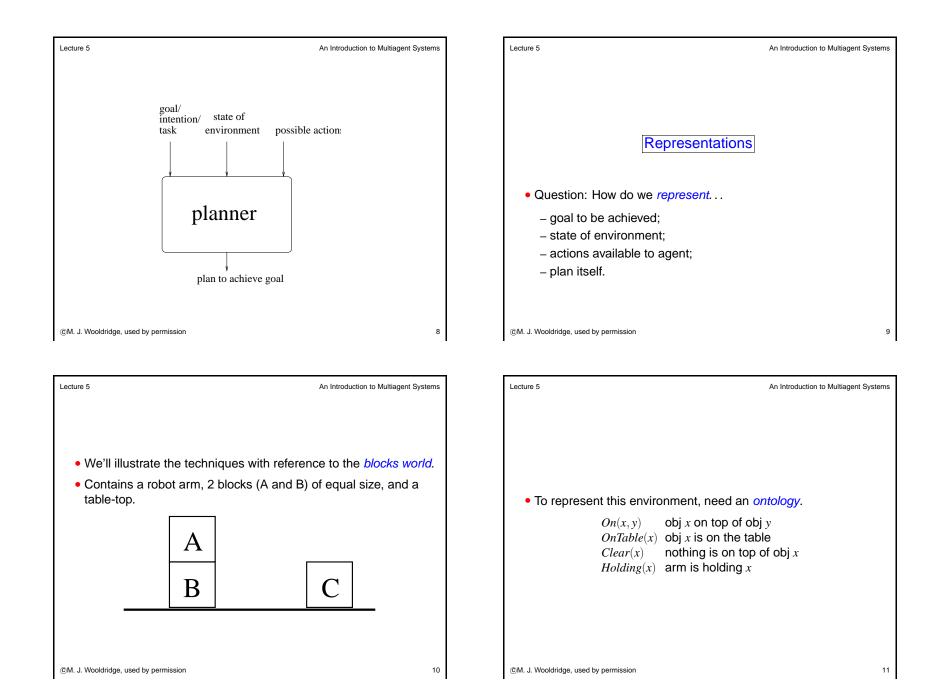
– means-ends reasoning

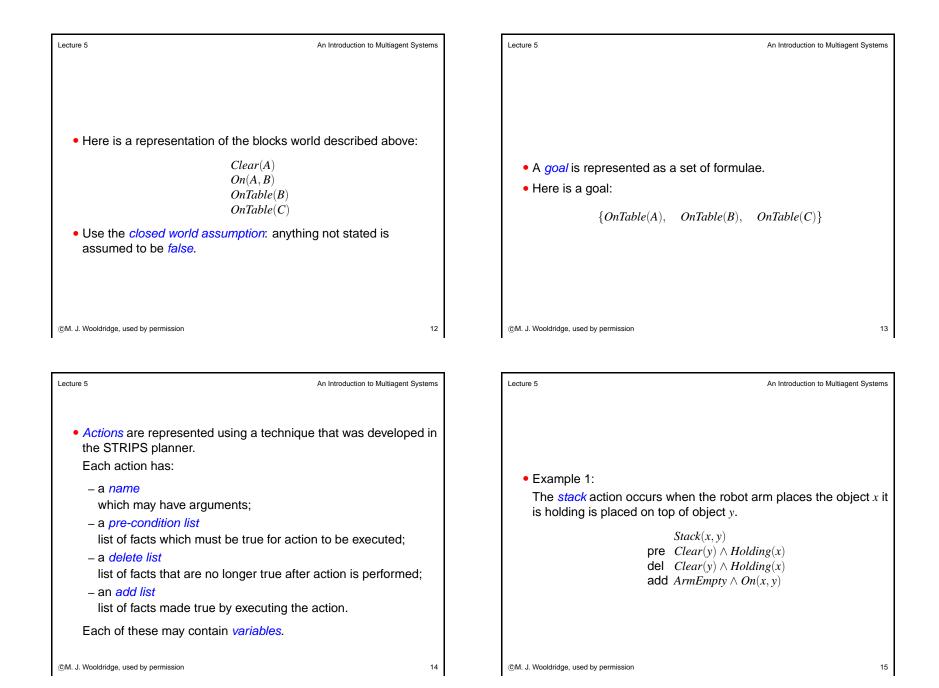
deciding *how* to achieve these states of affairs — the outputs of means-ends reasoning are *plans*.

