Chapter 3
Distributed Problem Solving and Planning

Edmund H. Durfee
University of Michigan

3.1. Introduction

Distributed problem solving is the name applied to a subfield of distributed Al in
which the emphasis is on getting agents to work together well to solve problems
that require collective effort. Due to an inherent distribution of resources such as
knowledge, capability, information, and expertise among the agents, an agent in a
distributed problem-solving system is unable to accomplish its own tasks alone, or
at least can accomplish its tasks better (more quickly, completely, precisely, or
certainly) when working with others.

Solving distributed problems well demands both group coherence (that is, agents
need to want to work together) and competence (that is, agents need to know how to
work together well). As the reader by now recognizes, group coherence is hard to
realize among individually-motivated agents (see chapters 2 and 5, for example). In
distributed problem solving, we typically assume a fair degree of coherence is
already present: the agents have been designed to work together; or the payoffs to
self-interested agents are only accrued through collective efforts; or social
engineering has introduced disincentives for agent individualism, etc. Distributed
problem solving thus concentrates on competence; as anyone who has played on a
team, worked on a group project, or performed in an orchestra can tell you, simply
having the desire to work together by no means ensures a competent collective
outcome!

Distributed problem solving presumes the existence of problems that need to be
solved and expectations about what constitute solutions. For example, a problem to
solve might be for a team of (computational) agents to design an artifact (say, a car).
The solution they formulate must satisfy overall requirements (it should have four
wheels, the engine should fit within the engine compartment and be powerful
enough to move the car, etc.), and must exist in a particular form (a specification
document for the assembly plant). The teamed agents formulate solutions by each
tackling (one or more) subproblems and synthesizing these subproblem solutions
into overall solutions.

Sometimes the problem the agents are solving is to construct a plan. And often,
even if the agents are solving other kinds of problems, they also have to solve
planning problems as well. That is, how the agents should plan to work together---
decompose problems into subproblems, allocate these subproblems, exchange
subproblem solutions, and synthesize overall solutions---is itself a problem the

agents need to solve. Distributed planning is thus tightly intertwined with
distributed problem solving, being both a problem in itself and a means to solving a
problem.

In this chapter, we will build on the topics of the previous chapters to describe the
concepts and algorithms that comprise the foundations of distributed problem
solving and planning. The reader is already familiar with protocols of interaction;
here we describe how those protocols are used in the context of distributed problem
solving and planning. The reader is also assumed to be familiar with traditional Al
search techniques; since problem solving and planning are usually accomplished
through search, we make liberal use of the relevant concepts. The subsequent
chapter delves more formally into distributed search specifically.

The remainder of the chapter is structured as follows. We begin by introducing
some representative example problems, as well as overviewing a variety of other
applications of the techniques to be described. Working from these motivating
examples, we work our way up through a series of algorithms and concepts as we
introduce increasingly complicated requirements into the kinds of problems to
solve, including planning problems.

3.2. Example Problems

There are several motivations for distributed problem solving and distributed
planning. One obvious motivation is that using distributed resources concurrently
can allow a speedup of problem solving thanks to parallelism. The possible
improvements due to parallelism depend, of course, on the degree of parallelism
inherent in a problem.

One problem that permits a large amount of parallelism during planning is a classic
toy problem from the Al literature: the Tower of Hanoi (ToH) problem (see Figure
3). As the reader will recall from an introductory Al course, ToH consists of 3 pegs
and n disks of graduated sizes. The starting situation has all of the disks on one peg,
largest at bottom to smallest at top. The goal is to move the disks from the start peg
to another peg, moving only one disk at a time, without ever placing a larger disk
on top of a smaller disk. The problem, then, is to find a sequence of moves that will

211"

Figure 1: Tower of Hanoi (ToH)

achieve the goal state.

A second motivation for distributed problem solving and planning is that expertise
or other problem-solving capabilities can be inherently distributed. For example, in
concurrent engineering, a problem could involve designing and manufacturing an
artifact (such as a car) by allowing specialized agents to individually formulate
components and processes, and combining these into a collective solution. Or,
supervisory systems for air-traffic control, factory automation, or crisis management
can involve an interplay between separate pieces for event monitoring, situation
assessment, diagnosis, prioritization, and response generation. In these kinds of
systems, the problem is to employ diverse capabilities to solve problems that are not
only large (the ToH can itself be arbitrarily large) but also multi-faceted.

As a simple example of distributed capability, we will use the example of distributed
sensor network establishment for monitoring a large area for vehicle movements.
In this kind of problem, the overall task of monitoring cannot be done in a central
location since the large area cannot be sensed from any single location. The
establishment problem is thus to decompose the larger monitoring task into
subtasks that can be allocated appropriately to geographically distributed agents.

A third motivation is related to the second, and that is that beliefs or other data can
be distributed. For example, following the successful solution of the distributed
sensor network establishment problem just described, the problem of actually doing
the distributed vehicle monitoring could in principle be centralized: each of the
distributed sensor agents could transmit raw data to a central site to be interpreted
into a global view. This centralized strategy, however, could involve tremendous
amounts of unnecessary communication compared to allowing the separate sensor
agents to formulate local interpretations that could then be transmitted selectively.

Finally, a fourth motivation is that the results of problem solving or planning
might need to be distributed to be acted on by multiple agents. For example, in a
task involving the delivery of objects between locations, distributed delivery agents
can act in parallel. The formation of the plans that they execute could be done at a
centralized site (a dispatcher) or could involve distributed problem-solving among
them. Moreover, during the execution of their plans, features of the environment
that were not known at planning time, or that unexpectedly change, can trigger
changes in what the agents should do. Again, all such decisions could be routed
through a central coordinator, but for a variety of reasons (exploiting parallelism,
sporadic coordinator availability, slow communication channels, etc.) it could be
preferable for the agents to modify their plans unilaterally or with limited
communication among them.

rooml room2 room3
A A A

>o:

[] o ©)

Figure 2: Distributed Delivery Example

In the above, we have identified several of the motivations for distributed problem
solving and planning, and have enumerated examples of the kinds of applications
for which these techniques make sense. In the rest of this chapter, we will refer back
to several of these kinds of application problems, specifically:

* Tower of Hanoi (ToH)

» Distributed Sensor Network Establishment (DSNE)
* Distributed Vehicle Monitoring (DVM)

* Distributed Delivery (DD)

3.3. Task Sharing

The first class of distributed problem-solving strategies that we will consider have
been called “task sharing” or “task passing” strategies in the literature. The idea is
simple. When an agent has many tasks to do, it should enlist the help of agents
with few or no tasks. The main steps in task sharing are:

1. Task decomposition: Generate the set of tasks to potentially be passed to
others. This could generally involve decomposing large tasks into
subtasks that could be tackled by different agents.

Task allocation: Assign subtasks to appropriate agents.

3. Task accomplishment: The appropriate agents each accomplish their
subtasks, which could include further decomposition and subsubtask
assignment, recursively to the point that an agent can accomplish the task
it is handed alone.

4. Result synthesis: When an agent accomplishes its subtask, it passes the
result to the appropriate agent (usually the original agent, since it knows

N

2 |l il it el Ll (=] |

Figure 3: Means-ends decomposition for ToH

the decomposition decisions and thus is most likely to know how to
compose the results into an overall solution).

Note that, depending on the circumstances, different steps might be more or less
difficult. For example, sometimes an overburdened agent begins with a bundle of
separate tasks, so decomposition is unnecessary; sometimes the agent can pass tasks
off to any of a number of identical agents, so allocation is trivial; and sometimes
accomplishing the tasks does not yield any results that need to be synthesized in any
complex way.

3.3.1 Task Sharing in the ToH Problem

To get a feel for the possibilities of task sharing, we start with the very simple ToH
problem. Consider the task-sharing steps when it comes to this problem:

1. Task decomposition: Means-ends analysis (see Figure 3), where moving
the largest disk that is not at its destination peg is considered the most
important difference, leads to a recursive decomposition: solve the
problem of getting to the state where the largest disk can be moved, and
get from the state after it is moved to the goal state. These subproblems
can be further decomposed into problems of moving the second largest
disk to the middle peg to get it out of the way, so the state where that can
be done needs to be reached, etc.

2. Task allocation: If we assume an indefinite number of identical idle agents
capable of solving (pieces of) the ToH problem, then allocation reduces to
just assigning a task randomly to one of these agents.

3. Task accomplishment: In general, an agent can use means-ends analysis to
find the most significant difference between the start and goal states that it
is responsible for, and will decompose the problem based on these. If the
decomposed problems are such that the start and goal states are the same
(that is, where the most significant difference is also the only difference),
then the recursive decomposition terminates.

4. Result synthesis: When an agent has solved its problem, it passes the
solution back on up. When an agent has received solutions to all of the

subproblems it passed down, it can compose these into a more
comprehensive sequence of moves, and then pass this up as its solution.

ToH represents an ideal case of the possibilities of distributed problem solving due
to the hierarchical nature of the problem. In general, for a problem like ToH, the
search space is exponential in size. If we assume a branching factor of b (meaning
that from a state, there are b alternative states that can be reached by moving some
disk to some peg), and assuming that in the best case it will take n disk movements
to go from the start state to the end state, then the search complexity is b ".

