
NEURAL NETWORKS II

Introduction

• This lecture builds on the description in the previous lecture to
establish how to train neural networks.

• We will work out a general approach.

• We will then give three particular versions that are commonly
used.

• We start with a quick recap.

cis716-spring-2006-parsons-lect05 2

Recap

w1

x1

w2

x2

wi
xi

wn

xn

Σ
...

...

Σ x wi i
i=1

n

Weighted sum

Output,f

Threshold,θ

© 1998 Morgan Kaufmann Publishers

– Output is 1 if s = X · W > θ

– Output is 0 otherwise

cis716-spring-2006-parsons-lect05 3

Gradient descent methods

• A common way to train a TLU is through an error function.

• We define:
ǫ =

∑

X∈Θ

(di(Xi) − fi(Xi))
2

• where:

– di(Xi) is the outcome we want for Xi;

– fi(Xi) is the outcome we get.

• Often we write these functions as di and fi.

• We then minimise ǫ

cis716-spring-2006-parsons-lect05 4



• If θ is rolled into the weights, then the value of ǫ depends on the
weights.

• (Since these determine the value of fi.)

• We minimise by looking at the gradient of ǫ with respect to the
weights. . .

• . . . and then altering the weights to move ǫ down the gradient.

• Eventually this gradient descent will take us down to the
minimum value of ǫ.

cis716-spring-2006-parsons-lect05 5

• The computation of ǫ is complicated by the fact that its value
depends on all the Xi in Θ.

• Often it is easier to do the calculation for one Xi, adjust the
weights to move down the gradient, and then start over with
another Xj.

• Thus we do the learning incrementally, taking each member of Θ
in an order Σ.

• The incremental version only ever approximates the result of
doing it “properly” (the batch way), but often it is a good
approximation.

• Here we will just look at the incremental version.

cis716-spring-2006-parsons-lect05 6

• When we have a single input vector X, with output f and desired
output d, the error is:

ǫ = (d − f )2

• The gradient of ǫ with respect to the weights is

∂ǫ

∂W

and
∂ǫ

∂W
=









∂ǫ

∂w1

,
∂ǫ

∂w2

, . . . ,
∂ǫ

∂wn+1









cis716-spring-2006-parsons-lect05 7

• Since ǫ depends on W through

s = X · W

it follows that:
∂ǫ

∂W
=

∂ǫ

∂s
·

∂s
∂W

• Since:
∂s
∂W

= X

it follows that:
∂ǫ

∂W
=

∂ǫ

∂s
X

cis716-spring-2006-parsons-lect05 8



• Furthermore we can write:

∂ǫ

∂s
= −2(d − f )

∂f
∂s

and so:
∂ǫ

∂W
= −2(d − f )

∂f
∂s

X

• This seems to give us a way of working out what the gradient is.

• However, we have a problem.

cis716-spring-2006-parsons-lect05 9

• The problem is that the TLU output f , cannot be differentiated.

• Most times we vary s a little we get no change in f .

• Sometimes, though, we get a big change (from 0 to 1 or
vice-versa).

• There are several ways around this.

– Ignore the threshold and set f = s.

– Replace the threshold function with something we can
differentiate or otherwise find the gradient of.

• We will look at both of these.

cis716-spring-2006-parsons-lect05 10

The Widrow-Hoff procedure

• Let’s try and adjust the weights so that:

– Every training vector labelled with a 1 produces a dot product
of 1; and

– Every training vector labelled with a 0 produces a dot product
of -1.

• Then, with
f = s

the incremental squared error is:

ǫ = (d − f )2 = (d − s)2

and
∂f
∂s

= 1

cis716-spring-2006-parsons-lect05 11

• This makes the gradient:

∂ǫ

∂W
= −2(d − f )X

• If we want to then move the weight vector down the gradient,
we can set the new value of the weight vector as:

W := W + c(d − f )X

• The factor of 2 is combined into the learning rate parameter c.

• As always this controls the speed of the adjustment by
determining the fraction of X added to W.

cis716-spring-2006-parsons-lect05 12



• Whenever the error:
(d − f )

is positive, then we add a fraction of the input into the weight.

• This increases X · W, and so decreases

(d − f )

• If the error is negative we subtract a fraction of the input and
reverse the effect.