	An Introduction to Multiagent Sy
	1 What is Practical Reasoning?
	tical reasoning is reasoning directed towards actions — t ess of figuring out what to do:
cc th de	ractical reasoning is a matter of weighing conflicting onsiderations for and against competing options, where e relevant considerations are provided by what the agent esires/values/cares about and what the agent believes. Gratman)
	nguish practical reasoning from <i>theoretical reasoning</i> . pretical reasoning is directed towards beliefs.
©M. J. Wooldric	lge, used by permission
©M. J. Wooldric	lge, used by permission
©M. J. Wooldrid	Ige, used by permission An Introduction to Multiagent Sy
Lecture 5	An Introduction to Multiagent Sy
Lecture 5 1. Inten ways If I ha	An Introduction to Multiagent Sy 2 Intentions in Practical Reasoning Itions pose problems for agents, who need to determine
Lecture 5 1. Inten ways If I ha resou 2. Inten	An Introduction to Multiagent Sy 2 Intentions in Practical Reasoning tions pose problems for agents, who need to determine to of achieving them. ave an intention to ϕ , you would expect me to devote

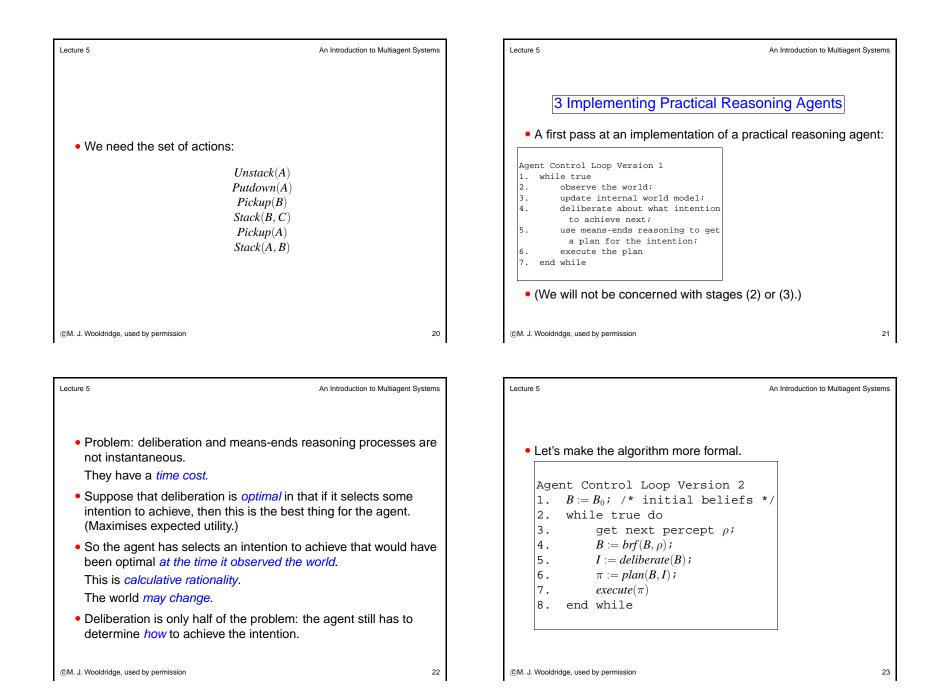
3. Agents track the success of their intentions, and are inclined to try again if their attempts fail.