Thanks to the hierarchical structure of the problem, the means-ends heuristic can
reduce this complexity dramatically. Let us assume that ultimately the hierarchy
divides the problem of size n into problems each of size k, yielding n/k
subproblems, each of which requires f(k) time to solve. These solutions are fed to
the next level up in the hierarchy such that k are given to each of the agents at this
level. Each of these n/k’ agents has to synthesize k results, again requiring f(k) time.
This aggregation process continues up the hierarchy, such that at the next-to-
topmost level, n/k'" agents are combining k results from below in the hierarchy
with [levels. The topmost agent then combines these n/k"" results together,
requiring f(n/k') time. The total expenditure is thus:

fn/k) + (/K™% f(k) + (n/k™* f(k) + ... + (n/k * f(k))

Since k is a constant, and we can choose I=log,n, the equation can be reduced to
O([(K'-1)/(k-1)]f(k)) which can be simplified simply to O(n) [Korf 1987; Knoblock 1993].
More importantly, if each level of the hierarchy has agents that solve their
subproblems in general, then the time needed below the top of the hierarchy
(assuming negligible distribution and communication time) is simply f(k) for each
level, so (I-1)f(k). This is added to the top agent’s calculation f(n/k""). Again, since k
(and hence f(k)) is constant, and [=log,n, this reduces simply to O(log,n). This means
that through decomposition and parallel problem solving, the exponential ToH
problem can be reduced to logarithmic time complexity [Montgomery 1993].

What the ToH problem illustrates is the potential for improved parallelism due to
distributed problem solving in the ideally decomposable case. Unfortunately, few
problems satisfy the assumptions in this analysis of ToH, including:

1. There is no backtracking back upward in the abstraction hierarchy,
meaning that each distributed subproblem is solvable independently and
the solution of one does not affect the solution of others. We will
consider the effects of relaxing this assumption in Section 3.3.4.

2. The solution found hierarchically approximates (is linear in length to) the
solution that would be found using brute-force centralized search. This
depends on having hierarchical abstraction spaces that do not exclude
good solutions as a consequence of reducing complexity.

3. The number of abstraction levels grows with the problem size. While
doing this is easy for ToH, often the number of levels is fixed by the
domain rather than the specific problem instance.

4. The ratio between levels is the base of the logarithm, k. Again, this
depends on how the abstraction space is constructed.

5. The problems can be decomposed into equal-sized subproblems. This is
very difficult in domains where problems are decomposed into
qualitatively different pieces, requiring different expertise. We consider
the effects of relaxing this assumption in Section 3.3.2.

6. There are at least as many agents as there are “leaf” subproblems. Clearly,
this will be difficult to scale!

7. The processes of decomposing problems, distributing subproblems, and
collecting results takes negligible time. We consider some of the effects of
relaxing this assumption at various places in this chapter.

3.3.2 Task Sharing in Heterogeneous Systems

One of the powerful motivations for distributed problem solving is that it is difficult
to build artifacts (or train humans) to be competent in every possible task.

Moreover, even if it feasible to build (or train) an omni-capable agent, it is often
overkill because, at any given time, most of those capabilities will go to waste. The
strategy in human systems, and adopted in many distributed problem-solving
systems, is to bring together on demand combinations of specialists in different areas
to combine their expertise to solve problems that are beyond their individual
capabilities.

In the ToH example, the subproblems required identical capabilities, and so the
decisions about where to send tasks was extremely simple. When agents can have
different capabilities, and different subproblems require different capabilities, then
the assignment of subproblems to agents is not so simple.

Conceptually, it is possible for an agent to have a table that identifies the capabilities
agents, so that it can simply select an appropriate agent and send the subproblem off,
but usually the decisions need to be based on more dynamic information. For
example, if several candidate agents are capable of solving a subproblem, but some
are already committed to other subproblems, how is this discovered? One way is to
use the Contract Net protocol (Chapter 2) with directed contracts or focused
addressing: the agent (in Contract-Net terms, the manager) announces a
subproblem to a specific agent (in the case of directed contracts) or a focused subset of
other agents (in focused addressing) based on the table of capabilities, and requests
that returned bids describe acceptance/availability. The manager can then award the
subproblem to the directed contractor if it accepts, or to one of the available
contractors in the focused addressing set. However, if none of the agents are
available, the manager has several options, described in the following subsections.

Broadcast Contracting. In the kind of open environment for which Contract Net
was envisioned, it is unlikely that a manager will be acquainted with all of the
possible contractors in its world. Thus, while directed contracts and focused
addressing might be reasonable first tries (to minimize communication in the
network), a manager might want to update its knowledge of eligible contractors by
broadcasting its announcement to reach agents that it is currently unaware of as
well. This is the most commonly considered mode of operation for Contract Net.
Directed contracts and focused addressing can be thought of as caching results of
such broadcasts, but since the cached results can become outdated, many
implementations of Contract Net do not include this function. It is interesting to
note, however, that this kind of capabilities database has found renewed favor in
knowledge sharing efforts such as KQML (Chapter 2), where some agents explicitly
adopt the task of keeping track of what other agents purport to be good at.

Retry. One very simple strategy is to retry the announcement periodically,
assuming that eventually a contractor will free up. The retry interval then becomes
an important parameter: if retries happen too slowly, then many inefficiencies can
arise as agents do not utilize each other well; but if retries happen to quickly, the
network can get bogged down with messages. One strategy for overcoming such a
situation is to turn the protocol on its head. Rather than announcing tasks and
collecting bids, which implies that usually there are several bidders for each task,
instead the protocol can be used by potential contractors to announce availability,
and managers can respond to the announcements by bidding their pending tasks! It
is possible to have a system alternate between the task and availability
announcement strategies depending on where the bottlenecks are in the system at
various times [Stankovic 1985].

Announcement Revision. Part of the announcement message that a manager sends
is the eligibility specification for potential contractors. When no (satisfactory)
contractors respond to an announcement, it could be that the manager was being too
exclusive in whom it would entertain bids from. Thus, the manager could engage
in iterative revision of its announcement, relaxing eligibility requirements until it
begins to receive bids.

An interesting aspect of this relaxation process is that the eligibility specifications
could well reflect preferences over different classes of contractors - or, more
specifically, over the quality of services that different contractors provide. In concert
with other methods of handling a lack of bids (described above), a manager will be
deciding the relative importance of having a preferred contractor eventually pursue
the subproblem compared to finding a suboptimal contractor sooner. In many cases,
these preferences and tradeoffs between them can be captured using economic
representations. By describing parts of its marginal utility curve, for example, a
manager can provide tradeoff information to an auction, which can then apply
principled algorithms to optimize the allocation of capabilities (see Chapter 5).

Alternative Decompositions. The manager can try decomposing the overall
problem differently such that contractors are available for the alternative
subproblems. In general, the relationship between problem decomposition and
subproblem allocation is extremely complex and has not received sufficient
attention. Sometimes a manager should first determine the space of alternative
contractors to focus problem decomposition, while other times the space of
decompositions can be very restrictive. Moreover, decisions about the number of
problems to decompose into and the granularity of those subproblems will depend
on other features of the application environment, including communication delays.
We say no more about these issues here, other than to stress the research
opportunities in this area.

3.3.3 Task Sharing for DSNE

Smith and Davis (and others since) have explored the use of the Contract Net
protocol for a variety of problems, including the Distributed Sensor Net
Establishment (DSNE) problem [Davis 1983]. To give the reader a flavor of this
approach, we briefly summarize the stages of this application.

At the outset, it is assumed that a particular agent is given the task of monitoring a
wide geographic area. This agent has expertise in how to perform the overall task,
but is incapable of sensing all of the area from its own locality. Therefore, the first
step is that an agent recognizes that it can perform its task better (or at all) if it enlists
the help of other agents. Given this recognition, it then needs to create subtasks to
offload to other agents. In the DSNE problem, it can use its representation of the
structure of the task to identify that it needs sensing done (and sensed data returned)
from remote areas. Given this decomposition, it then uses the protocol to match
these sensing subtasks with available agents. It announces (either directed, focused,
or broadcast) a subtask; we leave out the details of the message fields since they were
given in Chapter 2.

The important aspects of the announcement for our purposes here are the eligibility
specification, the task abstraction, and the bid specification. To be eligible for this
task requires that the bidding agent have a sensor position within the required
sensing area identified and that it have the desired sensing capabilities. Agents that
meet these requirements can then analyze the task abstraction (what, at an abstract
level, is the task being asked of the bidders) and can determine the degree to which it
is willing and able to perform the task, from its perspective. Based on this analysis,
an eligible agent can bid on the task, where the content of a bid is dictated by the bid
specification.

