
NEURAL NETWORKS



Introduction

• In this lecture we will look at neural networks, so called because
they mimic the structure of the brain.

• However, they don’t have to be viewed in this way.

• We will start by thinking of them as an implementation of the
kind of stimulus-response agents we looked at in the last lecture.

• They also provide us with our first taste of learning.

• The learning angle means we don’t have to figure out the model
parameters for ourselves.
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Networks for Stimulus-Response

• Production systems can be easily implemented as computer
programs.

• They may also be implemented directly as electronic circuits, as
combinations of AND, OR, and NOT gates.

• (Or as simulations of electronic circuits.)

• One useful kind of circuit is built of elements whose output is a
nonlinear function of a weighted combinations of its inputs.

• One kind of such unit is a threshold logic unit (TLU).

• This computes a weighted sum of its imputs, compares this to a
threshold, and outputs 1 if the threshold is exceeded, 0
otherwise.
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• The Boolean functions that can be computed using a TLU are
called linearly seperable functions.
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• We can use TLUs to implement some Boolean functions.

• For instance a simple conjunction (and):
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• And a simple disjunction (or):
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• Here’s a more complex conjunction:
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but we can’t implement an exclusive-OR this way.

XOR 1 0
1 0 1
0 1 0

cis716-spring2006-parsons-lect04 7



• We can implement the kind of function used for boundary
following:

x1x2 = (s2 + s3)(s4 + s5)

= (s2 + s3)s4.s5

as:
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• When we have a simple problem, it is possible that a single TLU
can compute the right action.

• For this to happen we need there to be only two possible actions.

• For more complex problems, we need a network of TLUs.

• These are often called neural networks because they have some
similarity to the networks of neurons from which the brain is
constructed.

• We can use such a network to implement a T-R program.
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• This network implements a set of production rules.

• The input to each unit on the left is the 1 or 0 of the condition.

• (This might be computed from the si by another circuit.)

• Each rule is a Test, Inhibit, Squelch, Act (TISA) circuit:

– One TLU computes a conjunction.

– The other computes a disjunction.
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• Inhibit is 0 when no rules above have a true condition.

• Test is 1 if the condition is true.

• If Test is 1 and Inhibit is 0, Act is 1.

• If either Test is 1 or Inhibit is 1 then Squelch is 1.

• If Squelch is 1 then every TISA below is Inhibited.
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Learning in neural networks

• So far we have assumed that the mapping between stimulus and
response was programmed by the agent designer.

• That is not always convenient or possible.

• When it isn’t, then it is possible to learn the right mapping.

• We will start to examine one way of doing that in this lecture.

• We will look at the case of learning the mapping for a single TLU.
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• In brief, the learning procedure is as follows.

• We start with some set of weights:

– random;

– uniform

• We then run a set of inputs, and look at the outputs.

• If they don’t match, we alter the weights.

• We keep learning until the weights are right.

cis716-spring2006-parsons-lect04 14



• Remember the set up we had before.

• We have a feature vector X, which maps to a particular action a.
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• Now consider that we have a set of these Θ.

• Every element of Θ is an X with a corresponding a.

• This is a training set, and the set A of all a are called the classes or
labels.

• The learning problem here is to find a way of describing the
mapping from each member of Θ to the appropriate member of
A.

• We want to find a function f (X) which is “acceptable”.

• That is it produces an action which agrees with the examples for
as many members of the training set as possible.

• Because we have a set of examples to learn from, we call this

supervised learning.
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Learning in a single TLU

• We train a TLU by adjusting the input weights.

• We assume that the vector X is numerical so that a weighted sum
makes sense.

• The set of weights w1, w2, . . . , wn is denoted by W.

• The threshold is written as θ, so:

– Output is 1 if
s = X · W > θ

– Output is 0 otherwise

• X · W is just a way of writing x1w1 + x2w2 + . . . + xnwn

cis716-spring2006-parsons-lect04 17



• A TLU divides the space of feature vectors Θ:

Equation of hyperplane:
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• In two dimensions, the TLU defines a boundary between two
parts of a plane (as in the picture).

• In three dimensions, the TLU defines a plane which separates
two parts of the space.

• In higher-dimension spaces the boundary defined by the TLU is
a hyperplane.

• Whatever it is, it separates:

X · W − θ > 0

from
X · W − θ < 0
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• Changing θ moves the boundary relative to the origin.

• Changing W alters the orientation of the boundary.

• We will follow convention by assuming that:

θ = 0

• This simplifies the subsequent maths :-)

• Arbitrary thresholds can be obtained by adding in an extra
weight n + 1 which is called the bias.

• The n + 1th element of the input vector is always 1.

• After learning, −1× this extra weight is the threshold θ.

• So, we don’t restrict ourselves by making this assumption.
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Summary

• In this lecture we introduced neural networks.

• We first considered them as an implementation of
stimulus-response agents.

• In this incarnation we adjust the weights by hand.

• We also started thinking about how to learn the weights
automatically.

• We will finish this line of work off next lecture.
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