PREDICATE LOGIC

Syntax

- We shall now introduce a generalisation of propositional logic called first-order logic (FOL). This new logic affords us much greater expressive power.
- **Definition:** The alphabet of FOPL contains:
 - 1. a set of constants;
 - 2. a set of variables;
 - 3. a set of function symbols;
 - 4. a set of predicates symbols;
 - 5. the connectives \lor , \neg ;
 - 6. the *quantifiers* \forall , \exists , \exists ₁;
 - 7. the punctuation symbols), (.

First-Order Logic

- Aim of this lecture: to introduce *first-order predicate logic*.
- More expressive than propositional logic.
- Consider the following argument:
 - all monitors are ready;
 - X12 is a monitor;
 - therefore *X12* is ready.
- Sense of this argument *cannot* be captured in propositional logic.
- Propositional logic is too *coarse grained* to allow us to represent and reason about this kind of statement.

cis716-spring2006-parsons-lect14

2

Terms

- The basic components of FOL are called *terms*.
- ullet Essentially, a term is an object that *denotes* some object other than \top or \bot .
- The simplest kind of term is a *constant*.
- A value such as 8 is a constant.
- The denotation of this term is the number 8.
- Note that a constant and the number it denotes are different!
- Aliens don't write "8" for the number 8, and nor did the Romans.

cis716-spring2006-parsons-lect14 3 cis716-spring2006-pa

- The second simplest kind of term is a *variable*.
- A variable can stand for anything in the *domain of discourse*.
- The domain of discourse (usually abbreviated to domain) is the set of all objects under consideration.
- Sometimes, we assume the set contains "everything".
- Sometimes, we explicitly *give* the set, and *state* what variables/constants can stand for.

cis716-spring2006-parsons-lect14

- Each function symbol is associated with a number called its *arity*. This is just the number of arguments it takes.
- A *functional term* is built up by *applying* a function symbol to the appropriate number of terms.
- Formally ...

Definition: Let f be an arbitrary function symbol of arity n. Also, let τ_1, \ldots, τ_n be terms. Then

$$f(\tau_1,\ldots,\tau_n)$$

is a functional term.

Functions

- We can now introduce a more complex class of terms functions.
- The idea of functional terms in logic is similar to the idea of a function in programming.
- Recall that in programming, a function is a procedure that takes some arguments, and *returns a value*.

In C:

this function takes *n* arguments; the first is of type T1, the second is of type T2, and so on. The function returns a value of type T.

• In FOL, we have a set of *function symbols*; each symbol corresponds to a particular function. (It denotes some function.)

cis716-spring2006-parsons-lect14

.

- All this sounds complicated, but isn't. Consider a function *plus*, which takes just two arguments, each of which is a number, and returns the first number added to the second.
- Then:
- plus(2,3) is an acceptable functional term;
- plus(0, 1) is acceptable;
- plus(plus(1,2),4) is acceptable;
- plus(plus(plus(0,1),2),4) is acceptable;

cis716-spring2006-parsons-lect14

cis716-spring2006-parsons-lect14

• In maths, we have many functions; the obvious ones are

$$+ - / * \sqrt{} \sin \cos \dots$$

• The fact that we write

$$2 + 3$$

instead of something like

is just convention, and is not relevant from the point of view of logic; all these are functions in exactly the way we have defined.

cis716-spring2006-parsons-lect14

Predicates

- In addition to having terms, FOL has *relational operators*, which capture *relationships* between objects.
- The language of FOL contains *predicate symbols*.
- These symbols stand for *relationships between objects*.
- Each predicate symbol has an associated *arity* (number of arguments).
- **Definition:** Let *P* be a predicate symbol of arity *n*, and τ_1, \ldots, τ_n are terms.

Then

$$P(\tau_1,\ldots,\tau_n)$$

is a predicate, which will either be \top or \bot under some interpretation.

• Using functions, constants, and variables, we can build up *expressions*, e.g.:

$$(x+3) * \sin 90$$

(which might just as well be written

for all it matters.)

cis716-spring2006-parsons-lect14

10

• EXAMPLE. Let *gt* be a predicate symbol with the intended interpretation 'greater than'. It takes two arguments, each of which is a natural number.

Then:

- *gt*(4, 3) is a predicate, which evaluates to ⊤;
- gt(3,4) is a predicate, which evaluates to \bot .
- The following are standard mathematical predicate symbols:

$$>$$
 $<$ $=$ \geq \leq \neq ...