The agent with the task receives back zero or more bids. If it gets back no bids, then
it faces the options previously described: it can give up, try again, broaden the
eligibility requirements to increase the pool of potential bidders, or decompose the
task differently to target a different pool of bidders. If it gets back bids, it could be that
none are acceptable to it, and it is as if it got none back. If one or more is acceptable,

then it can award the sensing subtask to one (or possible several) of the bidding
agents. Note that, because the agent with the task has a choice over what it
announces and what bids it accepts, and an eligible agent has a choice over whether
it wants to bid and what content to put into its bid, no agent is forced to be part of a
contract. The agents engage in a rudimentary form of negotiation, and form teams
through mutual selection.

3.3.4 Task Sharing for Interdependent Tasks

For problems like ToH, tasks can be accomplished independently; the sequence of
actions to get from the start state to an intermediate state can be found completely
separately from the sequence to get from that intermediate state to the goal state.
Thus, the subtasks can be accomplished in any order (or concurrently), and synthesis
need only wait to complete until they are all done.

In some cases, contracted tasks are not independent. In a concurrent engineering
application, for example, process planning subtasks usually need to wait until
product design tasks have progressed beyond a certain point. For relatively clearcut
subtask relationships, a manager for the subtasks can coordinate their execution by
initiating a subtask based on the progress of another, or by relaying interim results
for one subtask to contractors of related subtasks.

More generally, however, aspects of subtask relationships might only become
apparent during the course of problem solving, rather than being dictated ahead of
time by the problem decomposition. For example, when using a distributed sensor
network to perform vehicle monitoring, the runtime relationships between what is
being monitored in different areas is as variable as the possible movements of
vehicles through the areas. While a task-sharing strategy, exemplified in the
Contract Net protocol, can establish a distributed sensor network, it does not
provide a sufficient basis for using the network. Or, put more correctly, when task
sharing is used to allocate classes of tasks among agents, then if different instances
of those tasks have different interrelationships, discovering and exploiting those
relationships requires the generation and sharing of tentative results.

3.4. Result Sharing

A problem-solving task is accomplished within the context of the problem solver, so
the results of the task if performed by one problem solver could well differ from the
results of the same task being performed by another problem solver. For example,
students in a class are often given the same task (homework problem), but their
independently derived solutions will not (better not!) be identical.

By sharing results, problem solvers can improve group performance in
combinations of the following ways:
1. Confidence: Independently derived results for the same task can be used to
corroborate each other, yielding a collective result that has a higher
confidence of being correct. For example, when studying for an exam,

students might separately work out an exercise and then compare answers
to increase confidence in their solutions.

2. Completeness: Each agent formulates results for whichever subtasks it can
(or has been contracted to) accomplish, and these results altogether cover a
more complete portion of the overall task. For example, in distributed
vehicle monitoring, a more complete map of vehicle movements is
possible when agents share their local maps.

3. Precision: To refine its own solution, an agent needs to know more about
the solutions that others have formulated. For example, in a concurrent
engineering application, each agent might separately come up with
specifications for part of an artifact, but by sharing these the specifications
can be further honed to fit together more precisely.

4. Timeliness: Even if an agent could in principle solve a large task alone,
solving subtasks in parallel can yield an overall solution faster.

Accruing the benefits of result sharing obviously means that agents need to share
results. But making this work is harder than you might think! First of all, agents
need to know what to do with shared results: how should an agent assimilate
results shared from others in with its own results? Second, given that assimilation
might be non-trivial, that communicating large volumes of results can be costly,
and that managing many assimilated results incurs overhead, agents should
attempt to be as selective as possible about what they exchange. In the remainder of
this section, we look at these issues.

3.4.1 Functionally Accurate Cooperation

In task-passing applications like ToH, the separate problem-solving agents are
completely accurate in their computations (they have all information and a
complete specification for their subtasks) and operate independently. In contrast,
agents doing Distributed Vehicle Monitoring (DVM) lack information about what is
happening elsewhere that could impact their calculations. As a result, these agents
need to cooperate to solve their subtasks, and might formulate tentative results
along the way that turn out to be unnecessary. This style of collective problem
solving has be termed functionally-accurate (it gets the answer eventually, but with
possibly many false starts) and cooperative (it requires iterative exchange) [Lesser
1981].

Functionally-accurate cooperation has been used extensively in distributed problem
solving for tasks such as interpretation and design, where agents only discover the
details of how their subproblem results interrelate through tentative formulation
and iterative exchange. For this method to work well, participating agents need to
treat the partial results they have formulated and received as tentative, and
therefore might have to entertain and contrast several competing partial hypotheses
at once. A variety of agent architectures can support this need; in particular,
blackboard architectures (Chapter 2) have often been employed as semi-structured
repositories for storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and
confidence. When agents can synthesize partial solutions into larger (possibly still
partial) solutions, more of the overall problem is covered by the solution. When an
agent uses a result from another to refine its own solutions, precision is increased.
And when an agent combines confidence measures of two (corroborating or
competing) partial solutions, the confidence it has in the solutions changes. In
general, most distributed problem-solving systems assume similar representations
of partial solutions (and their certainty measures) which makes combining them
straightforward, although some researchers have considered challenges in crossing
between representations, such as combining different uncertainty measurements
[Zhang 1992].

In functionally accurate cooperation, the iterative exchange of partial results is
expected to lead, eventually, to some agent having enough information to keep
moving the overall problem solving forward. Given enough information
exchange, therefore, the overall problem will be solved. Of course, without being
tempered by some control decisions, this style of cooperative problem solving could
incur dramatic amounts of communication overhead and wasted computation. For
example, if agents share too many results, a phenomenon called distraction can
arise: it turns out that they can begin to all gravitate toward doing the same
problem-solving actions (synthesizing the same partial results into more complete
solutions). That is, they all begin exploring the same part of the search space
(Chapter 4). For this reason, limiting communication is usually a good idea, as is
giving agents some degree of skepticism in how they assimilate and react to
information from others. We address these issues next.

3.4.2 Shared Repositories and Negotiated Search

One strategy for reducing potential flurry of multicast messages is to instead
concentrate tentative partial results in a single, shared repository. The blackboard
architecture, for example, allows cooperating knowledge sources to exchange results
and build off of them by communicating through a common, structured blackboard
(Chapter 2).

This strategy has been adopted in a variety of distributed problem-solving
approaches, including those for design applications [Lander 1993; Werkman 1992].
In essence, using a shared repository can support search through alternative designs,
where agents with different design criteria can revise and critique the alternatives.
In many ways, this is a distributed constraint satisfaction problem (Chapter 4), but it
differs from traditional formulations in a few respects.

Two important differences are: agents are not assumed to know whose constraints
might be affected by their design choices, and agents can relax constraints in a pinch.
The first difference motivates the use of a shared repository, since agents would not

know whom to notify of their decisions (as is assumed in typical DCSP formulations
as in Chapter 4). The second difference motivates the need for heuristics to control
the distributed search, since at any given time agents might need to choose between
improving some solutions, rejecting some solutions, or relaxing expectations (thus
making some solutions that were previously considered as rejected now acceptable).

For example, agents engaged in negotiated search [Lander 1993] have at their
disposal a variety of operators for progressing the distributed problem-solving effort:
initiate-solution (propose a new starting point for a solution); extend-solution
(revise an already existing partial solution); critique-solution (provide feedback on
the viability of an already existing partial solution); and relax-solution-requirement
(change local requirements for solution acceptability). At any given time, an agent
needs to decide which of these operators to apply, and where. While a systematic
exploration of the space can be considered (Chapter 4), the problem domains for
negotiated search are typically complex enough that heuristic guidance is preferred.
Heuristic measures for when to invoke operators (such as invoking the relax-
solution-requirement operator when lack of progress is detected) and on what (such
as relaxing requirements corresponding to the most constrained component) are
generally application-specific.

3.4.3 Distributed Constrained Heuristic Search

Constraint satisfaction problems in distributed environments also arise due to
contention for resources. Rather than assuming a shared repository for tentative
partial solutions, a search strategy that has been gainfully employed for distributed
resource allocation problems has been to associate an “agent” with each resource,
and have that agent process the contending demands for the resource. One form
that this strategy takes is so-called market-oriented programming [Wellman 1993]
where associated with resources are auctions that support the search for equilibria in
which resources are allocated efficiently. Market mechanisms are covered in detail
in Chapter 5.

A second form that this strategy takes is to allow resources to compute their
aggregate demands, which then the competing agents can take into account as they
attack their constraint-satisfaction problem. For example, distributed constrained
heuristic search (DCHS) uses aggregate demand to inform a heuristic search for
solving a distributed constraint satisfaction problem [Sycara 1991]. The idea is that
more informed search decisions decrease wasted backtracking effort, and that

consumers resources consumers resources

tentative aggregate
demands demands
consumers resources consumers resources

accept

accep

reserve
requests

Figure 4: DCHS Steps

constraint satisfaction heuristics such as variable and value ordering can be
gainfully employed in a distributed environment.

DCHS works as follows (Figure 4):

1.

2.

An agent begins with a problem state comprised of a problem topology (the tasks
to do and their relationships including constraints).

An agent propagates constraints within its state; it backtracks if an inconsistency
is detected. Otherwise, it determines what resources it requires for what time
intervals and computes a demand profile for those resources.