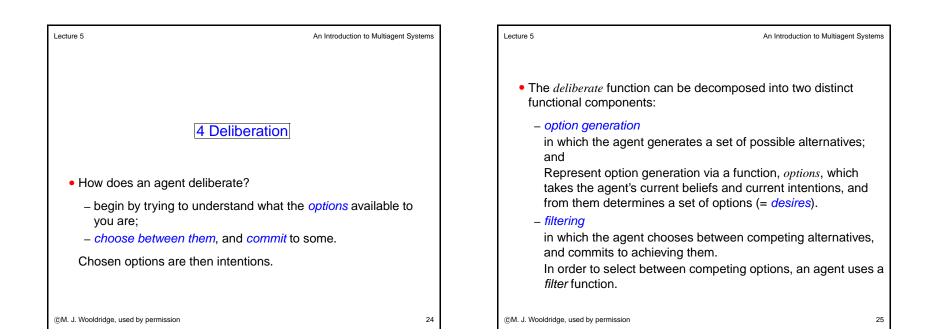
If an agent's first attempt to achieve ϕ fails, then all other things being equal, it will try an alternative plan to achieve ϕ .


2


 4. Agents believe their intentions are possible. That is, they believe there is at least some way that the intention could be brought about. 5. Agents do not believe they will not bring about their intentions. It would not be rational of me to adopt an intention to φ if I believed I would fail with φ. 6. Under certain circumstances, agents believe they will bring about their intentions. If I intend φ, then I believe that under "normal circumstances" I will succeed with φ. 		 7. Agents need not intend all the expected side effects of their intentions. If I believe φ ⇒ ψ and I intend that φ, I do not necessarily intend ψ also. (Intentions are not closed under implication.) This last problem is known as the side effect or package deal problem. I may believe that going to the dentist involves pain, and I may also intend to go to the dentist — but this does not imply that I intend to suffer pain!
©M. J. Wooldridge, used by permission	4	©M. J. Wooldridge, used by permission
Lecture 5 An Introduction to Multiagent Syste Intentions are Stronger than Desires My desire to play basketball this afternoon is merely a potential influencer of my conduct this afternoon. It must vie with my other relevant desires [] before it is settled what I will do. In contrast, once I intend to play basketball this afternoon, the matter is settled: I normally need not continue	ams	Lecture 5 An Introduction to Multiagent Systems Means-ends Reasoning/Planning • Planning is the design of a course of action that will achieve some desired goal. • Basic idea is to give a planning system: - (representation of) goal/intention to achieve; - (representation of) actions it can perform; and
(CM. J. Wooldridge, used by permission	6	 (representation of) the environment; and have it generate a <i>plan</i> to achieve the goal. This is <i>automatic programming</i>.

An Introduction to Multiagent Systems


An Introduction to Multiagent Systems


Lecture 5

Lecture 5	An Introduction to Multiagent Systems	Lecture 5	An Introduction to Multiagent Systems
up from on top of ar pre del add	occurs when the robot arm picks an object x nother object y . UnStack(x, y) $On(x, y) \land Clear(x) \land ArmEmpty$ $On(x, y) \land ArmEmpty$ $Holding(x) \land Clear(y)$ are <i>inverses</i> of one-another.	the table. pre del	Deccurs when the arm picks up an object x from Pickup(x) $Clear(x) \land OnTable(x) \land ArmEmpty$ $OnTable(x) \land ArmEmpty$ Holding(x)
©M. J. Wooldridge, used by permission	16 An Introduction to Multiagent Systems	©M. J. Wooldridge, used by permission	17 An Introduction to Multiagent Systems
onto the table.	occurs when the arm places the object x PutDown(x) pre $Holding(x)$ del $Holding(x)$ add $Holding(x) \land ArmEmpty$	 What is a plan? A sequence (list) of So, to get from: 	f actions, with variables replaced by constants.