• The fact that we are normally write x > y instead of gt(x, y) is just convention.

cis716-spring2006-parsons-lect14

cis716-spring2006-parsons-lect14

 We can build up more complex predicates using the connectives of propositional logic:

$$(2 > 3) \land (6 = 7) \lor (\sqrt{4} = 2)$$

- So a predicate just expresses a relationship between some values.
- What happens if a predicate contains *variables*: can we tell if it is true or false?

Not usually; we need to know an interpretation for the variables.

• A predicate that contains no variables is a proposition.

cis716-spring2006-parsons-lect14

Quantifiers

- We now come to the central part of first order logic: quantification.
- Consider trying to represent the following statements:
 - all people have a mother;
 - every positive integer has a prime factor.
- We can't represent these using the apparatus we've got so far; we need *quantifiers*.

- Predicates of arity 1 are called *properties*.
- EXAMPLE. The following are properties:

Woman(x) Clever(x)Powerful(x).

- We interpret P(x) as saying x is in the set P.
- Predicate that have arity 0 (i.e., take no arguments) are called *primitive propositions*.

These are identical to the primitive propositions we saw in propositional logic.

cis716-spring2006-parsons-lect14

13

14

• We use three quantifers:

∀ — *the universal quantifier;* is read 'for all...'

∃ — the existential quantifier; is read 'there exists...'

 \exists_1 — the unique quantifier; is read 'there exists a unique...'

cis716-spring2006-parsons-lect14 15

cis716-spring2006-parsons-lect14

• The simplest form of quantified formula is as follows:

quantifier variable · *predicate*

where

- *quantifier* is one of \forall , \exists , \exists ₁;
- *variable* is a variable;
- and *predicate* is a predicate.

cis716-spring2006-parsons-lect14

• $\exists m \cdot Monitor(m) \land MonitorState(m, ready)$

'There exists a monitor that is in a ready state.'

• $\forall r \cdot Reactor(r) \Rightarrow \exists_1 t \cdot (100 \le t \le 1000) \land temp(r) = t$ 'Every reactor will have a temperature in the range 100 to 1000.' Examples

• $\forall x \cdot Person(x) \Rightarrow Mortal(x)$ 'For all x, if x is a person, then x is mortal.' (i.e. all people are mortal)

• $\forall x \cdot Person(x) \Rightarrow \exists_1 y \cdot Woman(y) \land MotherOf(x, y)$ 'For all *x*, if *x* is a person, then there exists exactly one *y* such that y is a woman and the mother of x is y.' (i.e., every person has exactly one mother).

cis716-spring2006-parsons-lect14

- $\exists n \cdot posInt(n) \land n = (n * n)$
 - 'Some positive integer is equal to its own square.'
- $\exists c \cdot ECCountry(c) \land Borders(c, Albania)$ 'Some EC country borders Albania.'
- $\forall m, n \cdot Person(m) \land Person(n) \Rightarrow \neg Superior(m, n)$
- 'No person is superior to another.'
- $\forall m \cdot Person(m) \Rightarrow \neg \exists n \cdot Person(n) \land Superior(m, n)$ Ditto.

cis716-spring2006-parsons-lect14 19

Domains & Interpretations

- Suppose we have a formula $\forall x \cdot P(x)$. What does *x range over*? Physical objects, numbers, people, times, . . . ?
- Depends on the *domain* that we intend.
- Often, we *name* a domain to make our intended interpretation clear.

cis716-spring2006-parsons-lect14

Comments

• Note that universal quantification is similar to conjunction. Suppose the domain is the numbers $\{2,4,6\}$. Then

$$\forall n \cdot Even(n)$$

is the same as

$$Even(2) \wedge Even(4) \wedge Even(6)$$
.

• Existential quantification is similar to *disjunction*. Thus with the same domain,

$$\exists n \cdot Even(n)$$

is the same as

$$Even(2) \lor Even(4) \lor Even(6).$$

• Suppose our intended interpretation is the +ve integers. Suppose >, +, *, ... have the usual mathematical interpretation.