If the system is just beginning, or if the demand profiles differ from previous
profiles, an agent sends the profile(s) to the resource(s).

A resource computes aggregate demand and informs the agents making the
demands.

An agent uses the aggregate demands to order its variables (resource-and-time-
interval pairs) and order the activities that it might assign to the highest-demand
pair. It identifies a preferred resource/time-interval/activity assignment.

An agent requests that the resource reserve the interval for it.

7. The resource in turn grants the reservation if possible and updates the resource
schedule. Otherwise the request is denied.

8. An agent processes the response from the resource. If the reservation is granted,
the agent goes to step 2 (to propagate the effects of concretely scheduling the
activity). If the reservation is not granted, the agent attempts another
reservation, going to step 6.

This view of the search strategy, while simplified, highlights the use of resources
being contended for to focus communication, and of an exchange of information
that tends to decrease the amount of backtracking. That is, by giving agents an
opportunity to settle the “difficult” contention issues first, much useless work is
avoided in settling the easier issues and then discovering that these fail to allow the
hard issues to be settled.

3.4.4 Organizational Structuring

When a shared repository cannot be supported or when problem-solving is not
tantamount to resource scheduling, an alternative strategy for reducing
communication is to exploit the task decomposition structure, to the extent that it is
known. In a distributed design problem, for example, it makes sense to have
designers working on components that must “connect” speak with each other more
frequently than they speak with designers working on more remote parts of the
design (of course, physical proximity might be only one heuristic!). Or, in a DVM
task, agents monitoring neighboring parts of the space should communicate when
their maps show activity at or near their mutual boundary. The notion is that
agents have general roles to play in the collective effort, and by using knowledge of
these roles the agents can make better interaction decisions.

This notion can be explicitly manifested in an organizational structure, which
defines roles, responsibilities, and preferences for the agents within a cooperative
society, and thus in turn defines control and communication patterns between
them. From a global view, the organizational structure associates with each agent
the types of tasks that it can do, and usually some prioritization over the types such
that an agent that currently could do any of a number of tasks can identify the most
important tasks as part of its organizational role. Allowing prioritization allows the
structure to permit overlapping responsibilities (to increase the chances of success
despite the loss of some of the agents) while still differentiating agents based on
their primary roles.

Since each agent has responsibilities, it is important that an agent be informed of
partial results that could influence how it carries out its responsibilities. More
importantly, agents need not be told of results that could not affect their actions, and
this can be determined based on the organizational structure. Thus, an
organizational structure provides the basis for deciding who might potentially be
interested in a partial result. It also can dictate the degree to which an agent should
believe and act on (versus remain skeptical about) a received result.

While an organizational structure needs to be coherent from an overall perspective,
it is important to note that, as in human organizations, an agent only needs to be
aware of its local portion of the structure: what it is supposed to be doing (and how
to decide what to do when it has choices), who to send what kinds of information
to, who to accept what kinds of information from and how strongly to react to that
information, etc. For practical purposes, therefore, organizational structures are
usually implemented in terms of stored pattern-response rules: when a partial
result that matches the pattern is generated /received, then the response actions are
taken (to transmit the partial result to a particular agent, or to act on it locally, or to
decrement its importance, etc.). Note that a single partial result could trigger
multiple actions.

Finally, we have briefly mentioned that an organizational structure can be founded
upon the problem decomposition structure, such as for the DSNE problem where
agents would be made aware of which other agents are responsible for neighboring
areas so that partial results that matched the overlapping regions of interest would
be shared. The design of organizational structures for multi-agent systems,
however, is generally a complex search problem in its own right. The search can be
conducted in a bottom-up distributed manner, where boundaries between the roles
of agents can be determined as the problem instance is initialized [Decker 1993] or as
problem solving progresses [Ishida 1992;, Prasad 1996], where adjustments to the
structure can be based on reacting to performance inefficiencies of the current
structure. In some cases, the organizational structure can be equated to a priority
order for a distributed constraint satisfaction problem, and the agents are trying to
discover an effective ordering to converge on a solution efficiently (see Chapter 4).

Alternatively, organizational structuring can be viewed as a top-down design
problem, where the space of alternative designs can be selectively explored and
candidate designs can be evaluated prior to their implementation (Pattison 1987;
Corkill 1982, So 1996]. The use of computational techniques to study, and prescribe,
organizational structures is covered in Chapter 7.

3.4.5 Communication Strategies

Organization structures, or similar knowledge, can provide static guidelines about
who is generally interested in what results. But this ignores timing issues. When
deciding whether to send a result, an agent really wants to know whether the
potential recipient is likely to be interested in the result now (or soon). Sending a
result that is potentially useful but that turns out to not be at best clutters up the
memory of the recipient, and at worst can distract the recipient away from the useful
work that it otherwise would have done. On the other hand, refraining from
sending a result for fear of these negative consequences can lead to delays in the
pursuit of worthwhile results and even to the failure of the system to converge on
reasonable solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are
short, then the communication strategy can simply be to send all partial results. On
the other hand, when it is likely that an exchange of a partial result will lead a subset
of agents into redundant exploration of a part of the solution space, it is better to
refrain, and only send a partial result when the agent that generated it has
completed everything that it can do with it locally. For example, in a distributed
theorem-proving problem, an agent might work forward through a number of
resolutions toward the sentence to prove, and might transmit the final resolvent
that it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally complete
results are a variety of gradations [Durfee 1987], including sending a small partial
result early on (to potentially spur the recipient into pursuing useful related results
earlier). For example, in the DVM problem, agents in neighboring regions need to
agree when they map vehicles from one region to the other. Rather than waiting
until it forms its own local map before telling its neighbor, an agent can send a
preliminary piece of its map near the boundary early on, to stimulate its neighbor
into forming a complementary map (or determining that no such map is possible
and that the first agent is working down a worthless interpretation path).

So far, we have concentrated on how agents decide when and with whom to
voluntarily share results. But the decision could clearly be reversed: agents could
only send results when requested. Just like the choice between announcing tasks
versus announcing availability in the Contract Net depends on which is more
scarce, the same holds true in result sharing. When the space of possible interesting
results is large compared to the actual results that are generated, then
communicating results makes sense. But when the space of results formed is large
and only few are really needed by others, then sending requests (or more generally,
goals) to others makes more sense. This strategy has been explored in the DVM
problem [Corkill 1982], as well as in distributed theorem proving [MacIntosh 1991;
Fisher 1997]. For example, in DARES [MacIntosh 1991], when a theorem proving
agent would fail to make progress, it would request clauses from other such agents,
where the set of desired literals would be heuristically chosen (Figure 5).

It is also important to consider the delays in iterative exchange compared to a blind
inundation of information. A request followed by a reply incurs two
communication delays, compared to the voluntary sharing of an unrequested result.
But sharing too many unrequested results can introduce substantial overhead.
Clearly, there is a tradeoff between reducing information exchanged by iterative
messaging versus reducing delay in having the needed information reach its
destination by sending many messages at the same time. Sen, for example, has
looked at this in the context of distributed meeting scheduling [Sen 1996]. Our
experience as human meeting schedulers tells us that finding a meeting time could
involve a series of proposals of specific times until one is acceptable, or it could
involve having the participants send all of their available times at the outset. Most

4 yes
compute
saturation e proven? new progress?
level resolvents?
#yes
o

yes no

v
e new clauses?]d import knowledge

Figure 5: DARES Agent Control Flow

typically, however, practical considerations leave us somewhere between these
extremes, sending several options at each iteration.

Finally, the communication strategies outlined have assumed that messages are
assured of getting through. If messages get lost, then results (or requests for results)
will not get through. But since agents do not necessarily expect messages from each
other, a potential recipient will be unable to determine whether or not messages
have been lost. One solution to this is to require that messages be acknowledged,
and that an agent sending a message will periodically repeat the message
(sometimes called “murmuring”) until it gets an acknowledgment [Fennell 1977].
Or, a less obtrusive but more uncertain method is for the sending agent to predict
how the message will affect the recipient, and to assume the message made it
through when the predicted change of behavior is observed (see discussion of plan
recognition in Section 7.4).

3.4.6 Task Structures

Up to this point, we have made intuitive appeals to why agents might need to
communicate results. The TAEMS work of Decker and Lesser has investigated this
question much more concretely [Decker 1995]. In their model, an agent’s local
problem solving can have non-local effects on the activity of other agents. Perhaps
it is supplying a result that another agent must have to enable its problem-solving
tasks. Or the result might facilitate the activities of the recipient, allowing it to
generate better results and/or generate results faster. The opposites of these (inhibit
and hinder, respectively) are among the other possible relationships.

By representing the problem decomposition structure explicitly, and capturing
within it these kinds of task relationships, we can employ a variety of coordination
mechanisms. For example, an agent that provides an enabling result to another can

use the task structure representation to detect this relationship, and can then bias its
processing to provide this result earlier. In fact, it can use models of task quality
versus time curves to make commitments to the recipient as to when it will
generate a result with sufficiently high quality. In situations where there are
complex networks of non-local task interrelationships, decisions of this kind of
course get more difficult. Ultimately, relatively static organizational structures,
relationships, and communication strategies can only go so far. Going farther
means that the problem-solving agents need to analyze their current situation and
construct plans for how they should interact to solve their problems.

