
Soc Choice Welfare (1989) 6:22%241 Social Choice 
 Welfare 

© Springer-Verlag 1989 

The Computational Difficulty of Manipulating an Election* 

J. J. Bartholdi III, C. A. Tovey, and M. A. Trick** 

School of Industrial and Systems Engineering, Georgia Institute of Technology, 
Atlanta, GA 30332, USA 

Received June 9, 1987/Accepted July 29, 1988 

Abstract. We show how computational complexity might protect the integrity of 
social choice. We exhibit a voting rule that efficiently computes winners but is 
computationally resistant to strategic manipulation. It is NP-complete for a 
manipulative voter to determine how to exploit knowledge of the preferences of 
others. In contrast, many standard voting schemes can be manipulated with 
only polynomial computational effort. 

1. Introduction 

We consider a voting scheme to be an algorithm that takes as imput a set C of 
candidates and a set V of preference orders that are strict (irreflexive and 
antisymmetric), transitive, and complete on C. The algorithm outputs a subset of C, 
who are the winners (allowing for ties). 

Several celebrated theorems [4, 6, 14] show that any voting scheme that meets 
certain innocuous-looking rationality criteria must be susceptible to manipulation 
by strategic voting; that is, a voter with complete knowledge of the preferences of all 
the other voters can achieve a social choice more to his liking by misrepresenting his 
preferences. 

Like the famous theorem of Arrow, these "impossibility" theorems fascinate 
because they seem to confound our ideals. They suggest that our methods of social 
choice must be either unfair or else inherently susceptible to abuse. The contribution 

* Presented at Purdue University, March 1987; at the University of Arizona, April 1987; at 
Massachusetts Institute of Technology, April 1987; at Yale University, November 1987; at Centre 
International de Rencontres Mathematiques, Marseille-Luminy, April 1988. This research was 
supported in part by Presidential Young Investigator Awards from the National Science Foundation to 
the first two authors (ECS-8351313 and ECS-8451032), and by grant N00014-86-K-0173 from the Office 
of Naval Research. 
** The authors appreciate many helpful comments and suggestions by the editor and three anonymous 
referees. We also thank Michel Balinski, Salvador Barbera, Jean-Pierre Barthelemy, and Peyton Young 
for stimulating discussions. 



228 J.J. Bartholdi III et al. 

of this paper to suggest how such a gloomy prospect can be ameliorated on 
operational grounds: We exhibit a voting scheme that is computationally resistant 
to manipulation even though it is easy to compute the winner. While manipulable in 
principle, this scheme might not be manipulable in practice- even assuming free and 
perfect information - because of excessive computational requirements. This is 
different from the idea of [13] that degrees of manipulability be distinguished by 
their information requirements. Instead, we make distinctions based on the time 
required to process that information. 

First we show that many of the well-known and historically used voting schemes 
can be "efficiently manipulated" in the sense that only polynomial time is required 
to determine how to vote so as to exploit knowledge of the preferences of other 
voters. Secondly, we prove that it is NP-complete to determine how to manipulate a 
scoring method that is in practical use (by, for example, the International 
Federation of Chess). 

2. Computational Complexity 

For those not :familiar with computational comlexity, we provide a quick sketch of 
issues and terms. We urge the reader to consult [5] for more detail. 

An algorithm is considered formally efficient if it requires a number of 
computational steps that is at most polynomial in the size of the problem. Problems 
for which there are polynomial-time algorithms are generally considered to be 
tractable, and those which require exponential time to solve are considered 
inherently intractable. Practical experience confirms the validity of this distinction. 

One way to measure the difficulty of a problem is by the worst-case time to solve 
an instance of given size. Based on this measure, complexity theorists have identified 
a hierarchy of "complexity classes" into which problems might fall. For example, 
the problem class NP consists of those questions for which a "yes" answer can be 
justified in polynomial time, and the hardest problems in NP are known as "NP- 
complete". NP-complete problems are all equivalent in the sense that any problem 
in NP can be reworded as an instance of an NP-complete problem within 
polynomial time. Thus if there exists an algorithm to solve any NP-complete 
problem within guaranteed polynomial time, then all NP-complete problems could 
be solved by transforming them to instances of the easily solvable problem. Since no 
algorithm of guaranteed polynomial time has been found for any NP-complete 
problem, this is widely taken as evidence for their inherent intractability. To show 
that a problem is NP-complete it is enough to show that it is within the class NP, and 
that it is "at least as difficult as" some other problem known to be NP-complete. 
The first point is generally trivial to establish; the latter point can be established by 
showing how the known hard problem can be quickly converted to a special case of 
the problem in question. In showing that the two problems are "equivalently 
difficult", the argument is frequently rather formal, and with few concessions to 
intuition. 

Classifying the complexity of voting problems is a natural refinement of 
previous work in social choice which has dealt with the distinction between the 
impossible and the possible [4, 6, 14], and, more recently, between the noncom- 



Computational Difficulty 229 

putable and the computable [7, 9]. Here we distinguish between the intractable and 
the tractable, and conclude that, even if some electoral problems admit of a 
computable solution, that solution might be impractical. The solution might be 
impractical because the time required to compute a solution can increase 
exponentially in the size of the problem. 

