PROBLEM SOLVING AGENTS

Overview

Aims of this lecture:
• introduce problem solving;
• introduce goal formulation;
• show how problems can be stated as state space search;
• show the importance and role of abstraction;
• introduce undirected search:
 – breadth 1st search;
 – depth 1st search.
• define main performance measures for search.

Problem Solving Agents

• Lecture 1 introduced rational agents.
• Now consider agents as problem solvers:
 Systems which set themselves goals and find sequences of actions that achieve these goals.
• What is a problem?
 A goal and a means for achieving the goal.
• The goal specifies the state of affairs we want to bring about.
• The means specifies the operations we can perform in an attempt to bring about the means.
• The difficulty is deciding which operations and what order to carry out the operations.

Operation of problem solving agent:

/* s is sequence of actions */
repeat {
 percept = observeWorld();
 state = updateState(state, p);
 if s is empty then {
 goal = formulateGoal(state);
 prob = formulateProblem(state, goal);
 s = search(prob);
 }
 action = first(s);
 s = remainder(s);
} until false; /* i.e., forever */
Key difficulties:
- formulateGoal(...)
- formulateProblem(...)
- search(...)

It isn’t easy to see how to tackle any of these.
Here we will concentrate mainly on search.

Goal Formulation

- Where do an agent’s goals come from?
 - Agent is a program with a specification.
 - Specification is to maximise performance measure.
 - Should *adopt* goal if achievement of that goal will maximise this measure.
- Goals provide a focus and filter for decision-making:
 - *focus*: need to consider how to achieve them;
 - *filter*: need not consider actions that are incompatible with goals.

Problem Formulation

- Once goal is determined, formulate the problem to be solved.
- First determine set of possible states S of the problem.
- Then problem has:
 - *initial state* — the starting point, s_0
 - *operations* — the actions that can be performed, $\{o_1, \ldots, o_n\}$.
 - *goal* — what you are aiming at — subset of S.
- The initial state together with operations determines *state space* of problem.
- Operations cause *changes* in state.
- Solution is a sequence of actions such that when applied to initial state s_0, we have goal state.
- What does this look like?
Examples of Toy Problems

- **Example 1**: The 8 puzzle. Do the following transformation, moving tile from occupied space to filled space.

<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

 - Initial state as shown above.
 - Goal state as shown above.
 - Operations:
 - o_1: move any tile to left of empty square to right;
 - o_2: ?
 - o_3: ?
 - o_4: ?

- What state space does this define?

- **Example 2**: The n queens problem from chess. Place n queens on chess board so that no queen can be taken by another.

 - Initial state: empty chess board.
 - Goal state: n queens on chess board, one occupying each space, so that none can take others.
 - Operations: place queen in empty square.
Solution Cost

- For most problems, some solutions are better than others:
 - in 8 puzzle, number of moves to get to solution;
 - number of moves to checkmate;
 - length of distance to travel.
- Mechanism for determining cost of solution is *path cost function*.
- This is the length of the path through the state-space from the initial state to the goal state.

As an example, consider the following state in the 8-puzzle:

```
2 8 3
1 6 4
7 5
```

- How many moves are there to the solution?

Problem Solving as Search

- In the state space view of the world, finding a solution is finding a path through the state space.
- When we solve a problem like the 8-puzzle we have some idea of what constitutes the next best move.
- It is hard to program this kind of approach.
- Instead we start by programming the kind of repetitive task that computers are good at.
- A *brute force* approach to problem solving involves *exhaustively searching* through the space of *all possible* action sequences to find one that achieves goal.
• Systematically generate a search tree
 • The tree is built by taking the initial state and identifying some states that can be obtained by applying a single operator.
 • These new states become the children of the initial state in the tree.
 • These new states are then examined to see if they are the goal state.
 • If not, the process is repeated on the new states.
 • We can formalise this description by giving an algorithm for it.