3.5. Distributed Planning

In many respects, distributed planning can be thought of simply as a specialization
of distributed problem solving, where the problem being solved is to design a plan.
But because of the particular features of planning problems, it is generally useful to
consider techniques that are particularly suited to planning.

Distributed planning is something of an ambiguous term, because it is unclear
exactly what is “distributed.” It could be that the operative issue is that, as a
consequence of planning, a plan is formulated that can be distributed among a
variety of execution systems. Alternatively, the operative issue could be that the
planning process should be distributed, whether or not the resulting plan(s) can be.
Or perhaps both issues are of interest. In this section, we consider both distributed
plans and distributed plan formation as options; we of course skip over the case
where neither holds (since that is traditional centralized planning) and consider
where one or both of these distributions exists.

3.5.1 Centralized Planning for Distributed Plans

Plans that are to be executed in a distributed fashion can nonetheless be formulated
in a centralized manner. For example, a partial order planner can generate plans
where there need not be a strict ordering between some actions, and in fact where
those actions can be executed in parallel. A centralized coordinator agent with such
a plan can break it into separate threads, possibly with some synchronization
actions. These separate plan pieces can be passed (using task-passing technology) to
agents that can execute them. If followed suitably, and under assumptions of
correctness of knowledge and predictability of the world, the agents operating in
parallel achieve a state of the world consistent with the goals of the plan.

Let us consider this process more algorithmically. It involves:
1. Given a goal description, a set of operators, and an initial state description,

generate a partial order plan. When possible, bias the search to find a plan in
which the steps have few ordering constraints among them.

2. Decompose the plan into subplans such that ordering relationships between

steps tend to be concentrated within subplans and minimized across subplans.

[Lansky 1990].

Insert synchronization (typically, communication) actions into subplans.

Allocate subplans to agents using task-passing mechanisms. If failure, return to

previous steps (decompose differently, or generate a different partial order plan,

...). If success, insert remaining bindings into subplans (such as binding names of

agents to send synchronization messages to).

5. Initiate plan execution, and optionally monitor progress (synthesize feedback
from agents to ensure complete execution, for example).

N

Notice that this algorithm is just a specialization of the decompose-allocate-execute-
synthesize algorithm used in task passing. The specific issues of decomposition and
allocation that are involved in planning give it a special flavor. Essentially, the
objective is to find, of all the possible plans that accomplish the goal, the plan that
can be decomposed and distributed most effectively. But since the availability of
agents for the subplans is not easy to determine without first having devised the
subplans, it is not certain that the most decomposable and distributable plan can be
allocated in any current context.

Moreover, the communication infrastructure can have a big impact on the degree to
which plans should be decomposed and distributed. As an extreme, if the
distributed plans require synchronization and if the communication channels are
slow or undependable, then it might be better to form a more efficient centralized
plan. The monetary and/or time costs of distributing and synchronizing plans
should thus be taken into account. In practical terms, what this usually means is
that there is some minimal subplan size smaller than which it does not make sense
to decompose a plan. In loosely-coupled networks, this leads to systems with fewer
agents each accomplishing larger tasks, while in tightly-connected (or even shared-
memory) systems the degree of decomposition and parallelism can be increased.

3.5.2 Distributed Planning for Centralized Plans

Formulating a complex plan might require collaboration among a variety of
cooperative planning specialists, just like generating the solution to any complex
problem would. Thus, for complex planning in fields such as manufacturing and
logistics, the process of planning could well be distributed among numerous agents,
each of which contributes pieces to the plan, until an overarching plan is created.

Parallels to task-sharing and result-sharing problem solving are appropriate in this
context. The overall problem-formulation task can be thought of as being
decomposed and distributed among various planning specialists, each of which
might then proceed to generate its portion of the plan. For some types of problems,
the interactions among the planning specialists might be through the exchange of a
partially-specified plan. For example, this model has been used in the
manufacturing domain, where a general-purpose planner has been coupled with

specialist planners for geometric reasoning and fixturing [Kambhampati 1991]. In
this application, the geometric specialist considers the shape of a part to be
machined, and generates an abstract plan as an ordering over the geometric features
to put into the part. The general-purpose planner then uses these ordering
constraints to plan machining operations, and the augmented plan is passed on to
the fixture specialist, which ensures that the operations can be carried out in order
(that the part can be held for each operation, given that as each operation is done the
shape of the part can become increasingly irregular). If any of these planners cannot
perform its planning subtask with the partially-constructed plan, they can backtrack
and try other choices (See Chapter 4 on DCSPs). Similar techniques have been used
for planning in domains such as mission planning for unmanned vehicles [Durfee
1997] and for logistics planning [Wilkins 1995].

The more asynchronous activity on the part of planning problem-solvers that is
characteristic of most distributed problem-solving systems can also be achieved
through the use of result sharing. Rather than pass around a single plan that is
elaborated and passed on (or discovered to be a deadend and passed back), a result-
sharing approach would have each of the planning agents generate a partial plan in
parallel and then share and merge these to converge on a complete plan in a
negotiated search mode. For example, in the domain of communication networks,
localized agents can tentatively allocate network connections to particular circuits
and share these tentative allocations with neighbors [Conry 1991]. When
inconsistent allocations are noticed, some agents try other allocations, and the
process continues until a consistent set of allocations have been found. In this
example, result-sharing amounts to a distributed constraint satisfaction search, with
the usual concerns of completeness and termination (See Chapter 4 on DCSPs).

3.5.3 Distributed Planning for Distributed Plans

The most challenging version of distributed planning is when both the planning
process and its results are intended to be distributed. In this case, it might be
unnecessary to ever have a multi-agent plan represented in its entirety anywhere in
the system, and yet the distributed pieces of the plan should be compatible, which at
a minimum means that the agents should not conflict with each other when
executing the plans, and preferably should help each other achieve their plans when
it would be rational to do so (e.g. when a helping agent is no worse off for its efforts).

The literature on this kind of distributed planning is relatively rich and varied. In
this chapter, we will hit a few of the many possible techniques that can be useful.

Plan Merging. We begin by considering the problem of having multiple agents
formulate plans for themselves as individuals, and then having to ensure that their
separate plans can be executed without conflict. Assume that the assignment of
goals to agents has been done, either through task-sharing techniques, or because of
the inherent distributivity of the application domain (such as in a distributed

delivery (DD) task, where different agents are contacted by users to provide a
delivery service). Now the challenge is to identify and resolve potential conflicts.

We begin by considering a centralized plan coordination approach. Let us say that
an agent collects together these individual plans. It then has to analyze the plans to
discover what sequences of actions might lead to conflicts, and to modify the plans
to remove the conflicts. In general, the former problem amounts to a reachability
analysis---given a set of possible initial states, and a set of action sequences that can
be executed asynchronously, enumerate all possible states of the world that can be
reached. Of these, then, find the subset of worlds to avoid, and insert constraints on
the sequences to eliminate them.

In general, enumerating the reachable state space can be intractable, so strategies for
keeping this search reasonable are needed. From the planning literature, many
assumptions about the limited effects of actions and minimal interdependence
between agents’ goals can be used to reduce the search. We will look at one way of
doing this, adapted from Georgeff [Georgeff 1983] next.

As is traditional, assume that the agents know the possible initial states of the world,
and each agent builds a totally-ordered plan using any planning technology. The
plan is comprised of actions a, through a,, such that a, is applicable to any of the
initial states, and a, is applicable in all states that could arise after action a,,. The
state arising after a, satisfies the agent’s goal.

We represent an action as a STRIPS operator, with preconditions that must hold for
the action to take place, effects that the action has (where features of the world not
mentioned in the effects are assumed unaffected), and “during” conditions to
indicate changes to the world that occur only during the action. The STRIPS
assumption simplifies the analysis for interactions by allowing us to avoid having
to search through all possible interleavings of actions; it is enough to identify
specific actions that interact with other specific actions, since the effects of any
sequence is just the combined effects of the sequence’s actions.

The merging method thus proceeds as follows. Given the plans of several agents
(where each is assume to be a correct individual plan), the method begins by
analyzing for interactions between pairs of actions to be taken by different agents.
Arbitrarily, let us say we are considering the actions a; and b, are the next to be
executed by agents A and B, respectively, having arrived at this point through the
asynchronous execution of plans by A and B. Actions a, and b; can be executed in
parallel if the preconditions, during conditions, and effects of each are satisfiable at
the same time as any of those conditions of the other action. If this is the case, then
the actions can commute, and are essentially independent. If this is not the case,
then it might still be possible for both actions to be taken but in a stricter order. If
the situation before either action is taken, modified by the effects of a,, can satisfy the
preconditions of b;, then a; can precede b,. It is also possible for b; to precede a;. If
neither can precede the other, then the actions conflict.