3. Many Voting Schemes are Easy to Manipulate 

Consider a fixed voting scheme, and suppose that a manipulative voter knows in 
advance the preferences of every other voter; is there a preference ordering (possibly 
different from his true preferences) that the manipulator can adopt so that a 
specified candidate c is a winner? If a voter can answer this question, he can 
determine whether he can manipulate the election. We formalize this question as 
follows. 

Existence of  a Winnin9 Preference 

Instance." Set of candidates C, and a distinguished member c of C; set V of transitive 
preference orders on C. 

Question: Does there exist a preference order P that will ensure that c will be the 
winner? 

If this can be answered within polynomial time, then the voting scheme is "easily 
manipulable". We show that many commonly-used voting schemes are easily 
manipulable by the following simple procedure. 

Algorithm Greedy-Manipulation 

Input." preferences of all other voters, and a distinguished candidate c. 

Output." either a preference order that, together with those of all the the other voters, 
will ensure that c is a winner, or else a claim that no such preference order exists, 

Initialization: Place c at the top of the preference order. 

Iterative Step. Determine whether any candidate can be placed in the next lower 
position (independent of other choices) without preventing c from winning. If so, 
place such a candidate in the next position; otherwise terminate claiming that c 
cannot win. 

The following describes voting schemes that are manipulable by Greedy- 
Manipulation. Assume that the preferences of all the voters but the manipulator are 
fixed and known to the manipulator. For  any preference P and candidates i,j, let iPj 
mean that iis preferred to j  under P, so that {j:iPj} is the set of candidates to whom i 
is preferred under P. 

Theorem 1. Greedy-Manipulation will f ind a preference order P that will make 
candidate c a winner (or conclude that it is impossible)for any votin9 scheme that can 



230 J.J. Bartholdi III et al. 

be represented ,as function S(P) : C ~ R  that is both 
- "responsive": a candidate with the largest S(P, i) is a winner; and 
- "monotone" :for any two preference orders P and P' and for an)' candidate i, 

{j:iP~]} ~ {j:iPj} implies that S(P', i)<=S(P, i). 

Proof. First note that if Greedy-Manipulation successfully constructs an order, that 
order will guarantee victory for candidate c. Now we show that if an order exists that 
ensures victory for c, then Greedy-Manipulation will construct it. Suppose Greedy- 
Manipulation terminates without having constructed a preference order, and let U 
be the set of unassigned candidates when Greedy-Manipulation terminates. Let P '  
be an order which would enable c to win, and let u be the highest ranked member of 
U under P ' .  Consider any completion P of the preference order started by Greedy- 
Manipulation ~:hat places u in the highest unassigned place. By responsiveness, 
S(P', c) > S(P ', u), and because {j:uPj} is contained in {j:uP ~/}, S(P', u) > S(P, u). 
Furthermore, by the initialization of the algorithm and by monotonicity, S(P, c) 
> S(P', c). These inequalities imply S(P, c)> S(P, u). But, by the iterative step of 
Greedy-Manipulation, S(P, c) < S(P, u) since u cannot go in the assigned slot. This is 
a contradiction. [] 

Corollary. Any voting system that satisfies the conditions of Theorem 1, and for which 
S is evaluatable in polynomial time, can be manipulated in polynomial time. 

Proof. Greedy-Manipulation executes within polynomial time since no more than n 
iterations are required, and each iteration requires no more than n evaluations of S 
(by monotonicity of S) with each evaluation of S requiring only polynomial time 
(by assumption). [] 

Many voting schemes in common use satisfy the conditions of Theorem 1 and so 
are efficiently manipulable by Greedy-Manipulation. These include: 

Plurality (Each voter casts 1 vote for their most preferred candidate). Function: 
Let b~ be the plurality score of candidate i among all voters except the manipulator; 
then S(P, i)=bi-t- 1 if [{j:iPj} I = [C[-1 ,  else =b i. 

Positional (Borda count) (Each voter casts [C] votes for their most preferred 
candidate, IC[ - 1 votes for their next-most-preferred . . . . .  and 1 vote for their least 
preferred candidate.) Function: Let b i be the positional score of candidate i among 
all voters except the manipulator; then S(P, i)= bi + [{j : iPj}[ + 1. 

Maximin (A winner is a candidate who maximizes the minimum number of 
voters who prefer him to another candidate in pairwise elections.) Function: Let V~j 
be the voters who prefer i to j ;  then S(P, i) = min t (t V~j[ + 1 if iPj; I V~j] if jPi). 

Copeland's method (A winner is a candidate who maximizes the number 
of victories minus the number of defeats in pairwise elections.) Function: 
S(P, i)=(number of candidates that i beats in pairwise contests) - (number of 
candidates to whom i loses in pairwise contests) based on the preferences of all the 
voters, including the manipulator. 

In addition, any monotone increasing function of such functions (which 
includes lexicographic combinations) still satisfies the hypotheses of Theorem 1. 



Computational Difficulty 231 

Consequently, baroque scoring methods such as 1/3 times the positional count plus 
1/5 times the Copeland count plus 2/7 times the maximin count are still efficiently 
manipulable by Greedy-Manipulation. 