An Introduction to Multiagent Systems

Agent Control Loop Version 3 1. 2. $B := B_0;$

3. $I := I_0;$

- 4. while true do
- 5. get next percept ρ ;
- 6. $B := brf(B, \rho);$
- 7. D := options(B, I);
- 8. I := filter(B, D, I);
- 9. $\pi := plan(B, I);$
- 10. $execute(\pi)$
- 11. end while

©M. J. Wooldridge, used by permission

An Introduction to Multiagent Systems

5 Commitment Strategies

Some time in the not-so-distant future, you are having trouble with your new household robot. You say "Willie, bring me a beer." The robot replies "OK boss." Twenty minutes later, you screech "Willie, why didn't you bring me that beer?" It answers "Well, I intended to get you the beer, but I decided to do something else." Miffed, you send the wise guy back to the manufacturer, complaining about a lack of commitment. After retrofitting, Willie is returned, marked "Model C: The Committed Assistant." Again, you ask Willie to bring you a beer. Again, it accedes, replying "Sure thing." Then you ask: "What kind of beer did you buy?" It answers: "Genessee." You say "Never mind." One minute later, Willie trundles over with a Genessee in its gripper. [...] After still more tinkering, the manufacturer sends Willie back, promising no more problems with its commitments. So, being a somewhat trusting customer, you accept the rascal back into your household, but as a test, you ask it to bring you your last beer. [...] The robot gets the beer and starts towards you. As it approaches, it lifts its arm, wheels around, deliberately smashes the bottle, and trundles off. Back at the plant, when interrogated by customer service as to why it had abandoned its commitments, the robot replies that according to its specifications, it kept its commitments as long as required — commitments must be dropped when fulfilled or impossible to achieve. By smashing the bottle, the commitment became unachievable.

Lecture 5	An Introduction to Multiagent Systems	Lecture 5	An Introduction to Multiagent Systems
Degrees of Con	nmitment		
 Blind commitment A blindly committed agent will continue to maintain an intention until it believes the intention has actually been achieved. Blind 		wishes to bring abou	tment both to <i>ends</i> (i.e., the state of affairs it it), and <i>means</i> (i.e., the mechanism via nes to achieve the state of affairs).
commitment is also sometimes re- commitment.	erred to as <i>fanatical</i>	 Currently, our agent means and ends. 	control loop is overcommitted, both to
 Single-minded commitment A single-minded agent will continuit believes that either the intention that it is no longer possible to achieved 	has been achieved, or else	Modification: replan	if ever a plan goes wrong.
©M. J. Wooldridge, used by permission	28	©M. J. Wooldridge, used by permission	29
Lecture 5	An Introduction to Multiagent Systems	Lecture 5	An Introduction to Multiagent Systems
Agent Control Loop Version	<u>1</u>	Agent Control Loop :	o Version 4 (cont)

- 1.
- 2. $B := B_0;$
- 3. $I := I_0;$
- 4. while true do
- 5. get next percept ρ ;
- 6. $B := brf(B, \rho)$;
- 7. D := options(B, I);
- 8. I := filter(B, D, I);
- 9. $\pi := plan(B, I);$
- :
- ©M. J. Wooldridge, used by permission

20. end-while

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

while not $empty(\pi)$ do

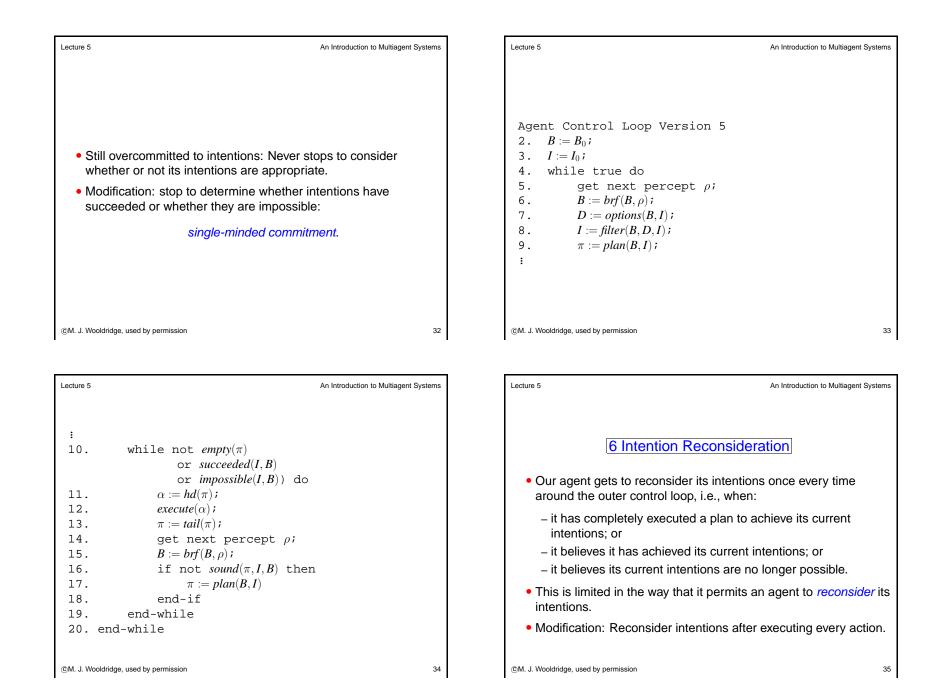
get next percept ρ ;