From the interaction analysis, the set of unsafe situations can be identified. Clearly,
it is unsafe to begin both a; and b; if they do not commute. It is also unsafe to begin a
before b, unless a; has precedence over b. Finally, we can propagate these unsafe
interactions to neighboring situations:

* the situation of beginning a; and b; is unsafe if either of its successor
situations is unsafe;

* the situation of beginning a; and ending b, is unsafe if the situation of
ending a; and ending b, is unsafe;

* the situation of ending a; and ending b; is unsafe if both of its successor
states are unsafe.

To keep this safety analysis tractable, actions that commute with all others can be
dropped from consideration. Given a loosely-coupled multi-agent system, where
agents mostly bring their own resources and capabilities to bear and thus have few
opportunities to conflict, dropping commuting actions would reduce the agents’
plans to relatively short sequences. From these simplified sequences, then, the
process can find the space of unsafe interactions by considering the (exponential)
number of interleavings. And, finally, given the discovered unsafe interactions,
synchronization actions can be added to the plans to force some agents to suspend
activities during regions of their plans that could conflict with others” ongoing
actions, until those others release the waiting agents.

Plan synchronization need not be accomplished strictly through communication
only. Using messages as signals allows agents to synchronize based on the
completion of events rather than reaching specific time points. But many
applications have temporal features for goals. Manufacturing systems might have
deadlines for fabricating an artifact, or delivery systems might have deadlines for
dropping off objects. For these kinds of applications, where temporal predictions for
individual tasks are fundamentally important, the formulation of distributed plans
can be based on scheduling activities during fixed time intervals. Thus, in these
kinds of systems, the individual planners can formulate a desired schedule of
activities assuming independence, and then plan coordination requires that the
agents search for revisions to their schedules to find non-conflicting times for their
activities (which can be accomplished by DCHS (see 3.4.3)). More importantly,
different tasks that the agents pursue might be related in a precedence ordering (e.g.
a particular article needs to be dropped off before another one can be picked up).
Satisfying these constraints, along with deadlines and resource limitation
constraints, turns the search for a workable collective schedule into a distributed
constraint satisfaction problem (see Chapter 4).

A host of approaches to dealing with more complex forms of this problem exist, but
are beyond the scope of this chapter. We give the flavor of a few of these to
illustrate some of the possibilities. When there are uncertainties about the time
needs of tasks, or of the possibility of arrival of new tasks, the distributed scheduling
problem requires mechanisms to maximize expected performance and to make

forecasts about future activities [Liu 1996]. When there might not be feasible
schedules to satisfy all agents, issues arise about how agents should decide which
plans to combine to maximize their global performance [Ephrati 1995]. More
complex representations of reactive plans and techniques for coordinating them
based on model-checking and Petri-net-based mechanisms have also been explored
[Kabanza 1995; Lee 1997; Segrouchni 1996].

Iterative Plan Formation. Plan merging is a powerful technique for increasing
parallelism in the planning process as well as during execution. The
synchronization and scheduling algorithms outlined above can be carried out in
centralized and decentralized ways, where the flow is generally that of (1) assign
goals to agents; (2) agents formulate local plans; (3) local plans are exchanged and
combined; (4) messaging and/or timing commitments are imposed to resolve
negative plan interactions. The parallels between this method of planning and the
task-sharing style of distributed problem-solving should be obvious. But just as we
discovered in distributed problem solving, not all problems are like the Tower of
Hanoi; sometimes, local decisions are dependent on the decisions of others. This
raises the question of the degree to which local plans should be formulated with an
eye on the coordination issues, rather than as if the agent could work alone.

One way of tempering proposed local plans based on global constraints is to require
agents to search through larger spaces of plans rather than each proposing a single
specific plan. Thus, each agent might construct the set of all feasible plans for
accomplishing its own goals. The distributed planning process then consists of a
search through how subsets of agents” plans can fit together.

Ephrati and Rosenschein [Ephrati 1994] have developed a plan combination search
approach for doing this kind of search, where the emphasis is on beginning with
encompassing sets of possible plans and refining these to converge on a nearly
optimal subset. They avoid commitment to sequences of actions by specifying sets of
propositions that hold as a result of action sequences instead. The agents engage in
the search by proposing, given a particular set of propositions about the world, the
changes to that set that they each can make with a single action from their plans.
These are all considered so as to generate candidate next sets of propositions about
the world, and these candidates can be ranked using an A* heuristic (where each
agent can use its plans to estimate the cost from the candidate to completing its own
goals). The best candidate is chosen and the process repeats, until no agent wants to
propose any changes (each has accomplished its goal).

Note that, depending on the more global movement of the plan, an agent will be
narrowing down the plan it expects to use to accomplish its own private goals.
Thus, agents are simultaneously searching for which local plan to use as well as for
synchronization constraints on their actions (since in many cases the optimal step
forward in the set of achieved propositions might omit the possible contributions of
an agent, meaning that the agent should not perform an action at the time.

An alternative to this approach instead exploits the hierarchical structure of a plan
space to perform distributed hierarchical planning. By now, hierarchical planning is
well-established in the Al literature. It has substantial advantages (as exemplified in
the ToH problem) in that some interactions can be worked out in more abstract plan
spaces, thereby pruning away large portions of the more detailed spaces. In the
distributed planning literature, the advantages of hierarchical planning were first
investigated by Corkill.

Corkill’s work considered a distributed version of Sacerdoti’'s NOAH system. He
added a “decompose plan” critic that would look for conjunctive goals to distribute.
Thus, in a blocks-world problem (the infamous Sussman’s Anomaly, for instance),
the initial plan refinement of (AND (ON A B) (ON B C)) leads to a plan network
with two concurrent paths, one for each of the conjuncts. The decompose-plan critic
gives a copy of the plan network to a second agent, where each of the two agents
now represents the goal it is to achieve as well as a parallel node in the network that
represents a model of the other agent’s plan. Then the agents proceed refine their
abstract plans to successively detailed levels. As an agent does so, it can
communicate with the other one about the changes that it expects to make to the
world state, so that each can separately detect conflicts. For example, when an agent
learns that the other is going to make block B not clear (it does not know the details
of how) it can determine that this will interfere with stacking B on C, and can ask
the first agent to WAIT on the action that causes that change until it has received
permission to go on. This process can continue until a synchronized set of detailed
plans are formed.

A variation on the hierarchical distributed planning approach is to allow each agent
to represent its local planned behaviors at multiple levels of abstraction, any of
which can suffice to resolve all conflicts. In this hierarchical behavior-space search
approach to distributed planning, the outer loop of the protocol identifies a
particular level of abstraction to work with, and whether conflicts should be
resolved at this level or passed to more detailed levels. The inner loop of the
protocol conducts what can be thought of as a distributed constraint satisfaction
search to resolve the conflicts. Because the plans at various abstraction levels dictate
the behaviors of agents to a particular degree, this approach has been characterized
as search through hierarchical behavior space [Durfee 1991]. The algorithm is now
presented (Figure 6):

1. Initialize the current-abstraction-level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the current
level.

3. Remove plans with no potential conflicts. If the set is empty, then done,
otherwise determine whether to resolve conflicts at the current level or at a deeper
level.

4. If conflicts are to be resolved at a deeper level, set the current level to the next
deeper level and set the plans/goals of interest to the refinements of the plans with
potential conflicts. Go to step 2.

5. If conflicts are to be resolved at this level:

a. Agents form a total order. Top agent is the current superior.

b. Current superior sends down its plan to the others.

c. Other agents change their plans to work properly with those of the current-
superior. Before confirming with the current superior, an agent also doublechecks
that its plan changes do not conflict with previous superiors.

d. Once no further changes are needed among the plans of the inferior agents,
the current superior becomes a previous superior and the next agent in the total
order becomes the superior. Return to step b. If there is no next agent, then the
protocol terminates and the agents have coordinated their plans.

Figure 6: Hierarchical Behavior-Space Search Algorithm

Provided that there are finite abstraction levels and that agents are restricted in the
changes to their plans that they can make such that they cannot get into cyclic plan
generation patterns, the above protocol is assured to terminate. A challenge lies in
the outer loop, in terms of deciding whether to resolve at an abstract level or to go
deeper. The advantage of resolving a conflict at an abstract level is that it reduces
the amount of search, and thus yields coordinated plans with less time and
messaging. The disadvantage is that the coordination constraints at an abstract level
might impose unnecessary limits on more detailed actions. At more detailed levels,
the precise interaction problems can be recognized and resolved, while at abstract
levels more inefficient coordination solutions might work. The tradeoffs between
long-term, simple, but possibly inefficient coordination decisions versus more
responsive but complex runtime coordination decisions is invariably domain-
dependent. The goal is to have mechanisms that support the broad spectrum of
possibilities.

As a concrete example of this approach, consider the DD problem of two delivery
robots making repeated deliveries between two rooms as in Figure 7 (left side).
Since R1 always delivers between the upper locations, and R2 between the lower
ones, the robots could each inform the other about where they might be into the
indefinite future (between the locations, passing through the closest door). Their
long-term delivery behaviors potentially conflict over that door, so the robots can
choose either to search in greater detail around the door, or to eliminate the conflict
at the abstract behavior level. The latter leads to a strategy for coordinating that
statically assigns the doors. This leads to the permanent allocation of spatial regions

shown in Figure 7 (right side), where R2 is always running around the long way.
This “organizational” solution avoids any need for further coordination, but it can
be inefficient, especially when R1 is not using its door, since R2 is still taking the
long route.