4. A Voting Scheme that is Computationaily Resistant to Manipulation 

The Copeland voting scheme ranks the candidates according to the number of 
pairwise contests they win minus the number they lose [11, 12]. When all candidates 
are compared against each other pairwise (so that they participate in the same 
number of contests), this is equivalent to scoring simply by the number of contests 
won. Many organizations use this method of social choice to rank contestants, and 
extend it by adding a tie-breaking rule that we refer to the "second-order Copeland 
scheme": In case of a tie, the winner is the candidate whose defeated competitors 
have the largest sum of Copeland scores. 

(The Federation Internationale Des Echecs and the United States Chess 
Federation implement tie-breaking rules that are either identical to, or are minor 
variants of, the second-order Copeland scheme [8, 10]. For example, for round- 
robin tournaments under USCF rules, the primary score of each player is the 
number of opponents he has defeated plus one-half the number of opponents he has 
tied. In case of ties with respect to primary score, a secondary score is computed to 
be the sum of the primary scores of all the opponents he has defeated plus one-half 
the primary scores of all the opponents with whom he has drawn.) 

It requires only polynomial time to compute the winner of an election under 
either Copeland or second-order Copeland schemes. Furthermore, by the theorem 
of Gardenfors [4] both schemes are manipulable in principle. However, we make an 
important distinction here: While a first-order Copeland scheme can be manipu- 
lated efficiently (by Theorem 1), second-order Copeland is computationally 
resistant to manipulation, as we will show. Specifically, it is NP-complete to 
determine whether one can misrepresent one's preferences to exploit knowledge of 
the preferences of others. (Note that second-order Copeland violates the hypothesis 
of monotonicity required by Theorem I for manipulability by Greedy-Mani- 
pulation.) Thus second-order Copeland circumvents the Gardenfors impossibility 
theorem on operational grounds: it satisfies the hypotheses-it is neutral, ano- 
nymous, and Condorcet - but it is computationally difficult to manipulate. 

We can easily modify Second Order Copeland to similarly circumvent the 
Gibbard-Satterthwaite theorem [6, 14]: simply impose an arbitrary order on the 
candidates to break ties in their Second Order Copeland score; then the voting 
scheme is single-valued (but no longer neutral). By the Gibbard-Satterthwaite 
theorem, this modified scheme is in principle subject to manipulation but by our 
results it is computationally resistant to manipulation. More formally, the Gibbard- 
Satterthwaite theorem states 

Theorem. No social choice function is simultaneously 
(1) single-valued; 
(2) non-dictatorial; 
(3) non-manipulable. 

In contrast, we prove the following. 



232 J.J. Bartholdi III et al. 

Theorem. There exists a social choice function (Second Order Copeland) that is 
simultaneously 

(1) single-valued; 
(2) non-dictatorial; 
(3) easy to compute, but computationally difficult to manipulate. Moreover, this 

social choice function is anonymous, Pareto optimal, and Condorcet. 

Intuitively, it is difficult to construct a manipulative preference under Second 
Order Copeland because it is difficult to know where to place candidates in the 
preference. For example, placing a favored candidate at the top can unintentionally 
improve the scores of rivals because of second order effects in the scoring. This 
forces the manipulator to consider all the exponentially-many possible preference 
orders. 

To capture the way in which second-order Copeland is likely to be used in 
practice, we exhibit an instance in which a set of candidates is tied under the primary 
score (Copeland), and the difficulty is to manipulate the tie-breaking score (second- 
order Copeland). The outline of the argument is as follows. First we show that a 
logic problem that is known to be hard can be embedded in a problem of scoring 
tournaments, so the tournament problem is hard. Then we show that the 
tournament problem can be embedded in Existence of a Manipulative Preference for 
Second-Order Copeland, which must therefore be hard. 

A word of caution to the reader: The argument embeds a logic problem in a 
graph problem, and the graph problem in the voting problem. Since we are showing 
that these problems are in a sense equivalent, we variously adopt the elementary 
terminology of logic, graph theory, and voting. Where one field has a concept we 
need, we occasionally switch terminology mid-argument, rather than burden the 
reader with new but equivalent definitions. 

Now we begin by showing that a problem of tournament scoring is hard. The 
tournament problem is illustrated by the final round of a round-robin chess 
tournament. The tournament requires each contestant to play every other con- 
testant, but there is one more round (set of pairwise contests) to be played. The 
question is whether there exists a set of outcomes for the final round that will 
guarantee tournament victory for a particular competitor. We formalize this as: 

Tournament Outcome 

Instance: A complete simple graph (with vertices corresponding to candidates), for 
which each edge (i,j) can be either directed (corresponding to candidate i having 
beaten candidate j )  or undirected (corresponding to the contest between candidates 
i and j not having been decided); a distinguished vertex (candidate) c. 

Question: Is there a way of assigning directions to the currently undirected eges so 
that c is the winner ? 

Theorem 2. Tournament outcome under second-order Copeland is NP-complete. 

Proof. The problem is in NP because we can quickly prove a "yes" answer by 
showing a set of outcomes and computing the second-order Copeland scores. We 
show the problem is as hard as an NP-complete problem by embedding within it 
3,4-Satisfiability, which is known to be NP-complete [16]. 