 $\pi := plan(B, I)$

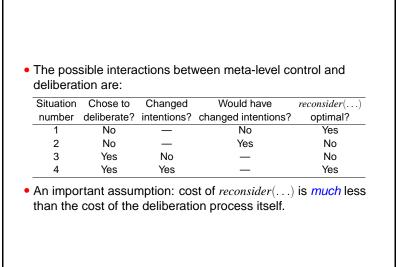
if not $sound(\pi, I, B)$ then

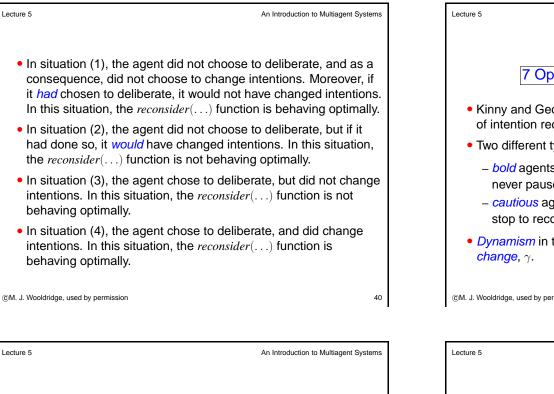
 $\alpha := hd(\pi);$

 $execute(\alpha)$;


 $\pi := tail(\pi);$

end-if


end-while


 $B := brf(B, \rho)$;

31

Agent	Control Loop Version 7
:	
10.	while not ($empty(\pi)$ or $succeeded(I,B)$
	or $impossible(I,B)$) do
11.	$lpha:=hd(\pi)$;
12.	$execute(\alpha)$;
13.	$\pi:= tail(\pi)$;
14.	get next percept $ ho$;
15.	$m{B}:=m{br}f(m{B}, ho)$;
16.	if $reconsider(I,B)$ then
17.	D := options(B, I);
18.	I := filter(B, D, I);
19.	if not $sound(\pi, I, B)$ then $\pi := plan(B, I)$
:	

 Lecture 5
 An Introduction to Multiagent Systems

 7 Optimal Intention Reconsideration

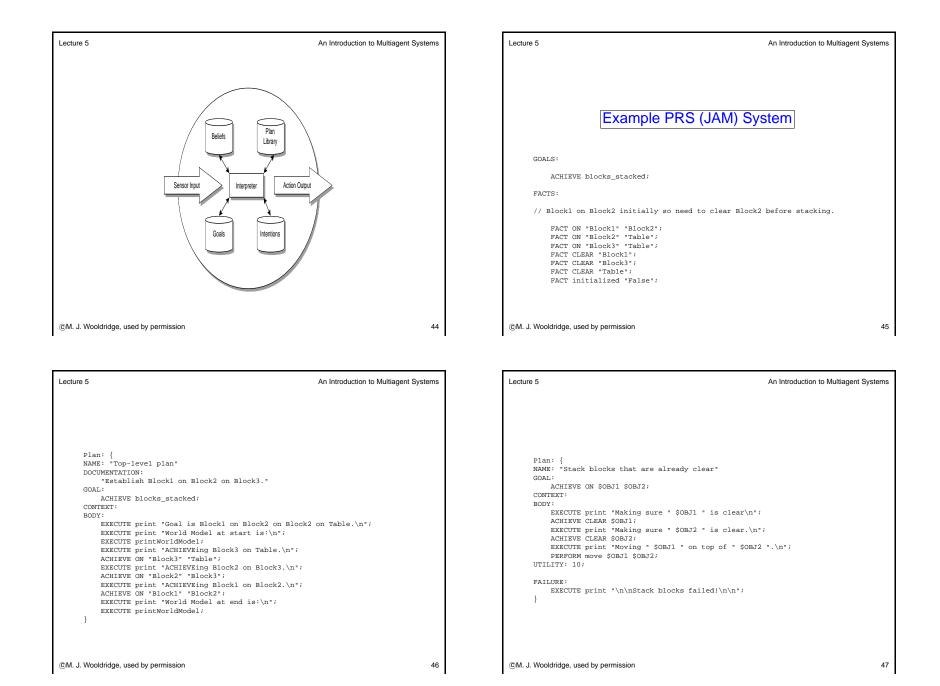
 • Kinny and Georgeff's experimentally investigated effectivenesss of intention reconsideration strategies.

