
LEARNING IN STATE SPACE

Overview

• The last few lectures have considered heuristic search.

• Obviously the performance of search techniques depends a lot
on the heuristic.

• Sometimes we can work out what good heuristics are from our
knowledge of the domain.

• When we can’t, we can get an agent to learn the right heuristic.

• This lecture looks at techniques for learning such heuristics

• These are all types of reinforcement learning.

cis716-spring2006-parsons-lect10 2

Learning heuristics

• We will start by assuming that the agent knows:

– the results of every action in every state; and

– the costs of every action (in every state).

• We will also assume that it can build the whole search tree.

• This is just what we did for previous searches.

• We further assume that the agent can recognise the goal state
and knows that h(goal) is 0.

• We then set h(n) = 0 for all n and run an A* search.

• This won’t do much for the agent the first time—it is just
uniform cost search.

cis716-spring2006-parsons-lect10 3

• However, we update h(n) as we do the search.

• When the agent has expanded node ni to give a set of children
δ(ni), it updates its h(ni) to be:

h(ni) := min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

where c(ni, nj) is the cost of moving from ni to nj.

• With this update, subsequent searches will ”zoom in” on the
right solution faster and faster.

• This happens as the hT(n) values propagate back from the goal.

• (There are few enough values that these can be stored in a table.)

• Each run propagates the true cost of getting to the goal further
back through the search.

• Eventually, the minimal cost path can just be read off the tree.

cis716-spring2006-parsons-lect10 4



Learning without a model of action

• As described this kind of search is a ”thought experiment” that
an agent carries out.

• In the case of the navigating robot, it is planning its route across
the grid.

• To do this, the agent has to know what the outcome of all its
possible actions are in every state in which it might carry them
out.

• This isn’t necessarily very realistic.

• Can we make it more realistic?

• Can we do the same kind of learning as we looked at above, but
where the agent doesn’t have to know what the result of each
action is before it carries it out?

cis716-spring2006-parsons-lect10 5

• The answer is/are “yes”.

• What we have the agent do is to actually carry out the operations
to see what happens.

• So rather than say “ah, I’m in state sn, if I do action a1 I will get to
sm and if I do a2 I will get to sp”, the agent in sn picks one of a1 or
a2, carries it out, and sees where it ends up.

• This is rather similar to the way in which we learn how to do
unfamiliar things.

• Over a number of runs, the agent figures out which moves in
which states are good, and concentrates on using those.

• (To do this, the agent will have to build a model of the state
space in its ”head”).

cis716-spring2006-parsons-lect10 6

Boundary

Solid
object

The robot senses whether
the eight surrounding cells
are free for it to occupy

A robot starting here will
go clockwise around the
inside of the outer boundary

A robot starting here will go
counterclockwise around the
outside boundary of the object

s1 s2 s3

s8 s4

s7 s6 s5

© 1998 Morgan Kaufmann Publishers

cis716-spring2006-parsons-lect10 7

• What we assume is that:

– The agent can distinguish the states it visits (and name them).

– The agent knows how much actions cost once it has taken
them.

• The process starts at the start state s0.

• The agent then takes an action (maybe at random), and moves to
another state. And repeats.

• As it visits each state, it names it and updates the heuristic value
of this state as:

h(ni) := [h(nj) + c(ni, nj)]

where ni is the node in which an action is taken, nj is the node the
action takes the agent to, and c(ni, nj) is the cost of the action.

• h(nj) is zero if the node hasn’t been reached before.

cis716-spring2006-parsons-lect10 8



• Whenever the agent has to choose an action a, it chooses it by:

a = argmina [h(σ(ni, a)) + c(ni, σ(ni, a))]

where σ(ni, a) is the state reached from ni after carrying out a.

• As before, the estimated minimum cost path to the goal is built
up over repeated runs.

• However, allowing some randomness in the choice of actions
increases the chance that the “estimated minimum cost path”
really is the best path.

cis716-spring2006-parsons-lect10 9

Learning without a search graph

• For many interesting problems, it is not possible to store all the
states/nodes and build the entire search graph.

• Provided we have a model of the effects of actions, we can still
use the approac we have been discussing.

• We start by assembling a heuristic as a linear combination of
some set of plausible functions.

• For the 8-puzzle these might be:

– W(n) : number of tiles out of place.

– P(n) : sum of distance each tile is from home.

• Plus any additional functions you can think of.

cis716-spring2006-parsons-lect10 10

• Potentially you could consider all the things it is possible to
measure.