Computational Difficulty 233 

3,4-SAT 

Instance. An expression consisting of clauses C1 . . . . .  C,, over variables X 1 . . . . .  X,, 
with each clause containing exactly 3 different variables, and each variable 
appearing in exactly 4 clauses. 

Question. Is there a satisfying truth assignment for the set of clauses ? 

Given an instance of 3,4-SAT, construct a instance of Tournament Outcome as 
follows. Create a set of candidates corresponding to clauses C 1 ... .  , C~ and to 
literals X1, -~1,..., X,, ~ ,  (where ~-is the negation of X). In addition, create a 
distinguished candidate c, whose victory is in question. All pairwise contests have 
been decided except those between the pairs of literal candidates Xj and ~j  
( j=  1... n). In particular, each "clause candidate" C i ( i= 1... m) defeated the 3 
"literal candidates" corresponding to the literals in the clause, and lost to all other 
candidates. 

Model the candidates and their contests as a graph in which there is a vertex for 
each candidate. If candidate i has defeated candidate j, there is an edge directed from 
i to j ;  if the contest between candidates i andj  has not yet been decided, connect i and 
j by an undirected edge. Consequently, in G each edge (Xj, X~) is undirected, and all 
other edges are directed from winner to loser. (See Fig. 1.) Let R be the set of 
undirected edges corresponding to remaining pairwise contests. 

For the candidate corresponding to vertex v, his tentative scores TS(v) and 
TsZ(v) a r e  his Copeland score and second-order Copeland score, respectively, not 
counting possible points from contests that have not yet been decided. Let S(v, R) 
and se(v, R) denote the eventual Copeland and second-order Copeland scores of v, 
depending on the outcomes of the remaining contests R. Note that for all Ci, 
S(Ci, R) = TS(Ci) is independent of R. 

In Appendix 1, we show how to pad graph G with additional candidates and 
assign outcomes to their pairwise contests so that the following properties hold: 

Property 1. For any specification of outcomes for R, the candidates c and all C~ 
will be tied for first place with respect to (first-order) Copeland score; that is, 
S(c, R) = S(C~, R) . . . .  = S(Cm, R) > S(v, R) for all other v. 

Property 2. The second-order Copeland score of the distinguished candidate c is 
independent of R. (Accordingly, we abbreviate $2(c, R) as $2(c).) 

Property 3. Each candidate C i (i= 1...m) has TS2(CI)= $2(c)- 3. 

Property 4. Each C~ (i= 1...m) defeated the 3 candidates corresponding to the 
literals that clause C~ contains in the instance of 3,4-SAT, and lost to all other 
candidates. 

Property 5. For all outcomes R, $2(c)> S2(v, R) for every v other than a clause 
candidate. 

Now we claim that ifG has Properties 2-5, then there is a set of outcomes for the 
remaining contests R which will make c the unique winner if-and-only-if the 
instance of 3,4-SAT is satisfiable. To see this, imagine candidate C~ (i= l . . .m) 
during the last round of contests. His own contests are over, so his Copeland score 



234 J.J. Bartholdi III et al. 

has been determined, and (by Property 3) he is currently 3 points short of a share of 
first place with c and possibly other Cj. By Property 4, C i has lost to all but 3 of the 
literals, so the outcomes of only 3 contests (those containing the literals defeated by 
Ci) could improve his second-order score. If all 3 contests go as C i wishes (the 
candidates that C i defeated win their contests), then, by Properties 2 and 3, Ci's 
second-order score will equal that of c, and by Property 5 C i will own a share of first 
place; otherwise, c will beat Ci. Interpreting a literal losing to its complement as the 
literal being set to TRUE in the instance of 3,4-SAT, candidate C i will lose to c if- 
and-only-if clause C i is satisfied. Thus satisfiability of the 3,4-SAT expression 
corresponds precisely to all of the Ci's ( i= 1...m) being defeated by c. 

Corollary. Tournament Manipulation under Copeland scorin9 with second-order 
Copeland tie-breakin9 is NP-compIete. 

Proof This follows from Property I of the proof  of Theorem 2. [] 

Remark. This means that in a chess tournament it can be difficult for a team to play 
strategically when the tournament will be decided on tie-breaks. Furthermore, note 
that in the proof  of Theorem 2, the undecided contests were candidate-disjoint; that 
is, no candidate was involved in more than one undecided contest. This means that it 
can be hard to manipulate even the final round of a tournament. We will require this 
fact in the proof  of the next theorem, but first we need a technical lemma. 

Let G be a complete graph on n vertices, where each edge may be directed or 
undirected. We show that there exists a set of n ( n -  1) voters whose preferences 
produce the graph G of outcomes of pairwise contests between n candidates (where 
undirected edges signify ties). This set of voters also decide every non-tied contest by 
exactly 2 votes. 

It is known that any complete directed graph of outcomes is realizable by a small 
number of voters [15]); our result differs only in allowing G to contain undirected 
edges representing ties, and in stipulating that the margin of victory be at least 2. All 
that is needed for our purposes is that G can be realized with a number of voters that 
is a polynomial in n. 

Our argument depends on a theorem of elementary graph theory that the edges 
of / ( , ,  the complete undirected graph on n vertices, can be partitioned into (n - 1)/2 
Hamiltonian cycles if n is odd [see, for example, p. 13 of 3]. 