 • Two different types of reconsideration strategy were used:

 • bold agents never pause to reconsider intentions, and

 • cautious agents stop to reconsider after every action.

 • Dynamism in the environment is represented by the rate of world change, γ.


• Results:

- If γ is low (i.e., the environment does not change quickly), then bold agents do well compared to cautious ones. This is because cautious ones waste time reconsidering their commitments while bold agents are busy working towards and achieving their intentions.
- If γ is high (i.e., the environment changes frequently), then cautious agents tend to outperform bold agents. This is because they are able to recognize when intentions are doomed, and also to take advantage of serendipitous situations and new opportunities when they arise.

8 Implemented BDI Agents: PRS

- We now make the discussion even more concrete by introducing an actual agent architecture: the PRS.
- In the PRS, each agent is equipped with a *plan library*, representing that agent's *procedural knowledge*: knowledge about the mechanisms that can be used by the agent in order to realise its intentions.
- The options available to an agent are directly determined by the plans an agent has: an agent with no plans has no options.
- In addition, PRS agents have explicit representations of beliefs, desires, and intentions, as above.

An Introduction to Multiagent Systems

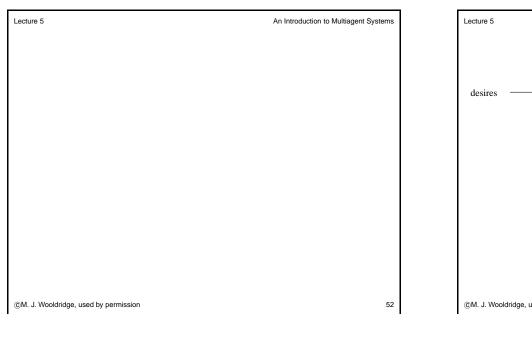
Lecture 5	An Introduction to Multiagent Systems
Plan: {	
NAME: "Clear a block" GOAL:	
GOAL. ACHIEVE CLEAR \$OBJ;	
CONTEXT:	
FACT ON \$OBJ2 \$OBJ; BODY:	
EXECUTE print "Clearing " \$0BJ2 " from on top of " EXECUTE print "Moving " \$0BJ2 " to table.\n";	" \$OBJ "\n";
ACHIEVE ON \$0BJ2 "Table";	
EFFECTS:	
EXECUTE print "CLEAR: Retracting ON " \$OBJ2 " " \$0 RETRACT ON \$OBJ1 \$OBJ;	DBJ "\n";
FAILURE:	
EXECUTE print "\n\nClearing block " \$OBJ " failed }	!\n\n";
©M. J. Wooldridge, used by permission	48

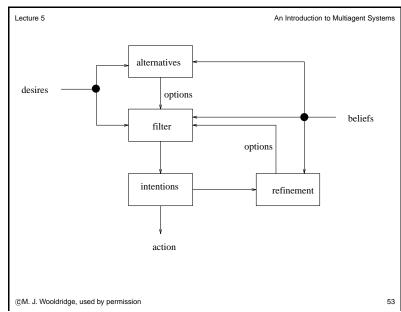
An Introduction to Multiagent Systems

9 Implemented BDI Agents: IRMA

- IRMA has four key symbolic data structures:
 - a *plan library*, and
 - explicit representations of
 - *beliefs*: information available to the agent may be represented symbolically, but may be as simple as PASCAL variables;
 - *desires*: those things the agent would *like* to make true think of desires as *tasks* that the agent has been allocated; in humans, not necessarily logically consistent, but our agents will be! (goals);
 - * *intentions*: desires that the agent has *chosen* and *committed to*.

