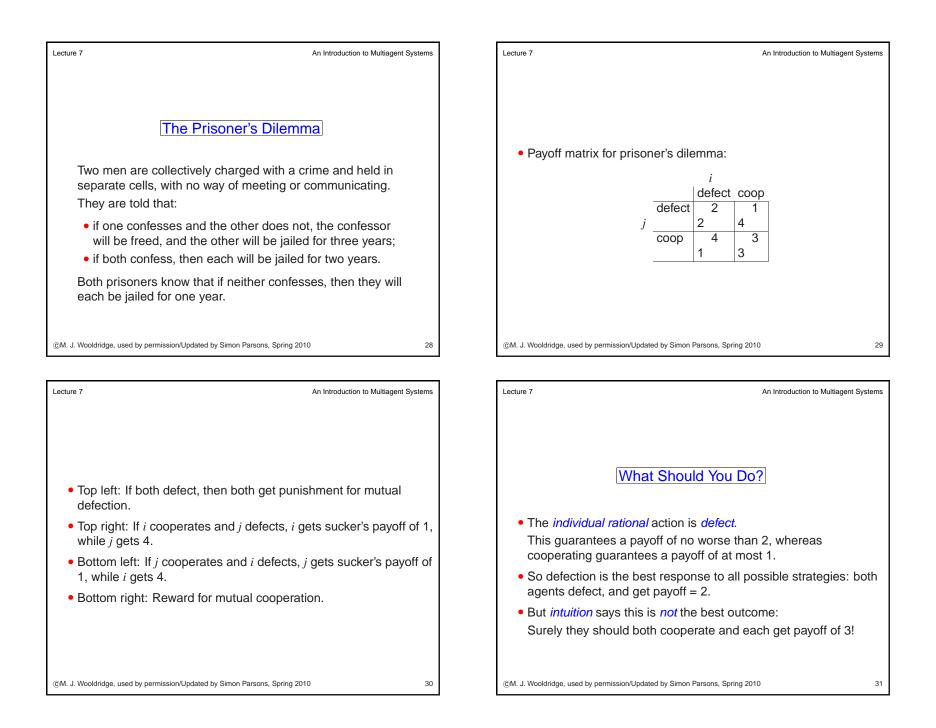
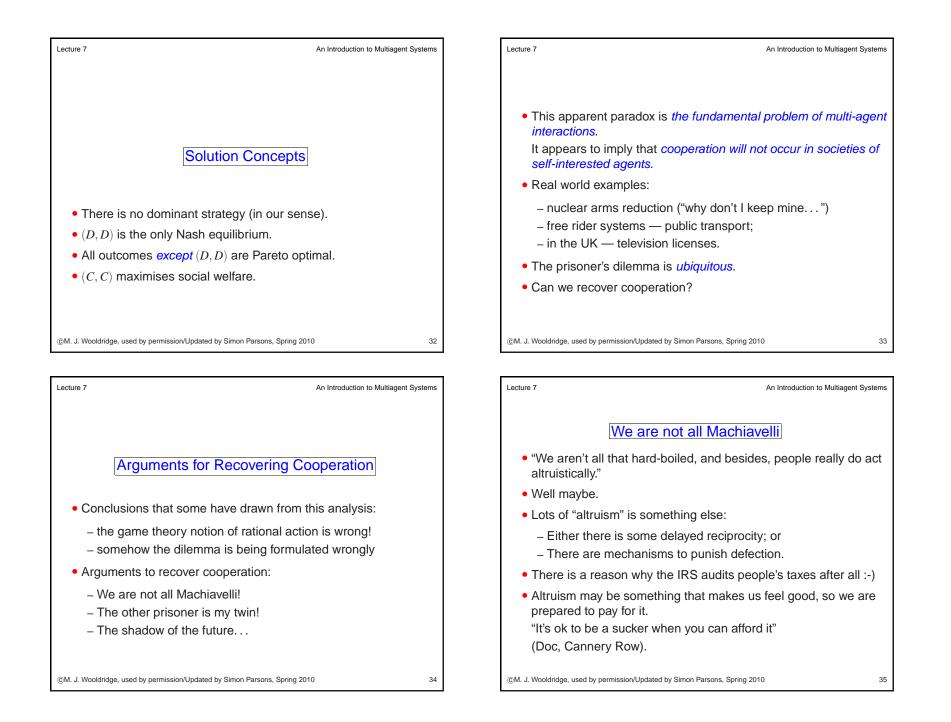


