
LECTURE 3: REACTIVE AND HYBRID AGENTS

An Introduction to Multiagent Systems

CIS 716.5, Spring 2010



Lecture 3 An Introduction to Multiagent Systems

Reactive Architectures

• There are many unsolved (some would say insoluble) problems
associated with symbolic AI.

• These problems have led some researchers to question the
viability of the whole paradigm, and to the development of
reactive architectures.

• Although united by a belief that the assumptions underpinning
mainstream AI are in some sense wrong, reactive agent
researchers use many different techniques.

• In this presentation, we start by reviewing the work of one of the
most vocal critics of mainstream AI: Rodney Brooks.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 1



Lecture 3 An Introduction to Multiagent Systems

Brooks — behaviour languages

• Brooks has put forward three theses:

1. Intelligent behaviour can be generated without explicit
representations of the kind that symbolic AI proposes.

2. Intelligent behaviour can be generated without explicit
abstract reasoning of the kind that symbolic AI proposes.

3. Intelligence is an emergent property of certain complex
systems.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 2



Lecture 3 An Introduction to Multiagent Systems

• He identifies two key ideas that have informed his research:

1. Situatedness and embodiment: ‘Real’ intelligence is situated
in the world, not in disembodied systems such as theorem
provers or expert systems.

2. Intelligence and emergence: ‘Intelligent’ behaviour arises as
a result of an agent’s interaction with its environment.
Also, intelligence is ‘in the eye of the beholder’; it is not an
innate, isolated property.

• To illustrate his ideas, Brooks built some agents based on his
subsumption architecture.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 3



Lecture 3 An Introduction to Multiagent Systems

• Genghis:

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 4



Lecture 3 An Introduction to Multiagent Systems

• A subsumption architecture is a hierarchy of task-accomplishing
behaviours.

• Each behaviour is a rather simple rule-like structure.

• Each behaviour ‘competes’ with others to exercise control over
the agent.

• Lower layers represent more primitive kinds of behaviour, (such
as avoiding obstacles), and have precedence over layers further
up the hierarchy.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 5



Lecture 3 An Introduction to Multiagent Systems

• The resulting systems are, in terms of the amount of
computation they do, extremely simple.

• Some of the robots do tasks that would be impressive if they
were accomplished by symbolic AI systems.

• Steels’ Mars explorer system, using the subsumption
architecture, achieves near-optimal cooperative performance in
simulated ‘rock gathering on Mars’ domain:

The objective is to explore a distant planet, and in particular, to
collect sample of a precious rock. The location of the samples is
not known in advance, but it is known that they tend to be
clustered.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 6



Lecture 3 An Introduction to Multiagent Systems

• For individual (non-cooperative) agents, the lowest-level
behavior, (and hence the behavior with the highest “priority”) is
obstacle avoidance:

if detect an obstacle then change direction.

• Any samples carried by agents are dropped back at the
mother-ship:

if carrying samples and at the base then drop samples

if carrying samples and not at the base then travel up gradient.

The “gradient” in this case refers to a virtual “hill” that slopes up
to the mother ship/base.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 7



Lecture 3 An Introduction to Multiagent Systems

• Agents will collect samples they find:

if detect a sample then pick sample up.

• An agent with “nothing better to do” will explore randomly:

if true then move randomly.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 8



Lecture 3 An Introduction to Multiagent Systems

Abstract view of subsumption architecture

• Layered approach based on levels of competence

• Augmented finite state machine:

reset

suppressioninhibition

behavior model
FSM OUTPUTINPUT 

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 9



Lecture 3 An Introduction to Multiagent Systems

• A subsumption architecture machine:

task layer

emergency
layer

motion layer

obstacles

stuck? reverse

collect

turn

forward

SE
N

SO
R

S

M
O

T
O

R
S

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 10



Lecture 3 An Introduction to Multiagent Systems

• Can build sophisticated machines this way.

• Matarić’s Toto was able to map spaces and execute plans all
without a symbolic representation.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 11



Lecture 3 An Introduction to Multiagent Systems

Situated Automata

• Approach proposed by Rosenschein and Kaelbling.

• An agent is specified in a rule-like (declarative) language.

• Then compiled down to a digital machine, which satisfies the
declarative specification.

• This digital machine can operate in a provable time bound.

• Reasoning is done off line, at compile time, rather than online at
run time.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 12



Lecture 3 An Introduction to Multiagent Systems

• The theoretical limitations of the approach are not well
understood.

• Compilation (with propositional specifications) is equivalent to an
NP-complete problem.