Lecture 5 An Introduction to Multiagent Systems Plan: { NAME: "Move a block onto another object" GOAL: PERFORM move \$OBJ1 \$OBJ2; CONTEXT: FACT CLEAR SOBT1; FACT CLEAR \$OBJ2; BODY: EXECUTE print "Performing low-level move action" EXECUTE print " of " \$OBJ1 " to " \$OBJ2 ".\n"; EFFECTS: WHEN : TEST (!= \$OBJ2 "Table") { EXECUTE print " Retracting CLEAR " \$OBJ2 "\n"; RETRACT CLEAR \$OBJ2; }; FACT ON \$OBJ1 \$OBJ3; EXECUTE print " move: Retracting ON " \$OBJ1 " " \$OBJ3 "\n"; RETRACT ON \$OBJ1 \$OBJ3; EXECUTE print " move: Asserting CLEAR " \$OBJ3 "\n"; ASSERT CLEAR SOBJ3; EXECUTE print " move: Asserting ON " \$0BJ1 " " \$0BJ2 "\n\n"; ASSERT ON \$OBJ1 \$OBJ2; FAILURE: EXECUTE print "\n\nMove failed!\n\n"; \$}

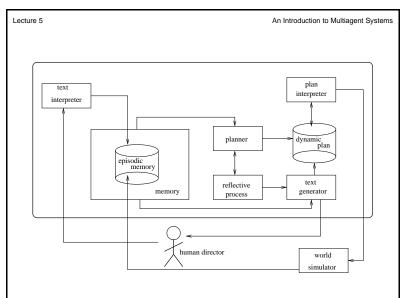

©M. J. Wooldridge, used by permission

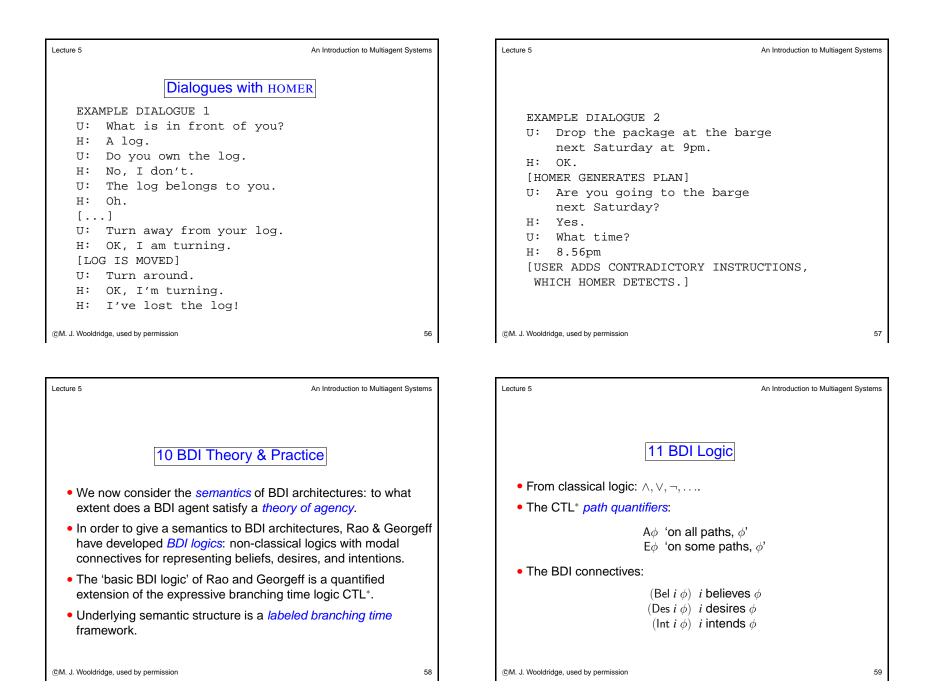

Lecture 5

49

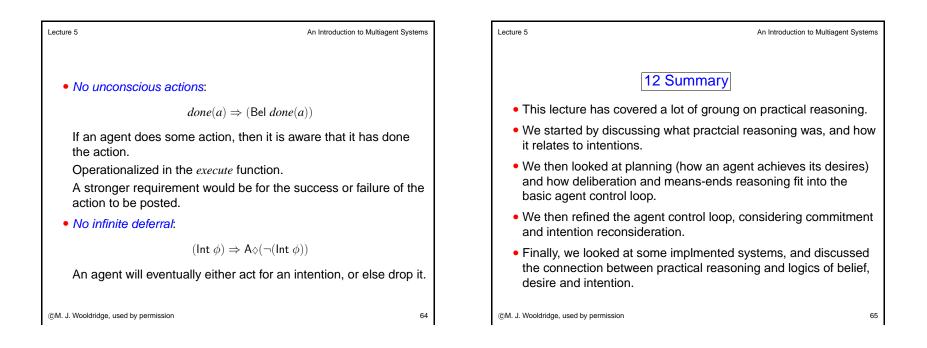
An Introduction to Multiagent Systems

- Additionally, the architecture has:
 - a reasoner for reasoning about the world; an inference engine;
 - a means-ends analyzer determines which plans might be used to achieve intentions;
 - an opportunity analyzer monitors the environment, and as a result of changes, generates new options;
 - a *filtering process* determines which options are compatible with current intentions; and
 - a *deliberation process* responsible for deciding upon the 'best' intentions to adopt.





An Introduction to Multiagent Systems


- Vere & Bickmore developed HOMER: a simulated robot submarine, in a two-dimensional 'Seaworld'.
- HOMER takes instructions from a user in a subset of English with about an 800 word vocabulary.
- HOMER can plan how to achieve its instructions, (which usually relate to collecting and moving items around the Seaworld), and can then execute its plans, modifying them as required during execution.