Lecture 7 An Introduction	to Multiagent Systems	Lecture 7	An Introduction to Multiagent Systems
 A rational agent will never play a dominated strategy So in deciding what to do, we can <i>delete dominated</i> Unfortunately, there isn't always a unique undominated 	strategies.	Nash	Equilibrium
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010	12	©M. J. Wooldridge, used by permission/Updated by S	Simon Parsons, Spring 2010 13
Lecture 7 An Introduction	to Multiagent Systems	Lecture 7	An Introduction to Multiagent Systems
 In general, we will say that two strategies s₁ and s₂ a equilibrium (NE) if: 1. under the assumption that agent <i>i</i> plays s₁, agen better than play s₂; and 2. under the assumption that agent <i>j</i> plays s₂, agen better than play s₁. Neither agent has any incentive to deviate from a NE 	t <i>j</i> can do no t <i>i</i> can do no	if: ✓ • Unfortunately: 1. Not every interaction solution 2. Some interaction scena	equilibrium solution to the game (A, B) $(i, a_{i^*,j^*} \ge a_{i,j^*}$ $(j, b_{i^*,j^*} \ge b_{i^*,j})$ cenario has a pure strategy NE. arios have more than one NE. t the notion of pure strategies.
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010	14	©M. J. Wooldridge, used by permission/Updated by S	Simon Parsons, Spring 2010 15