• The more expressive the agent specification language, the
harder it is to compile it.

• (There are some deep theoretical results which say that after a
certain expressiveness, the compilation simply can’t be done.)

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 13



Lecture 3 An Introduction to Multiagent Systems

Emergent behaviour

• Important but not well-understood phenomenon

• Often found in behaviour-based/reactive systems

• Agent behaviours “emerge” from interactions of rules with
environment.

• Sum is greater than the parts.

– The interaction links rules in ways that weren’t anticipated.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 14



Lecture 3 An Introduction to Multiagent Systems

• Coded behaviour

– In the programming scheme

• Observed behaviour

– In the eyes of the observer

• There is no one-to-one mapping between the two!

• When observed behaviour “exceeds” programmed behaviour,
then we have emergence.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 15



Lecture 3 An Introduction to Multiagent Systems

• Emergent flocking.

• Classic example of emergence

– Reynolds “Boids”

• Program multiple agents:

– Don’t run into any other robot

– Don’t get too far from other robots

– Keep moving if you can

• When run in parallel on many agents, the result is flocking

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 16



Lecture 3 An Introduction to Multiagent Systems

• Matarić’s “nerd herd” showed flocking behavior:

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 17



Lecture 3 An Introduction to Multiagent Systems

Wall following

forward motion, obstacle avoidance

coded behavior

with slight right turn

observed behavior

wall following

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 18



Lecture 3 An Introduction to Multiagent Systems

• Can also be implemented with these rules:

– If too far, move closer

– If too close, move away

– Otherwise, keep on

• Over time, in an environment with walls, this will result in
wall-following

• Is this emergent behavior?

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 19



Lecture 3 An Introduction to Multiagent Systems

• Can argued yes because

– Robot itself is not aware of a wall, it only reacts to distance
readings

– Concepts of “wall” and “following” are not stored in the robot’s
controller

– The system is just a collection of rules

• But once I have seen this work, I can program the robot
expecting it to happen!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 20



Lecture 3 An Introduction to Multiagent Systems

Learning reactive behavior

• We can discover reactive behavior.

• If we have utilities of states, and actions that take our agent from
state to state (sound familiar) we can discover the utility of every
state.

• The utility of a state ei is a function of the utility of the states the
agent can get to from it (ej) and the cost of getting to those states:

V(ei) = maxj(V(ej) − c(ej, ei))

• If we start by assuming all states with unknown utilities have
utilities of zero, and recursively update using:

V(ei)t+1 = V(ei)t + maxj(V(ej)t − c(ej, ei))

• We can establish the utility of every state.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 21



Lecture 3 An Introduction to Multiagent Systems

• Here’s an example world, like Vacuum world, but with some
places the robot can’t go, and a place with negative utility (a
hole, say).

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

2

1

0

0 1 2

3

3

• The robot can go north (up the page), south, east and west.
Each action costs 1

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 22



Lecture 3 An Introduction to Multiagent Systems

• Here is a state/action graph that covers all of the states and
some of the actions and initial utilities.

s00
0

s01
0e

s10
0

n

s02
0

n

s11
0

e

s03
0

n

s12
0

e s13
-5

e

n n

s22
0

e

n

s23
0

n

s32
0

e

s33
0

e

w

s30
0

s31
10n

s

s

• Now let’s run the the recursive updates.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 23



Lecture 3 An Introduction to Multiagent Systems

• After one step.

s00
-1

s01
-1e

s10
-1

n

s02
-1

n

s11
-1

e

s03
-6

n

s12
-6

e s13
-5

e

n n

s22
-1

e

n

s23
-6

n

s32
9

e

s33
-1

e

w

s30
9

s31
10n

s

s

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 24



Lecture 3 An Introduction to Multiagent Systems

• After two steps.

s00
-2

s01
-2e

s10
-2

n

s02
-7

n

s11
-7

e

s03
-6

n

s12
-6

e s13
-5

e

n n

s22
8

e

n

s23
-6

n

s32
9

e

s33
8

e

w

s30
9

s31
10n

s

s

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 25



Lecture 3 An Introduction to Multiagent Systems

• After three steps.

s00
-3

s01
-8e

s10
-8

n

s02
-7

n

s11
-7

e

s03
-6

n

s12
7

e s13
-5

e

n n

s22
8

e

n

s23
7

n

s32
9

e

s33
8

e

w

s30
9

s31
10n

s

s

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 26



Lecture 3 An Introduction to Multiagent Systems

• After four steps.