• Then:
h(n) = w1W(n) + w2P(n) + . . .

• We then learn which weights are best.

• Here are two ways to do this.

cis716-spring2006-parsons-lect10 11

• In the first approach, we use h(n) as above, and search until we
find a goal using A*.

• Once we have found a goal, ng, we can set h(ng) to 0, and back up
the real cost of the path we have found to the goal.

• Having done this we have the correct heuristic value of every
state on the path to the goal.

• We can use these values as “training examples”.

• We can adjust the values of the wi that determine our h(n) using
gradient descent, exactly as when training a TLU.

• To get good values for the wi, we need to repeat this over several
searches.

cis716-spring2006-parsons-lect10 12



• The second approach is as follows.

• After expanding ni to δ(ni) we adjust the weights wi so that:

h(ni) := h(ni) + β








min

nj∈δ(ni)
[h(nj) + c(ni, nj)] − h(ni)









• which we can rewrite as:

h(ni) := (1 − β)h(ni) + β min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

• In other words, we adjust the wi after every node is expanded
rather than waiting until we find the goal.

• To get good values of wi, we again need to keep learning over
several searches.

cis716-spring2006-parsons-lect10 13

• Note that in the recursive equation on the previous slide, we
modify h(ni) by adding some proportion (controlled by β) of the
difference between what we thought h(ni) was before the
expansion, and what we think it is after.

• β controls how fast the agent learns—how much weight we give
to the new estimate of the heuristic.

• If β = 0 there is no adjustment.

• If β = 1, h(ni) is thrown away immediately.

• Low values of β lead to slow learning, and high values mean
that performance is erratic.

• Note that this temporal difference approach can also work without a
model of the effects of actions (with suitable modification).

cis716-spring2006-parsons-lect10 14

Rewards not goals

• For many tasks agents don’t have short term goals, but instead
accrue rewards over a period of time.

• Instead of a plan, we want a policy π which says how the agent
should act over time.

• Typically this is expressed as what action should be carried out
in a given state.

• We express the reward an agent gets as r(ni, a), and if doing a in
ni takes the agent to nj, then:

r(ni, a) = −c(ni, nj) + ρ(nj)

where ρ(nj) is a reward for being in state nj.

• We want an optimal policy π∗ which maximises the (discounted)
reward at every node.

cis716-spring2006-parsons-lect10 15

• One way to find the optimum policy is by searching through all
possible policies.

• Start with a random policy and calculate its reward.

• Then guess another policy and see if it has a better reward (kind
of slow).

• Better would be to tweak the policy by swapping some a in ni for
an a′ with a higher r(ni, a′).

• Again there is no guarantee of success.

• But there are better approaches.

cis716-spring2006-parsons-lect10 16



• Given a policy π, we can compute the value of each node—the
reward the agent will get if it starts at that node and follows the
policy.

• If the agent is at ni and follows π to nj then the agent will get
reward:

Vπ(ni) = r(ni, π(ni)) + γVπ(nj)

where γ is the discount factor (think of it as the opposite of bank
interest).

• The optimum policy then gives us the action that maximises this
reward:

Vπ∗(ni) = max
a

[

r(ni, a) + γVπ∗(nj)
]

cis716-spring2006-parsons-lect10 17

• If we knew what the values of the nodes were under π∗, then we
could easily compute the optimal policy:

π∗(ni) = argmaxa

[

r(ni, a) + γVπ∗(nj)
]

• The problem is that we don’t know these values.

• But we can find them out using value iteration.

• We start by guessing (randomly is fine) an estimated value V(n)
for each node.

cis716-spring2006-parsons-lect10 18

• Then when we are at ni we pick the action to maximise:

argmaxa [r(ni, a) + γV(nj)]

that is the best thing given what we currently know.

• We then update V(ni) by:

V(ni) := (1 − β)V(ni) + β [r(ni, a), γV(nj)]

• Progressive iterations of this calculation make V(n) a closer and
closer approximation to Vπ∗(ni).

• Intuitively this is because we replace the estimate with the actual
reward we get for the next state (and the next state and the next
state).

cis716-spring2006-parsons-lect10 19

Summary

• This lecture has looked at a number of approaches to learning
heuristic functions.

• We started assuming that the agent knew everything but the
heuristic, and progressively relaxed assumptions.

• This created a battery of reinforcement learning methods that
can be applied in a wide variety of situations.

• These models also tie learning and planning together very
closely, and we will revisit them as planning models later in the
course.

cis716-spring2006-parsons-lect10 20