• Is this formula satisfiable under this interpretation?

$$\exists n \cdot n = (n * n)$$

- Now suppose that our domain is all living people, and that * means "is the child of".
- Is the formula satisfiable under this interpretation?

cis716-spring2006-parsons-lect14

21

23

22

• The universal and existential quantifiers are in fact *duals* of each other:

$$\forall x \cdot P(x) \Leftrightarrow \neg \exists x \cdot \neg P(x)$$

Saying that everything has some property is the same as saying that there is nothing that does not have the property.

$$\exists x \cdot P(x) \Leftrightarrow \neg \forall x \cdot \neg P(x)$$

Saying that there is something that has the property is the same as saying that its not the case that everything doesn't have the property.

cis716-spring2006-parsons-lect14

Decidability

- In propositional logic, we saw that some formulae were tautologies they had the property of being true under all interpretations.
- We also saw that there was a procedure which could be used to tell whether any formula was a tautology this procedure was the truth-table method.
- A formula of FOL that is true under all interpretations is said to be *valid*.
- So in theory we could check for validity by writing down all the possible interpretations and looking to see whether the formula is true or not.

cis716-spring2006-parsons-lect14

Proof in FOL

- Proof in FOL is similar to PL; we just need an extra set of rules, to deal with the quantifiers.
- FOL *inherits* all the rules of PL.
- To understand FOL proof rules, need to understand *substitution*.
- The most obvious rule, for ∀-E.
 Tells us that if everything in the domain has some property, then we can infer that any *particular* individual has the property.

$$\frac{\vdash \forall x \cdot \phi(x);}{\vdash \phi(a)}$$
 \forall -E for any a in the domain

Going from general to specific.

- Unfortuately in general we can't use this method.
- Consider the formula:

$$\forall n \cdot Even(n) \Rightarrow \neg Odd(n)$$

- There are an infinite number of interpretations.
- Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
- The answer is *no*.
- FOL is for this reason said to be *undecidable*.

cis716-spring2006-parsons-lect14

25

. .

• Example 1.

Let's use \forall -E to get the Socrates example out of the way.

$$\begin{aligned} \textit{Person}(s); \forall x \cdot \textit{Person}(x) \Rightarrow \textit{Mortal}(x) \\ \vdash \textit{Mortal}(s) \end{aligned}$$

- 1. Person(s) Given
- 2. $\forall x \cdot Person(x) \Rightarrow Mortal(x)$ Given
- 3. $Person(s) \Rightarrow Mortal(s)$ 2, \forall -E
- 4. Mortal(s) 1, 3, \Rightarrow -E

cis716-spring2006-parsons-lect14 27

cis716-spring2006-parsons-lect14

• We can also go from the general to the slightly less specific!

$$\frac{\vdash \forall x \cdot \phi(x);}{\vdash \exists x \cdot \phi(x)}$$
 \exists -I(1) if domain not empty

Note the side condition.

The \exists quantifier *asserts the existence* of at least one object.

The \forall quantifier does not.

cis716-spring2006-parsons-lect14

- We often informally make use of arguments along the lines...
 - 1. We know somebody is the murderer.
 - 2. Call this person *a*.
 - 3. ...

(Here, a is called a $Skolem\ constant.$)

 We have a rule which allows this, but we have to be careful how we use it!

$$\frac{\vdash \exists x \cdot \phi(x);}{\vdash \phi(a)} \exists -E \ a \ doesn't \ occur \ elsewhere$$

• We can also go from the very specific to less specific.

$$\frac{\vdash \phi(a);}{\vdash \exists x \cdot \phi(x)} \exists \text{-I(2)}$$

• In other words once we have a concrete example, we can infer there exists something with the property of that example.

cis716-spring2006-parsons-lect14

• Here is an *invalid* use of this rule:

1. $\exists x \cdot Boring(x)$ Given

2. Lecture(AI) Given

3. Boring(AI) 1, \exists -E

• (The conclusion may be true, the argument isn't sound.)

cis716-spring2006-parsons-lect14 31 cis716-spring2006-parsons-lect14

- Another kind of reasoning:
 - Let *a* be arbitrary object.
 - ... (some reasoning) ...
 - Therefore a has property ϕ
 - Since a was arbitrary, it must be that every object has property ϕ .
- Common in mathematics:

Consider a positive integer $n \dots$ so n is either a prime number or divisible by a smaller prime number \dots so every positive integer is either a prime number or divisible by a smaller prime number.

cis716-spring2006-parsons-lect14

33

- Example 2:
 - 1. Everybody is either happy or rich.
 - 2. Simon is not rich.
 - 3. Therefore, Simon is happy.