Lemma. Any set of  outcomes (includin9 ties) of  simple majority pairwise contests 
between n candidates is realizable with n (n - 1) voters in such a way that every non-tied 
contest is decided by 2 votes. 

Proof First assume n is odd and let {Hi} be a set of ( n -1 ) / 2  edge-disjoint 
Hamiltonian paths on Kn. For  each H~ create 2 sets of voters, Vi and Wi, as follows. 
Arbitrarily fix the vertex sequence of Hi to be cl, c2, . . . ,  c,, and define voter Vii to 
have preferences (c j> c j+ 1 > ... > c j_l) (where the subscripts are understood to 
"wrap around" so that the successor of n is 1). The preferences of each W~j are 
ecactly the opposite of V~j. Thus we have created 2n voters corresponding to each of 
( n - 1 ) / 2  Hamiltonian paths, for a total of n ( n - 1 )  voters. Furthermore, by 
symmetry, for every voter that prefers cj to Ck, there exists an opposite voter who 
prefers c k to cj, so that every contest is tied. 



Computational Difficulty 235 

Now consider any complete graph G on these n vertices, with each edge either 
directed or undirected. We will adjust the preferences of the voters to produce G. 
For each pair of candiates cj and Ck, examine the edge joining cj and c k in G: if it is 
undirected, do nothing. Otherwise, assume the edge is directed from cj to c k. Since cj 
and Ck must be adjacent in some Hamiltonian path Hi, there must be a voter whose 
preference order is (... > c k > c j); that is, cj follows c k at the very bottom of the 
preference order. Interchange Ck and cj in this voter's preferences, so that now cj 
defeats Ck in a pairwise contest by 2 votes. Since each interchange is between 
adjacent positions in a preference order, there can be no disruption of the results of 
other contests. 

Ifn is even, add a dummy vertex (candidate) to G, with edges directed arbitrarily. 
Since the number of candidates is now odd, by the argument immediately preceding, 
there exists a set of voters for which the graph is realizable. Delete the dummy 
candidate from the preferences of these voters. [] 

Theorem 3. Existence of  a winnin9 preference for second-order Copeland is NP- 
complete. 

Proof The problem is in NP since the outcome of the election can be computed in 
polynomial time. 

We prove difficulty by showing that the problem can contain the tournament 
manipulation problem just shown to be NP-complete. First recall that any complete 
graph of outcomes (including undirected edges to represent ties) is realizable by a 
small number of voters (where "small" means polynomial in the number of 
candidates) so that every non-tied contest is decided by 2 votes [15]. Apply this to 
the graph of outcomes of pairwise contests from the construction of Theorem 2, 
where we interpret the undirected edges as indicating a tie between the correspond- 
ing candidates in a simple vote count. Let Vbe a set of voters that realizes this graph. 
Assume that the manipulator knows these preferences, and now wonders whether 
there exists a preference he can claim that will make c a winner. 

Since all contests corresponding to directed edges have been decided by 2 votes, 
the manipulator cannot affect these outcomes; he can affect only the contests that 
are currently tied. As we have previously observed, those contests are candidate- 
disjoint, so the manipulator can vote to achieve any of the 2 g possible sets of 
outcomes by simply ranking the candidates of each pair in desired relative order. 
However, to determine whether any of these sets of outcomes will make the 
distinguished candidate c a winner, the manipulator must solve the difficult instance 
of Tournament Outcome contrived in the previous theorem. [] 

Corollary. Existence of a winning preference for first-order Copeland with second- 
order Copeland tie breaks is NP-complete. 

Proof. This follows from Theorem 3 and the corollary to Theorem 2. [] 

We can now establish the main result of this section, that it is computationally 
difficult to manipulate Second Order Copeland. Intuitively, this follows from 
Theorem 3 : since it is difficult to determine a preference that ensures the election of a 
particular candidate, it is difficult to manipulate. More formally: 

Theorem 4. Manipulation of second-order Copeland is NP-complete. 



236 J.J. Bartholdi III et al. 

Proof In the construction of Theorem 3, let the social choice function break ties in 
the order of preference C1, C2 . . . . .  C,,, c . . . . .  Let the three "literal" candidates 
defeated by C1 (whose existence is guaranteed by Property 4) be denoted La, L2, 
and L3. Suppose now that the sincere preferences of the manipulator are c, C~, L~, 
L 2, L3, . . . .  Then if the manipulator votes sincerely, Properties 2-5 and the tie- 
breaking rule re, sult in C 1 the social choice. Since the manipulator prefers only c to 
C1, there is only one way to manipulate: to vote insincerely to make c the winner. 
But to recognize when this is possible is NP-complete by Theorem 3. [] 

Corollary. Manipulation of first-order Copeland with second-order Copeland tie 
breaks is NP-complete. 

Finally we observe that second-order Copeland can be manipulated with (at 
least formal) efficiency if we restrict its use to elections in which there are not "too 
many" candidates. In fact this is true of any voting scheme for which the winner can 
be efficiently computed. The manipulator could in principle compute the outcome 
of the election for each of the IC[! possible preference orders. If each evaluation 
requires only polynomial time, and if IC[ is restricted so that [C l t  = O(p(I v[)) for 
some polynomial p of fixed degree, then the total effort is, strictly speaking, 
polynomial. 