Xy Xy
® ' ® C
R1 R1
@ ! @]

R2 - | R2

If they choose to examine their behaviors in more detail, they can find other
solutions. If they consider a particular delivery, for example, R1 and R2 might
consider their time/space needs, and identify that pushing their activities apart in
space or time would suffice (Figure 8, left side). With temporal resolution, R2 waits
until R1 is done before beginning to move through the central door. Or the robots
could use information from this more abstract level to further focus
communication on exchanging more detailed information about the trouble spots.
They could resolve the potential conflict at an intermediate level of abstraction;
temporal resolution has R2 begin once R1 has cleared the door (Figure 8, middle
column bottom). Or they could communicate more details (Figure 8, right side),
where now R2 moves at the same time as R1, and stops just before the door to let R1
pass through first. Clearly, this last instance of coordination is crispest, but it is also
the most expensive to arrive at and the least tolerant of failure, since the robots
have less distance between them in general, so less room to avoid collisions if they
deviate from planned paths.

y y
w |

Figure 7: An Organizational Solution

Of course, there are even more strategies for coordination even in a simple domain
such as the distributed delivery task. One interesting strategy is for the robots to

move up a levelll to see their tasks as part of a single, team task. By doing so, they
can recognize alternative decompositions. For example, rather than decompose by
items to deliver, they could decompose by spatial areas, leading to a solution where
one robot picks up items at the source locations and drops them off at the doorway,
and the other picks up at the doorway and delivers to the final destinations. By
seeing themselves as part of one team, the agents can coordinate to their mutual
benefit (they can cooperate) by searching through an enlarged behavior space.

t Resolve by
space

/ i
, P
I Resolve by .
y, time

Communicate
more details

Resolve by

t
Resolve by -
I time
Communicate
more details I

gl e

3

R2 —
Resolve by R2

time

Figure 8: Alternative Levels of Abstraction

Negotiation in Distributed Planning. In the above, we considered how agents can
determine that conflicts exist between their plans and how to impose constraints on
(usually when they take) their actions to avoid conflict. Sometimes, determining
which agent should wait for another is fairly random and arbitrary. Exceptions,
however, exist. A large amount of work in negotiation (see Chapter 2) is concerned
with these issues, so we only touch on them briefly here.

Sometimes the selection of the agent that should revise its local plans is based on
models of the possibilities open to the agents. For example, Steeb and Cammarata,
in the air-traffic control domain, were concerned with which of the various aircraft
should alter direction to decrease potentially dangerous congestion. Their agents
exchanged descriptions indicating their flexibility, and the agent that had the most
other options was asked to change its plan, in an early DAI application of the least-
constrained agent heuristic (see Section 3.4.3 and Chapter 4 on DCSPs).

Of course, these and other negotiation mechanisms for resolving goals presume that
agents are honest about the importance of their goals and their options for how to
achieve them. Issues of how to encourage self-interested agents to be honest are
covered elsewhere in this book (see Chapter 5). However, clearly agents have self-
interest in looking for opportunities to work to their mutual benefit by
accomplishing goals that each other need. However, although the space of possible
conflicts between agents is large, the space of possible cooperative activities can be
even larger, and introduces a variety of utility assessments. That is, while it can be
argued that agents that have conflicts always should resolve them (since the system
might collapse if conflicts are manifested), the case for potential cooperative actions
is not so strong. Usually, cooperation is “better,” but the degree to which agents
benefit might not outweigh the efforts they expend in finding cooperative
opportunities. Thus, work on distributed planning that focuses on planning for
mutually beneficial actions even though they were not strictly necessary has been
limited to several forays into studies within well-defined boundaries. For example,
partial global planning (see Section 3.7.3) emphasized a search for generating partial
solutions near partial solution boundaries with other agents, so as to provide them
with useful focusing information early on (see Section 3.4.5 on communication
strategies). The work of von Martial [von Martial 1992] concentrated on strategies
that agents can use to exploit “favor relations” among their goals, such as
accomplishing a goal for another agent while pursuing its own goal.

3.6. Distributed Plan Representations

Distributed problem solving, encompassing distributed planning, generally relies
heavily on agents being able to communicate about tasks, solutions, goals, plans,
and so on. Of course, much work has gone into low-level networking protocols for
interprocess communication in computer science generally, which forms the
foundation upon which the particular communication mechanisms for multiagent
systems build. At a much higher level, general-purpose protocols for agent

interaction have been developed over the years, ranging from the Contract Net
protocol which we have already seen to a broader variety of languages based on
speech acts, such as KQML and agent-oriented programming (see Chapter 2).

With speech-act-based languages, sending a message can be seen as invoking a
behavior at the recipient. For example, sending a message of the type “query” might
be expected to evoke in the recipient a good-faith effort to generate an answer
followed by sending a message of the type “response” back to the sender.

This is all well and good, but what should the query itself look like? And the
response? Different kinds of information might be asked about, and talked about,
very differently. For this reason, a high-level speech-act-based language usually
leaves the definition of the “content” of a message up to the designer. For any
application domain, therefore, one or more relevant content languages need to be
defined such that agents can understand not only the intent behind a message, but
also the content of the message. In general, the definition of content languages is
difficult and open-ended. By restricting our considerations to distributed planning,
however, there is some hope in developing characteristics of a sharable planning
language.

A planning content language needs to satisfy all of the constituencies that would use
the plan. If we think of a plan as being comprised of a variety of fields (different
kinds of related information), then different combinations of agents will need to
access and modify different combinations of fields. In exchanging a plan, the agents
need to be able to find the information they need so as to take the actions that they
are expected to take in interpreting, modifying, or executing the plan. They also
need to know how to change the plan in ways that will be interpreted correctly by
other agents and lead to desirable effects.

To date, there are few standards for specifying plans for computer-based agents.
Some conventions certainly exist (such as the “STRIPS operator” format [Fikes
1971]), but these are usually useful only within a narrow context. In most
distributed planning systems, it is assumed that the agents use identical
representations and are built to interpret them in the same ways.

One effort for formulating a more general description of a plan has been undertaken
by SRI, in the development of their Cypress system [Wilkins 1995]. In a nutshell,
Cypress combined existing systems for plan generation and for plan execution.
These existing systems were initially written to be stand-alone; Cypress needed to
define a language that the two systems could use to exchange plans, despite the fact
that what each system did with plans was very different. In their formalism, an ACT
is composed of the following fields:

* Name - a unique label
* Cue - goals which the ACT is capable of achieving

¢ Precondition - features of the world state that need to hold for the ACT to
be applicable

* Setting - world-state features that are bound to ACT variables
* Resources - resources required by the ACT during execution
» Properties - other properties associated with the ACT
 Comment - documentation information

* DPlot - specification of the procedure (partially-ordered sequences of
goals/actions) to be executed
Of course, each of these fields in turn needs a content language that can be
understood by the relevant agents.

Other efforts have sought planning languages grounded in temporal logics and
operational formalisms such as Petri Nets and Graphcet [Kabanza 1995, Lee 1997,
Seghrouchni 1996]. By appealing to a representation with a well-understood
operational interpretation, the planning agents are freed from having to use
identical internal representations so long as their interpretations are consistent with
the operational semantics.

3.7. Distributed Planning and Execution

Of course, distributed planning does not occur in a vacuum. The product of
distributed planning needs to be executed. The relationships between planning and
execution are an important topic in Al in general, and the added complexity of
coordinating plans only compounds the challenges. In this section, we consider
strategies for combining coordination, planning, and execution.

3.7.1 Post-Planning Coordination

The distributed planning approach based on plan merging essentially sequentialized
the processes in terms of allowing agents to plan, then coordinating the plans, and
then executing them. This is reasonable approach given that the agents
individually build plans that are likely to be able to be coordinated, and that the
coordinated result is likely to executed successfully. If, during execution, one (or
more) plans for agents fail to progress as expected, the coordinated plan set is in
danger of failing as a whole.

As in classical planning systems, there are several routes of recourse to this problem.
One is contingency planning. Each agent formulates not only its expected plan, but
also alternative (branches of) plans to respond to possible contingencies that can
arise at execution time. These larger plans, with their conditional branches, can
then be merged and coordinated. The coordination process of course is more
complicated because of the need to consider the various combinations of plan
execution threads that could be pursued. By annotating the plan choices with the
conditions, a more sophisticated coordination process can ignore combinations of
conditional plans whose conditions cannot be satisfied in the same run.

A second means of dealing with dynamics is through monitoring and replanning:
Each agent monitors its plan execution, and if there is a deviation it stops all agents’
progress, and the plan-coordinate-execute cycle is repeated. Obviously, if this
happens frequently, a substantial expenditure of effort for planning and
coordination can result. Sometimes, strategies such as repairing the previous plans,
or accessing a library of reusable plans [Sugawara 1995] can reduce the effort to make
it managable.