• General algorithm for search:
 agenda = initial state;
 while agenda not empty do{
 pick node from agenda;
 new nodes = apply operations to state;
 if goal state in new nodes
 then {
 return solution;
 }
 add new nodes to agenda;
 }

• Note the difference between state space and search tree.
 • State space is every possible state and the relationships between them.
 – It is static.
 • Search tree the set of states the agent has looked at (is looking at) and some of the relationships between them.
 – It is dynamic.

• Question: How to pick states for expansion?
 • Two obvious solutions:
 – depth first search;
 – breadth first search.
Breadth First Search

- Start by expanding initial state — gives tree of depth 1.
- Then expand all nodes that resulted from previous step — gives tree of depth 2.
- Then expand all nodes that resulted from previous step, and so on.
- Expand nodes at depth \(n \) before level \(n + 1 \).

```c
/* Breadth first search */
agenda = initial state;
while agenda not empty do {
    pick node from front of agenda;
    new nodes = apply operations to state;
    if goal state in new nodes then {
        return solution;
    }
    APPEND new nodes to END of agenda;
}
```

• For the 8-puzzle as so:

```
  2 8 3
  1 6 4
  7 5
```

• We have the following state space:
• Given this numbering of the states, the agenda would look like
 1. 1
 2. 2, 3, 4
 3. 3, 4, 5
 4. 4, 5, 6, 7, 8
 5. 5, 6, 7, 8, 9
 6. 6, 7, 8, 9, 10, 11.
 7. ...

• Advantage: guaranteed to reach a solution if one exists.
• If all solutions occur at depth n, then this is good approach.
• Disadvantage: time taken to reach solution!
• Let b be branching factor — average number of operations that may be performed from any level.
• If solution occurs at depth d, then we will look at
 $$1 + b + b^2 + \cdots + b^d$$
 nodes before reaching solution — exponential.

• Time for breadth first search:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 msec</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>.01 sec</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 sec</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 secs</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 mins</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>2500 years</td>
</tr>
<tr>
<td>20</td>
<td>10^{20}</td>
<td>3^{12} years</td>
</tr>
</tbody>
</table>

• Combinatorial explosion!

• Importance of ABSTRACTION

• When formulating a problem, it is crucial to pick the right level of abstraction.
• Example: Given the task of driving from New York to Boston.
• Some possible actions…
 – depress clutch;
 – turn steering wheel right 10 degrees;
• … inappropriate level of abstraction.
 Too much irrelevant detail.
• Better level of abstraction:
 – Take the Henry Hudson Parkway north
 – Take the Cross County turnoff
 … and so on.
• Getting abstraction level right lets you focus on the specifics of problem and is one way to combat the combinatorial explosion.
• (Tell that to Mapquest).

Depth First Search

• Start by expanding initial state.
• Pick one of nodes resulting from 1st step, and expand it.
• Pick one of nodes resulting from 1nd step, and expand it, and so on.
• Always expand deepest node.
• Follow one “branch” of search tree.

/* Depth first search */

agenda = initial state;

while agenda not empty do
 {
 pick node from front of agenda;
 new nodes = apply operations to state;
 if goal state in new nodes then
 {
 return solution;
 }
 put new nodes on FRONT of agenda;
 }

• For the 8-puzzle as so:

<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

• We have the following state space:
Given this numbering of the states, the agenda would look like:
1. 1
2. 2, 3, 4
3. 5, 3, 4
4. 10, 11, 3, 4
5. 20, 11, 3, 4
6. ...

Performance Measures for Search

- **Completeness:**
 Is the search technique *guaranteed* to find a solution if one exists?
- **Time complexity:**
 How many computations are required to find solution?
- **Space complexity:**
 How much memory space is required?
- **Optimality:**
 How good is a solution going to be w.r.t. the path cost function.

- Depth first search is *not* guaranteed to find a solution if one exists.
- However, if it *does* find one, amount of time taken is much less than breadth first search.
- *Memory requirement* is much less than breadth first search.
- Solution found is *not* guaranteed to be the best.
Summary

• This lecture introduced the basics of problem solving.
• In particular it discussed state space models and looked at the basic techniques for solving them.
 – Search for the goal.
 – Path through state space is the solution.
• We also looked at two techniques for search:
 – Breadth first.
 – Depth first.