5. Conclusions 

Computational complexity is a new criterion by which to evaluate methods of social 
choice. Worst-case behavior in this regard might be a practical consideration for 
some decision methods (see, for example, [1, 2]), just as is worst-case behavior with 
respect to formalized notions of fairness. 

Methods of social choice should be easy to use but hard to abuse; that is, they 
should identify winners within polynomial time, but they should also be provably 
difficult to exploit. We have shown that Second Order Copeland satisfies these 
properties. Moreover, Second Order Copeland is a reasonable voting scheme in that 
it satisfies many appealing rationality criteria, including unanimity (the Pareto 
principle), neutrality, anonymity, and Condorcet-winner. 

These issue, s are similar to those in cryptography, where both encryption and 
authorized deciphering should be easy, but unauthorized deciphering should be 
difficult. As for a cryptographic scheme, we would prefer to know that a voting 
scheme is dependably hard to abuse, rather than merely hard in the worst-case, as we 
have proved. Unfortunately, this sort of result seems beyond the reach of current 
complexity theory. However, we can appeal to practical experience, which Confirms 
that NP-hard problems are difficult to solve. 

There are several concerns that might be raised regarding our interpretation of 
these results. We state and discuss them below. 

Concern : Complexity is not an issue because manipulation is not an issue: complete 
information about preferences is never available. 

Discussion . Since we are trying to protect the mechanism of social choice, it is best to 
make the most conservative assumptions. 



Computational Difficulty 237 

Concern: It might be that very few among all possible instances of  an election are 
actually manipulable. 

Discussion." True. Unfortunately, both the Gibbard-Satterthwaite and the Garden- 
fors theorems are worst-case theorems; that is, they claim that there exist instances 
of  manipulable elections, but do not say how many. In the same way, our theorem is 
a worst-case theorem; it claims that some instances among the manipulable 
elections are hard to manipulate, but does not say how many. Thus our theorem is 
weak exactly where the Gibbard-Satterthwaite and Gardenfors theorems are weak. 

Concern: It might be that very few among all real instances of  an election are 
actually manipulable. 

Discussion: True. Perhaps real elections have sufficiently special structure that 
makes them dependably easy to manipulate. For  example is might be that real 
elections are small enough that exponentially-increasing work is not a deterrent to 
manipulation. It also might be that people's preferences are specially structured so 
that it is not hard to recognize when manipulation is possible. These are empirical 
questions that must be tested by experiment. 

Concern: It might be that there are effective heuristics to manipulate an election 
even though manipulation is NP-complete. 

Discussion: True. The existence of  effective heuristics would weaken any practical 
import  of  our idea. It would be very interesting to find such heuristics. 

Concern: These results do not "ameliorate" the Gibbard-Satterthwaite or Garden- 
fors theorems because the real meaning of these theorems is something else: that 
since there is an incentive to manipulate, researchers must consider game-theoretic 
issues. 

Discussion: Game-theoretic issues are certainly important,  but our result weakens 
this justification for studying them. 

Xl "X 1 

X n - -Xn 

Fig. 1. Essential structure of the graph 
corresponding to an instance of 3,4-SAT. 
The undirected edges correspond to con- 
tests that have not yet been decided. Each 
Ci has an edge directed toward each of the 
3 literals contained in clause C~. (For 
clarity most of the directed edges are 
omitted, as are the candidates with which 
the graph is padded) 

A p p e n d i x  

We show how, given an instance of 3,4-SAT, to construct in polynomial time a 
graph satisfying Properties 1-5. Here is an overview of the construction of  the 



238 J. J, Bartholdi III et al. 

graph. G will contain three main types of vertices: those corresponding to clauses in 
the instance of 3,4-SAT; those corresponding to literals in the instance of 3,4-SAT; 
and "fillers", which pad the graph to make the scores suit our purpose. We will 
construct G so that all scores within each set are equal, or nearly so, but in pairwise 
contests clause candidates defeat fillers, fillers defeat literals, and literals defeat 
clauses. Finally, in addition to clause, literal, and filler vertices, there will be two 
distinguished vertices. One is Co, corresponding to the contestant whose victory is 
in question, and the other is b, a "balancing" vertex that will enable us to adjust the 
second-order Copeland score of C 0. 

Let m be the number of clauses and n the number of variables in the instance of 
2,3-SAT. Note that 3m=4n ,  so m is even and m/2 is an integer. Now define the 
vertices of G correspond to 

- clauses : Ci (i = 1...m); 
- literals: Xj, ~'j ( j=  1...m); 
- fillers: fk (k=  1.. .30m); 
- the contestant whose victory is in question: C o ; 
- the balancing contestant: b. 
Recall that G is a complete graph, so there is an edge between every pair of 

vertices. Each edge is directed according to the outcome of the pairwise contest 
between that pair of contestants, from the winner to the loser. Some contests will be 
as yet undecided, and so will be represented by undirected edges. 