- HOMER has a limited *episodic memory*, and using this, is able to answer questions about its past experiences.

Lecture 5	An Introduction to Multiagent Systems	Lecture 5	An Introduction to Multiagent Systems
 Semantics of B-D-I components are girelations over 'worlds', where each wo time structure. Properties required of accessibility relations (KD45, desire logic KD, intention logic F) (Plus interrelationships) 	rld is itself a branching ations ensure belief logic	what extent the E axioms. • In what follows, I	<i>mula</i> , i.e., one which contains no positive of A;
©M. J. Wooldridge, used by permission	60	©M. J. Wooldridge, used by permiss	sion 61
Lecture 5	An Introduction to Multiagent Systems	Lecture 5	An Introduction to Multiagent Systems
• Belief goal compatibility:			
$(Des\;\alpha) \Rightarrow (Bel\;$	$\alpha)$	Volitional commi	tment:
States that if the agent has a goal to o something, this thing must be an optio			$(Int\; \mathit{does}(a)) \Rightarrow \mathit{does}(a)$
This axiom is operationalized in the fun should not be produced if it is not belie			erform some action <i>a</i> next, then you do <i>a</i> next. in the <i>execute</i> function.
Goal-intention compatibility:		Awareness of go	oals & intentions:
$(Int \alpha) \Rightarrow (Des$ States that having an intention to option implies having it as a goal (i.e., there a not goals).	nally achieve something	Requires that ne	$\begin{array}{l} (Des\;\phi) \Rightarrow (Bel\;(Des\;\phi))\\ (Int\;\phi) \Rightarrow (Bel\;(Int\;\phi))\\ \text{w intentions and goals be posted as events.} \end{array}$
Operationalized in the <i>deliberate</i> function	on.		

©M. J. Wooldridge, used by permission