Predicates:

- -H(x) means x is happy;
- -R(x) means x is rich.
- Formalisation:

$$\forall x. H(x) \lor R(x); \neg R(Simon) \vdash H(Simon)$$

• If we are careful, we can also use this kind of reasoning:

$$\frac{\vdash \phi(a);}{\vdash \forall x \cdot \phi(x)} \ \forall \text{-I } a \text{ is arbitrary}$$

• Invalid use of this rule:

1. Boring(AI) Given

2. $\forall x \cdot Boring(x)$ 1, \forall -I

 $cis 716\hbox{-spring} 2006\hbox{-parsons-lect} 14$

34

1. $\forall x. H(x) \lor R(x)$	Given
2. $\neg R(Simon)$	Given
3. $H(Simon) \vee R(Simon)$	1, ∀-E
4. $\neg H(Simon) \Rightarrow R(Simon)$	3, defn \Rightarrow
5. $\neg H(Simon)$	As.
6. $R(Simon)$	4, 5, ⇒-E
7. $R(Simon) \land \neg R(Simon)$	2, 6, ∧-I
8. $\neg \neg H(Simon)$	5, 7, ¬-I
9. $H(Simon) \Leftrightarrow \neg \neg H(Simon)$	PL axiom
10. $(H(Simon) \Rightarrow \neg \neg H(Simon))$	
$\land (\neg \neg H(Simon) \Rightarrow H(Simon))$	9, defn ⇔
11. $\neg \neg H(Simon) \Rightarrow H(Simon)$	10,∧-E
12. $H(Simon)$	8, 11, ⇒-E
cis716-spring2006-parsons-lect14	

Logic-Based Agents

- When we started talking about logic, it was as a means of representing knowledge.
- We wanted to represent knowledge in order to be able to build agents.
- We now know enough about logic to do that.
- We will now see how a *logic-based agent* can be designed to perform simple tasks.
- Assume each agent has a *database*, i.e., set of FOL-formulae.

 These represent information the agent has about environment.

cis716-spring2006-parsons-lect14 37

• The agent's operation:

cis716-spring2006-parsons-lect14

```
1.
       for each a in A do
2.
               if \Delta \vdash_R Do(a) then
3.
                      return a
4.
               end-if
5.
       end-for
6.
       for each a in A do
7.
               if \Delta \not\vdash_R \neg Do(a) then
8.
                      return a
9.
               end-if
       end-for
10.
11.
       return null
```

- We'll write Δ for this database.
- Also assume agent has set of *rules*.
 We'll write *R* for this set of rules.
- We write $\Delta \vdash_R \phi$ if the formula ϕ can be proved from the database Δ using only the rules R.
- How to program an agent:
 Write the agent's rules R so that it should do action a whenever ∆ ⊢_R Do(a).
 Here, Do is a predicate.
- Also assume *A* is set of actions agent can perform.

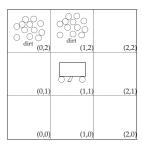
cis716-spring2006-parsons-lect14

38

• An example:

We have a small robot that will clean up a house. The robot has sensor to tell it whether it is over any dirt, and a vacuum that can be used to suck up dirt. Robot always has an orientation (one of n, s, e, or w). Robot can move forward one "step" or turn right 90° . The agent moves around a room, which is divided grid-like into a number of equally sized squares. Assume that the room is a 3×3 grid, and agent starts in square (0,0) facing north.

• Illustrated:



cis716-spring2006-parsons-lect14

• Once agent reaches (2, 2), it must head back to (0, 0).

$$In(0,0) \wedge Facing(north) \wedge \neg Dirt(0,0) \longrightarrow Do(forward)$$
 (2)

$$In(0,1) \wedge Facing(north) \wedge \neg Dirt(0,1) \longrightarrow Do(forward)$$
 (3)

$$In(0,2) \wedge Facing(north) \wedge \neg Dirt(0,2) \longrightarrow Do(turn)$$
 (4)

$$In(0,2) \land Facing(east) \longrightarrow Do(forward)$$
 (5)

- Other considerations:
 - adding new information after each move/action;
 - removing old information.
- Suppose we scale up to 10×10 grid?

• Three *domain predicates* in this exercise:

agent is at (x, y)In(x, y)Dirt(x, y) there is dirt at (x, y)

Facing(d) the agent is facing direction d

• For convenience, we write rules as:

$$\phi(\ldots) \longrightarrow \psi(\ldots)$$

• First rule deals with the basic cleaning action of the agent

$$In(x, y) \wedge Dirt(x, y) \longrightarrow Do(suck)$$
 (1)

• Hardwire the basic navigation algorithm, so that the robot will always move from (0,0) to (0,1) to (0,2) then to (1,2), (1,1) and so on.

cis716-spring2006-parsons-lect14

41

Summary

- This lecture looked at predicate (or first order) logic.
- Predicate logic is a generalisation of propositional logic.
- The generalisation requires the use of quantifiers, and these need special rules for handling them when doing inference.
- We looked at how the proof rules for propositional logic need to be extended to handle quantifiers.
- Finally, we looked at how logic might be used to control an agent.

cis716-spring2006-parsons-lect14 43