Orient the edges of G according to the following outcomes: 
- contests between clauses and literals: Each literal defeats all clauses except the 

clauses containing it. Thus each literal defeats between m - 4  and m clauses. 
- contests between clauses and C o : Each of the C i ( i= 0.. .m) wins m/2 and loses 

m/2 of these contests. This can be arranged by imagining the m + 1 contestants C~ 
seated at every other chair around a symmetric 2(m +/)-seat  round table. Each Ci 
sits diametrically opposite an empty chair. Let each Ci defeat the m/2 people on his 
right, and lose to the m/2 people on his left. 

- contests between literals: Each literal defeats exactly n - 1 literals and loses to 
exactly n - 1 other literals. This can be arranged by imagining the 2n literals seated 
at a round table with 2n seats, with each Xj seated diametrically opposite 2~. Let 
each literal defeat the first n - 1 literals on his right (up to 2j) ,  and lose to the first 
n - 1 literals on his left (up to ~-j). The contest between each Xj and Xj has not yet 
been decided and so the corresponding edge is undirected. 

- c o n t e s t s  between fillers: Each fk (k odd) defeats 1 5 m - 1  other fk 
(k = 1... 30m). Each fg (k even) defeats 15m other fk (k = 1... 30m). (It is this slight 
difference that allows us to achieve Property 3.) This can be arranged by imagining 
all the fillers seated around a 30m-seat round table in the sequence f l  ,f3 . . . . .  f3o,,-1, 
f2, f,, . . . .  ,f3Om" Each fk defeats the 1 5 m - 1  fillers to his right, and loses to 
the 15 m - 1  fillers to his left. Contests between fillers seated diametrically opposite 
each other are always between a filler of even index and a filler of odd index, and are 
won by the filler of even index. 

- contests between literals and fillers: Every filler defeats every literal; 
- contests between C o and literals : C o defeats X 1 and ~-a, but loses to Xj and ~'j 

for j = 2...n. (This gives Property 2.) 
- contest between C o and b: C o defeats b; 



Computational Difficulty 239 

- contests between b and clauses: b defeats all clauses; 
- contests between Co, clauses, and fillers: Define f261+1 ,f26i+2 . . . .  , f26i+26 t o  

be associates of  C i (i = 0... m). Thus each C~ has 26 associates, no filler is an associate 
of more than one Ci, and nearly 4m fillers are not associates. 

Now let L (Ci) be the total number (counting repetitions) of clauses of which the 
literals in Ci are members, plus I if Ci contains X, or Xa. (For example, in the 
expression "{X a or ~'2 o r  z~r3} and {22 or ~'3 or )(4}", L(C 0 = 1 + 2 + 2 = 5. We count 
Co as containing )(1 and X" 1 so L(Co)= 4 + 2 = 6.) Since no literal appears in more 
than 4 clauses, and X, and X~ do not appear in the same clause, we have that 
the number of literals in Ci = 3 < L(C~) < (3)(4) + 1 = 13. L(C~) is the number of 
contests won by one of Co, Ca, . . . ,  C,, against the three literals that comprise C~. 
Thus Cz defeats all fk which are either not an associate of Ci; or for which 
k = 2 6 i + 2 ,  2 6 i + 4  . . . . .  26i+2L(C~); or for which k = 2 6 i + 1 ,  26 i+3  . . . . .  2 6 i+2  
(13 -L(Ci)  ) - 1. In other words, C~ defeats all of  its non-associates, and 13 of its 26 
associates (L(C~) of  the 13 defeated associates being fillers of even index.) 

- c o n t e s t s  between b and fk: b loses to all but the last n + 4  fillers; 
that is, b loses to fk for k =  1, 2 , . . . , 27m .... , 3 0 m - n - 4 ,  but defeats fk for 
k =  3 0 m - n  - 3  .. . .  ,30m. 

- contests between b and literals: b loses to all literals. 

Verifying that Properties 1-5 are satisfied consists entirely of arithmetic 
computation. First, we compute the first-order Copeland scores of some of the 
candidates: 

(1) S (C~)  ( i=l . . .m)=m/2+3+O+(3Om-13)=S(Co)=m/2+2+l  
+ (30m -13) ,  where the terms are due to victories over contestants from Co... Cm, 
literals, B, and fillers, respectively. 

(2) S(B) = m + 0 + 0 + (n + 4) = m + N +  4, where the terms are due to victories over 
contestants from C1... Cm, Co, literals, and fillers, respectively. 

We do not know the Copeland scores of the literals, but we can compute their 
tentative scores. For  any literal Xi, 

TS(Xi) = {1 if i > 1 ; 0 if i = 1 } + m - {4# of clauses in which X i appears} + (n - 1) 
+ 0 + 1, where the terms are due to victories over C o, clauses, literals, fillers, and B, 
respectively. 

S(Xi, R) = TS(X~) or TS(X~) + 1. Thus 

(3) TS(Xi)=m+n+ 1 - { t h e  contribution of X i to L(  )} 

(4) If F~ is an associate, S(F~) = (15 m - 1) + {1 i f / i s  even, else 0} + 1 + 2n + {1 if it 
beats its associate}, where the terms are due to victories over fillers, B, and literals, 
respectively. 

Now we verify Properties i -5 .  