• Once we have found the best set of weights, we can go back to
using the threshold function.

cis716-spring-2006-parsons-lect05 13

The generalised Delta procedure

• Another way to handle the threshold function is to replace it
with something we can differentiate.

–6 –4 –2 2 4 6

0.2

0.4

0.6

0.8

1

© 1998 Morgan Kaufmann Publishers

cis716-spring-2006-parsons-lect05 14

• This function is known as a sigmoid:

f (s) =
1

1 + e−s

• With this function, we have the partial derivative:

∂f
∂s

= f (1 − f )

• Since
∂ǫ

∂W
= −2(d − f )

∂f
∂s

X

we have:
∂ǫ

∂W
= −2(d − f )f (1 − f )X

cis716-spring-2006-parsons-lect05 15

• This gives us another rule for changing weights:

W := W + c(d − f )f (1 − f )X

• This compares to the Widrow-Hoff procedure as follows:

– In W-H, d is 1 or -1. In generalised Delta it is 1 or 0.

– In W-H, f is equal to s. In generalised Delta, f is the output of
the sigmoid function.

– Generalised Delta has the extra term f (1 − f )

• With the sigmoid, f (1 − f ) varies in value from 0 to 1.

• It has value 0 when f is 0 or 1.

• It has maximum value of 0.25 when f has value 0.5 (and the
input to the sigmoid is 0).

cis716-spring-2006-parsons-lect05 16



• One can think of the sigmoid as a “fuzzy boundary”.

• When the input is a long way from the boundary, f (1 − f ) has a
value close to 0.

• Thus hardly any adjustment is made to the weights.

• When the input is closer to the boundary, then weight changes
are more significant.

• These changes are always to reduce the error.

• Once the weights are established, we can go back to using the
step function.

cis716-spring-2006-parsons-lect05 17

A general approach

• Both these techniques have done the same thing.

• They have replaced something we couldn’t find the slope of with
something we could.

• We could do the same with a different gradient function.

• This obviously trains the weights approximately.

• However, it seems that the approximation is often good enough.

• In any case, we are interested in performance on non-training
examples.

cis716-spring-2006-parsons-lect05 18

The error-correction procedure

• Another approach keeps the original threshold function.

• We then forget about differentiation and just adjust the weights
when the TLU gives a classification error.

• In other words we make a change when:

(d − f )

has value 1 or -1.

• This time the weight change rule is:

W := W + c(d − f )X

• Just as before, the change tends to reduce the error.

cis716-spring-2006-parsons-lect05 19

• Comparing this with Widrow-Hoff, we note that both d and f are
either 0 or 1.

• Whereas in W-H, d is 1 or −1 and f = s.

• It is possible to prove that if there is a W that gives a correct
output for all X ∈ Θ,

• Then after a finite number of adjustments, this error-correction
procedure will find this weight vector.

• Thus the process will terminate, making no more weight
adjustments.

• For nonlinearly separable sets of input vectors, the procedure
will not terminate (as opposed to W-H and generalised Delta).

cis716-spring-2006-parsons-lect05 20



• Since (as we saw last lecture) the rules/network for the
boundary following robot are linearly separable functions. . .

• . . . we can use any of these procedures to learn the weights for a
TLU to implement these functions, such as:

(s2 + s3)s4.s5

0.5 x1x2

s2

s3

s4

s5

1

1

–2

–2

© 1998 Morgan Kaufman Publishers

cis716-spring-2006-parsons-lect05 21

• A suitable training set for training this TLU is

1

2

3

4

5

6

Input	 Sensory	 x1x2
number	 vector	 (move east)
1	 00001100	 0

2	 11100000	 1

3	 00100000	 1

4	 00000000	 0

5	 00001000	 0

6	 01100000	 1

© 1998 Morgan Kaufman Publishers

cis716-spring-2006-parsons-lect05 22

Summary

• In this lecture we looked at methods for training TLUs.

• All the methods were gradient descent—they adjusted weights to
reduce the error, step-by-step.

• They differed in what they used for the threshold function.

• Widrow-Hoff ignores it and sets f = s.

• Generalised-delta uses a function that can be differentiated.

• Error-correction uses the step function.

cis716-spring-2006-parsons-lect05 23