23

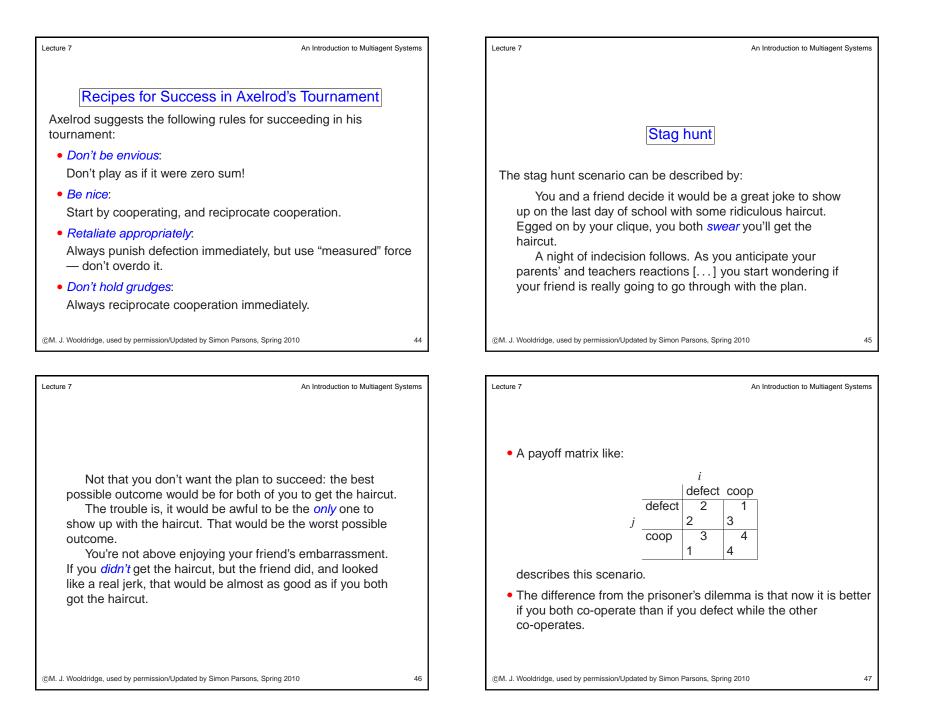
	agent Systems Lecture 7	An Introduction to Multiagent Systems
 For a game with payoff matrices A (to i) and B (to j), a mistrategy (x*, y*) is a Nash equilibrium solution if: ∀x, x*Ay*T ≥ xAy*T ∀y, x*By*T ≥ xBy*T In other words, x* gives a higher <i>expected</i> value to P1 th other strategy when P2 plays y*. Similarly, y* gives a higher <i>expected</i> value to P2 than any strategy when P1 plays x*. 	A th w If re or or or or or or or or or or (E	Pareto Optimality In outcome is said to be <i>Pareto optimal</i> (or <i>Pareto efficient</i>) if here is no other outcome that makes one agent <i>better off</i> without making another agent <i>worse off</i> . an outcome is Pareto optimal, then at least one agent will be eluctant to move away from it (because this agent will be worse ff). an outcome ω is <i>not</i> Pareto optimal, then there is another utcome ω' that makes <i>everyone</i> as happy, if not happier, than ω . Reasonable" agents would agree to move to ω' in this case. Even if I don't directly benefit from ω' , you can benefit without he suffering.)
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010	©M. J. Wo	ooldridge, used by permission/Updated by Simon Parsons, Spring 2010 25
Lecture 7 An Introduction to Multi	agent Systems Lecture 7	An Introduction to Multiagent Systems
Social Welfare		Competitive and Zero-Sum Interactions
 Social Welfare The social welfare of an outcome ω is the sum of the utili each agent gets from ω: 		Competitive and Zero-Sum Interactions Where preferences of agents are diametrically opposed we have trictly competitive scenarios.
• The social welfare of an outcome ω is the sum of the utili each agent gets from ω :	Si	/here preferences of agents are diametrically opposed we have
• The social welfare of an outcome ω is the sum of the utili each agent gets from ω : $\sum_{i \in A_g} u_i(\omega)$	Si	Vhere preferences of agents are diametrically opposed we have trictly competitive scenarios.
 The social welfare of an outcome ω is the sum of the utili each agent gets from ω: ∑_{i∈Ag} u_i(ω) Think of it as the "total amount of money in the system". 	• Z	Where preferences of agents are diametrically opposed we have trictly competitive scenarios. ero-sum encounters are those where utilities sum to zero:
• The social welfare of an outcome ω is the sum of the utili each agent gets from ω : $\sum_{i \in Ag} u_i(\omega)$	ble efit of the	Where preferences of agents are diametrically opposed we have trictly competitive scenarios. ero-sum encounters are those where utilities sum to zero: $u_i(\omega) + u_j(\omega) = 0$ for all $\omega \in \Omega$.

Lecture 7	An Introduction to Multiagent Systems	Lecture 7	An Introduction to Multiagent System
The Other Prisoner is My	Twin	The	Shadow of the Future
 Argue that both prisoner's will think alike ar best to cooperate. If they are twins, they must think along the 		 Play the game more If you know you will incentive to defect a 	be meeting your opponent again, then the
 Well, if this is the case, we aren't really play Dilemma. Possibly more to the point is that if you kno going to cooperate, you are <i>still</i> better off d 	ying the Prisoner's w the other person is	 Cooperation is the raprisoner's dilemma. (Hurrah!) 	ational choice in the infinititely repeated a finite number of repetitions?
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010	36 An Introduction to Multiagent Systems	©M. J. Wooldridge, used by permission/Up	odated by Simon Parsons, Spring 2010 3 An Introduction to Multiagent System
Backwards Induction			
 But suppose you both know that you will exactly <i>n</i> times. On round <i>n</i> - 1, you have an incentive to debit of payoff But this makes round <i>n</i> - 2 the last "real", a incentive to defect there, too. This is the <i>backwards induction</i> problem. 	efect, to gain that extra	So how does cooperAfter all, there does	est that you should <i>never</i> cooperate. ration arise? Why does it make sense? seem to be such a thing as society, and ever y York, people don't behave so badly.
 Playing the prisoner's dilemma with a fixed, pre-determined, commonly known number the best strategy. 			
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010	38	©M. J. Wooldridge, used by permission/Up	odated by Simon Parsons, Spring 2010 3