s00
-9

s01
-8e

s10
-8

n

s02
6

n

s11
6

e

s03
-6

n

s12
7

e s13
-5

e

n n

s22
8

e

n

s23
7

n

s32
9

e

s33
8

e

w

s30
9

s31
10n

s

s

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 27



Lecture 3 An Introduction to Multiagent Systems

• After five steps.

s00
-9

s01
5e

s10
5

n

s02
6

n

s11
6

e

s03
-6

n

s12
7

e s13
-5

e

n n

s22
8

e

n

s23
7

n

s32
9

e

s33
8

e

w

s30
9

s31
10n

s

s

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 28



Lecture 3 An Introduction to Multiagent Systems

• After six steps.

s00
4

s01
5e

s10
5

n

s02
6

n

s11
6

e

s03
-6

n

s12
7

e s13
-5

e

n n

s22
8

e

n

s23
7

n

s32
9

e

s33
8

e

w

s30
9

s31
10n

s

s

• There will be no more updates.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 29



Lecture 3 An Introduction to Multiagent Systems

• Once the values have stabilised, we have a program for the
reactve agent.

• At each step we pick the state with the highest utility.

• Again (as with situated automata) we can push the computation
off-line.

– Online the agent only needs a look-up table.

• We can also compute utilities online, as in reinforcement
learning.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 30



Lecture 3 An Introduction to Multiagent Systems

Hybrid Architectures

• Many researchers have argued that neither a completely
deliberative nor completely reactive approach is suitable for
building agents.

• They have suggested using hybrid systems, which attempt to
marry classical and alternative approaches.

• An obvious approach is to build an agent out of two (or more)
subsystems:

– a deliberative one, containing a symbolic world model, which
develops plans and makes decisions in the way proposed by
symbolic AI; and

– a reactive one, which is capable of reacting to events without
complex reasoning.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 31



Lecture 3 An Introduction to Multiagent Systems

• Often, the reactive component is given some kind of precedence
over the deliberative one.

• This kind of structuring leads naturally to the idea of a layered
architecture, of which TOURINGMACHINES and INTERRAP are
examples.

• In such an architecture, an agent’s control subsystems are
arranged into a hierarchy, with higher layers dealing with
information at increasing levels of abstraction.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 32



Lecture 3 An Introduction to Multiagent Systems

• A key problem in such architectures is what kind control
framework to embed the agent’s subsystems in, to manage the
interactions between the various layers.

• Horizontal layering.

Layers are each directly connected to the sensory input and
action output.

In effect, each layer itself acts like an agent, producing
suggestions as to what action to perform.

• Vertical layering.

Sensory input and action output are each dealt with by at most
one layer each.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 33



Lecture 3 An Introduction to Multiagent Systems

action
output

perceptual
input

(b) Vertical layering
(One pass control)

(a) Horizontal layering

perceptual
input

action
output

perceptual
input

action
output

(Two pass control)

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

... ... ...

(c) Vertical layering

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 34



Lecture 3 An Introduction to Multiagent Systems

Ferguson — TOURINGMACHINES

• The TOURINGMACHINES architecture consists of perception and
action subsystems, which interface directly with the agent’s
environment, and three control layers, embedded in a control
framework, which mediates between the layers.

• A horizontally layered architecture.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 35



Lecture 3 An Introduction to Multiagent Systems

perceptual
sub−system

modelling layer

planning layer

reactive layer

control 
subsystem

action
subsystem actions

sensor
input

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 36



Lecture 3 An Introduction to Multiagent Systems

• The reactive layer is implemented as a set of situation-action
rules, à la subsumption architecture.

Example:

rule-1: kerb-avoidance
if

is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

• The planning layer constructs plans and selects actions to
execute in order to achieve the agent’s goals.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 37



Lecture 3 An Introduction to Multiagent Systems

• The modelling layer contains symbolic representations of the
‘cognitive state’ of other entities in the agent’s environment.

• The three layers communicate with each other and are
embedded in a control framework, which use control rules.

Example:

censor-rule-1:
if

entity(obstacle-6) in perception-buffer
then

remove-sensory-record(layer-R, entity(obstacle-6))

• Such control structures have become common in robotics.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 38



Lecture 3 An Introduction to Multiagent Systems

Summary

• This lecture has looked at two further kinds of agent:

– Reactive agents; and

– Hybrid agents.

• Reactive agents build complex behaviour from simple
components.

• Complex to build complex agents.

• Hybrid agents try to combine the speed of reactive agents with
the power of deliberative agents.

• Hybrid agents are common in robotics.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 39