Property 1. The total number of nodes in G is 1 +m+2n+3Om+l  = 6 5 m / 2 + 2 ;  B 
loses to at least 26m fillers; each filler loses to at least 14m fillers; each literal loses to 
at least 30m fillers ; hence for all v not a Ci, S(v) < 32 (m/2) + 2 - 14m < S(Co), which 
verifies Property 1. 



240 J.J. Bartholdi III et al. 

Property 2. Since for all i, Co either beats both X~ and 2~ or loses to both these 
literals, it follows that $2(C0, R) is independent of R. This is Property 2. 

Property 3. We compare the second order Copeland scores of the C~ and verify that 
for any i, l<i<m, TSz(CI)~-TS2(CI+a). Define TsZ(ci)-TsZ(ci+t)-~Diffc 
+ Diff B + Diff L + Diff v, where the "Diff" terms are the differences in the contri- 
butions from the different classes of nodes, C, B, Literal~ Filler. (Note: C includes C o 
as well as all the clause nodes.) 

Diffc=0 since C~ and Ci+ 1 both beat m/2 in class C and by (1) all class C 
members have identical value of S() .  

Diff a--- 0 since they both beat B. 
Diff L = 3(m +n  + 1) -L(Ci) - [3 (m +n  + 1) -L(C~+ 1) ] = L(C~+I) -L(Ci) 
Diffv = 0 from non-associate fillers, which they both beat 

+ I{evens Ci beats}] - [{evens C~+, beats}l by (4) 
+ 13 for Ci beating of C~+~'s associates that beat it 
- 1 3  for C~+t beating 13 of C~'s associates that beat it by (4) 

=L(Ci)  -L(C~+I) 

Thus all the Diff terms cancel out and TS 2 (Ci) equals TS 2 (Ci+ 1). This proves 
half of Property 3, that all the clause nodes have the s a m e  TS 2 score. 

Now compare TS2(C1) with SZ(Co). As before let S2(Co)-TS2(C1)=Diffc 
+ DiffR + DiffL + Diffv. 

Diff c = 0 as before; 
Diff B = m + (n + 4) by (2); 
DiffL=2(n+m+l)-(contribution of X1 to L( )+contribution of 21 to 

L() -3 (n+m+l)+L(C1)  by (3). 
=(n+m+ l)+ L(C1)-L(C0); 
Dif fv=L(Co) -L(Ca)  as before. 

This Diff v is cancelled out by part of Diff L, and the sum of the differences equals 
m + (n + 4) - (n + m + I) = 3. (Now it is clear why b beats (n + 4) fillers.) This verifies 
Property 3. 

Property 4: The construction of the edges between C~ and the literals gives 
Property 4. 

Property 5: To verify Property 5 we need only a rough estimate of the second order 
Copeland scores. By (4), for any Ci, the portion of the second-order score coming 
from the fillers is about 30 m (15 m + 2 n) > 480 m 2 . Since the total number of nodes is 
only 65m/2 + 2, this is not a bad estimate. Moreover, as shown in the verification of 
Property 1, every other node loses to at least 14m fillers. Hence the filler portion of 
other second order scores will be smaller by at least 14m(15rn + 2n) > 225m 2. This is 
too large a deficit to overcome by contributions from the remaining 2(m/2) nodes, 
which cannot possibly contribute more than 2(m/2)(32m/2)> 81m z. Hence, every 
other node has smaller second order Copeland score than the Ci (smaller by more 
than 100m2). This verifies Property 5. 

Thus the election we have constructed satisfies the properties claimed. 



Computational Difficulty 241 

References 

1. Bartholdi JJ III, Tovey CA, Trick MA (1989) Voting schemes for which it can be difficult to tell who 
won the election. Soc Choice Welfare 6:157-165 

2. Bartholdi JJ IH, Tovey CA, Trick MA (1987) How hard is it to control an election? Econometrica 
(submitted) 

3. Bollobas, B (1979) Graph theory. Graduate Texts 63. Springer, Berlin Heidelberg New York 
4. Gardenfors P (1976) Manipulation of social choice functions. J Econ Theory 13:217-228 
5. Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP- 

completeness. WH Freeman, San Francisco 
6. Gibbard A (1973) Manipulation of voting schemes. Econometrica 41:587-601 
7. Gottinger HW (1987) Choice and complexity. Math Soc Sci 14:1-17 
8. Kazic B, Keene RD, Lira KA (eds) (1986) The official laws of chess. Maxmillan, New York 
9. Lewis A (1985) On the effectively computable realizations of choice functions. Math Soc Sci 10: 

43-80 
10. Morrison M (ed) (1978) Official rules of chess, 2nd Edn. David McKay New York 
11. Niemi RG, Riker WH (1976) The choice of voting systems. Sci Am 234:21-27 
12. Nurmi H (1983) Voting procedures: a summary analysis. Br J Polit Sci I3 : 181-208 
13. Nurmi H (1986) Problems of finding optimal voting and representation systems. E J Oper Res 

24:91-98 
14. Satterthwaite MA (1975) Strategy-proofness and Arrow's conditions. J Econ Theory 10:187-217 
15. Stearns R (1959) The voting problem. Am Math Mon 66:761-763 
16. Tovey CA (1984) A simplified NP-complete satisfiability problem. Disc Appl Math 8:85-89 