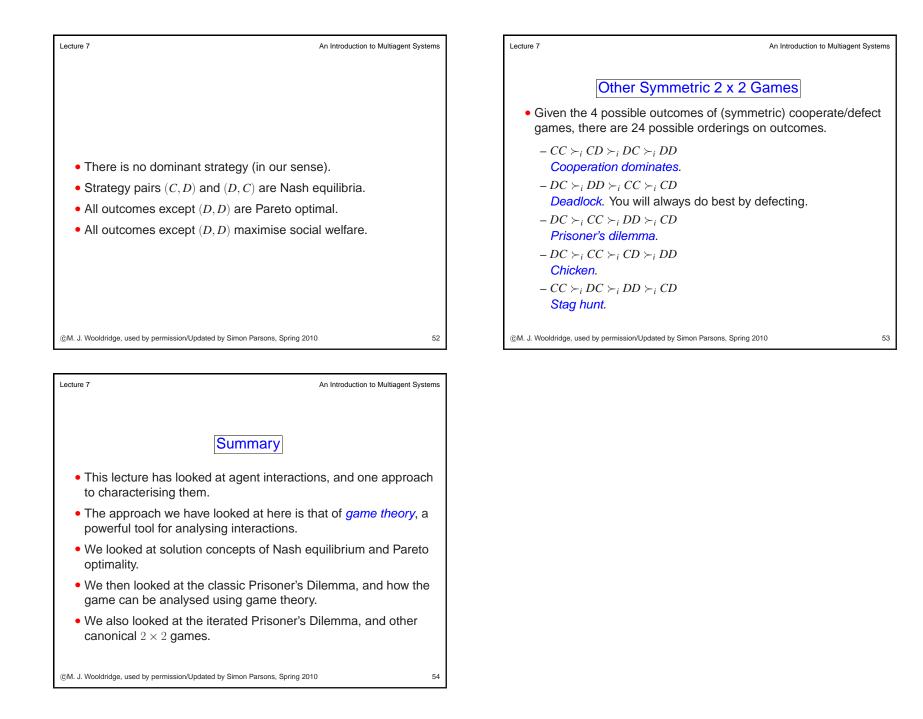
An Introduction to Multiagent Systems

Lecture 7

Lecture 7


- Robert Axelrod (1984) investigated this problem, with a computer tournament for programs playing the prisoner's dilemma.
- Axelrod hosted the tournament and various researchers sent in strategies for playing the game.

©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010


Lecture 7	An Introduction to Multiagent System
 Surprisingly TIT-FOR-TAT for won. 	
 But don't read too much into this :-) 	

An Introduction to Multiagent Systems

41

Lecture 7 An Introduction to Multiagent System		Lecture 7 An Introduction to Multiagent Systems
 There are two Nash equilibrium solutions: Both co-operate Both defect The same scenario occurs in mutinies and in the orginal hunting scenario that gave it its name (as well as the hunting practices or some animals). 		Game of Chicken The game of chicken gets its name from a rather silly, macho "game" that was supposedly popular amongst juvenile delinquents in 1950s America; the game was immortalised by James Dean in the 1950s film <i>Rebel without</i> <i>a Cause</i> . The purpose of the game is to establish who is bravest of the two players.
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 4	•	©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 49
Lecture 7 An Introduction to Multiagent System		Lecture 7 An Introduction to Multiagent Systems
The game is played by both players driving their cars at high speed towards a cliff. The idea is that the least brave of the two (the "chicken") will be the first to drop out of the game by jumping out of the speeding car. The winner is the one who lasts longest in the car. Of course, if <i>neither</i> player jumps out of the car, then both cars fly off the cliff, taking their foolish passengers to a fiery death on the rocks that undoubtedly lie at the foot of the cliff.		• Chicken has a payoff matrix like: i $\frac{defect coop}{defect 1 2}$ $j \frac{defect 1 2}{2 3}$ (Swerving = coop, driving straight = defect.) • Difference to prisoner's dilemma: <i>Mutual defection is most feared outcome.</i> (Whereas sucker's payoff is most feared in prisoner's dilemma.)
©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 5		©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2010 51