Significant overhead can of course be saved if a plan deviation can be addressed
locally rather than having to require coordination. For example, rather than
coordinating sequences of actions, the agents might coordinate their plans at an
abstract level. Then, during execution, an agent can replan details without requiring
coordination with others so long as its plan revision fits within the coordinated
abstract plan. This approach has been taken in the team plan execution work of
Kinney and colleagues, for example [Kinney 1992]. The perceptive reader will also
recognize in this approach the flavor of organizational structuring and distributed
planning in a hierarchical behavior space: so long as it remains within the scope of
its roles and responsibilities, an agent can individually decide what is the best way of
accomplishing its goals. By moving to coordinate at the most abstract plan level, the
process essentially reverses from post-planning to pre-planning coordination.

3.7.2 Pre-Planning Coordination

Before an agent begins planning at all, can coordination be done to ensure that,
whatever it plans to do, the agent will be coordinated with others? The answer is of
course yes, assuming that the coordination restrictions are acceptable. This was the
answer in organizational structuring in distributed problem solving, where an agent
could choose to work on any part of the problem so long as it fit within its range of
responsibilities.

A variation on this theme is captured in the work on social laws [Shoham 1992]. A
social law is a prohibition against particular choices of actions in particular contexts.
For example, entering an intersection on a red light is prohibited, as might not
entering the intersection on a green light. These laws can be derived by working
from undesirable states of the world backwards to find combinations of actions that
lead to those states, and then imposing restrictions on actions so that the
combinations cannot arise. A challenge is to find restrictions that prevent
undesirable states without handcuffing agents from achieving states that are
acceptable and desirable. When overly constrictive, relaxations of social laws can be
made [Briggs 1995].

Alternatively, in domains where conflict avoidance is not a key consideration, it is
still possible that agents might mutually benefit if they each prefer to take actions
that benefit society as a whole, even if not directly relevant to the agent’s goal. For
example, in a Distributed Delivery application, it could be that a delivery agent is

passing by a location where an object is awaiting pickup by a different agent. The
agent passing by could potentially pick up the object and deliver it itself, or deliver it
to a location along its route that will be a more convenient pickup point for the
other agent. For example, the delivery agents might pass through a “hub” location.
The bias toward doing such favors for other agents could be encoded into
cooperative state-changing rules [Goldman 1994] that require agents to take such
cooperative actions even to their individual detriment, as long as they are not
detrimental beyond some threshold.

3.7.3 Interleaved Planning, Coordination, and Execution

More generally, between approaches that assume agents have detailed plans to
coordinate and approaches that assume general-purpose coordination policies can
apply to all planning situations, lies work that is more flexible about at what point
between the most abstract and most detailed plan representations different kinds of
coordination should be done. Perhaps the search for the proper level is conducted
through a hierarchical protocol, or perhaps it is predefined. In either case, planning
and coordination are interleaved with each other, and often with execution as well.

Let us consider a particular example of an approach that assumes that planning and
coordination decisions must be continually revisited and revised. The approach we
focus on is called Partial Global Planning [Durfee 1988].

Task Decomposition - Partial Global Planning starts with the premise that tasks are
inherently decomposed -- or at least that they could be. Therefore, unlike planning
techniques that assume that the overall task to be planned for is known by one
agent, which then decomposes the task into subtasks, which themselves might be
decomposed, and so on, partial global planning assumes that an agent with a task to
plan for might be unaware at the outset as to what tasks (if any) other agents might
be planning for, and how (and whether) those tasks might be related to its own as in
the DVM task. A fundamental assumption in Partial Global Planning is that no
individual agent might be aware of the global task or state, and the purpose of
coordination is to allow agents to develop sufficient awareness to accomplish their
tasks nonetheless.

Local plan formulation - Before an agent can coordinate with others using Partial
Global Planning, it must first develop an understanding of what goals it is trying to
achieve and what actions it is likely to take to achieve them. Hence, purely reactive
agents, which cannot explicitly represent goals that they are trying to achieve and
actions to achieve them, cannot gainfully employ Partial Global Planning (or, for
that matter, distributed planning at all). Moreover, since most agents will be
concurrently concerned with multiple goals (or at least will be able to identify
several achievable outcomes that satisfy a desired goal), local plans will most often
be uncertain, involving branches of alternative actions depending on the results of
previous actions and changes in the environmental context in carrying out the plan.

Local plan abstraction - While it is important for an agent to identify alternative
courses of action for achieving the same goal in an unpredictable world, the details
of the alternatives might be unnecessary as far as the agent's ability to coordinate
with others. That is, an agent might have to commit to activities at one level of
detail (to supply a result by a particular time) without committing to activities at
more detailed levels (specifying how the result will be constructed over time).
Abstraction plays a key role in coordination, since coordination that is both correct
and computationally efficient requires that agents have models of themselves and
others that are only detailed enough to gainfully enhance collective performance.
In Partial Global Planning, for example, agents are designed to identify their major
plan steps that could be of interest to other agents.

Communication - Since coordination through Partial Global Planning requires
agents to identify how they could and should work together, they must somehow
communicate about their abstract local plans so as to build models of joint activity.
In Partial Global Planning, the knowledge to guide this communication is contained
in the Meta-Level Organization (MLO). The MLO specifies information and control
flows among the agents: Who needs to know the plans of a particular agent, and
who has authority to impose new plans on an agent based on having a more global
view. The declarative MLO provides a flexible means for controlling the process of
coordination.

Partial global goal identification - Due to the inherent decomposition of tasks among
agents, the exchange of local plans (and their associated goals) gives agents an
opportunity to identify when the goals of one or more agents could be considered
subgoals of a single global goal. Because, at any given time, only portions of the
global goal might be known to the agents, it is called a partial global goal.
Construction of partial global goals is, in fact, an interpretation problem, with a set
of operators that attempts to generate an overall interpretation (global goal) that
explains the component data (local goals). The kinds of knowledge needed are
abstractions of the knowledge needed to synthesize results of the distributed tasks.
And, just as interpretations can be ambiguous, so too is it possible that a local goal
can be seen as contributing to competing partial global goals.

1) for the current ordering, rate the individual actions and sum the ratings

2) for each action, examine the later actions for the same agent and find the most
highly-rated one. If it is higher rated, then swap the actions.

3) if the new ordering is more highly rated than the current one, then replace the
current ordering with the new one and go to step 2.

4) return the current ordering.

Figure 9: The Algorithm for PGP Plan Step Reordering

Partial global plan construction and modification- Local plans that can be seen as
contributing to a single partial global goal can be integrated into a partial global plan,
which captures the planned concurrent activities (at the abstract plan step level) of
the individuals. By analyzing these activities, an agent that has constructed the
partial global plan can identify opportunities for improved coordination. In
particular, the coordination relationships emphasized in PGP are those of
facilitating task achievement of others by performing related tasks earlier, and of
avoiding redundant task achievement. PGP uses a simple hill-climbing algorithm,
coupled with an evaluation function on ordered actions, to search for an improved
(although not necessarily optimal) set of concurrent actions for the partial global
plan (see Figure 9). The evaluation function sums evaluations of each action,
where the evaluation of an action is based on features such as whether the task is
unlikely to have been accomplished already by another agent, how long it is
expected to take, and on how useful its results will be to others in performing their
tasks.

Communication planning - After reordering the major local plan steps of the
participating agents so as to yield a more coordinated plan, an agent must next
consider what interactions should take place between agents. In PGP, interactions,
in the form of communicating the results of tasks, are also planned. By examining

1) initialize the set of partial task results to integrate
2) while the set contains more than one element:
for each pair of elements, find the earliest time and agent at which
they can be combined
for the pair that can be combined earliest:
add a new element to the set of partial results for the
combination and remove the two elements that were
combined
3) return the single element in the set

Figure 10: The Algorithm for Planning Communication Actions

the partial global plan, an agent can determine when a task will be completed by one
agent that could be of interest to another agent, and can explicitly plan the
communication action to transmit the result. If results need to be synthesized, an
agent using PGP will construct a tree of exchanges such that, at the root of the tree,
partially synthesized results will be at the same agent which can then construct the
complete result (see Figure 10).

Acting on partial global plans - Once a partial global plan has been constructed and
the concurrent local and communicative actions have been ordered, the collective
activities of the agents have been planned. What remains is for these activities to be
translated back to the local level so that they can be carried out. In PGP, an agent
responds to a change in its partial global plans by modifying the abstract

representation of its local plans accordingly. In turn, this modified representation is
used by an agent when choosing its next local action, and thus the choice of local
actions is guided by the abstract local plan, which in turn represents the local
component of the planned collective activity.

Ongoing modification - As agents pursue their plans, their actions or events in the
environment might lead to changes in tasks or in choices of actions to accomplish
tasks. Sometimes, these changes are so minor that they leave the abstract local plans
used for coordination unchanged. At other times, they do cause changes. A
challenge in coordination is deciding when the changes in local plans are significant
enough to warrant communication and recoordination. The danger in being too
sensitive to changes is that an agent that informs others of minor changes can cause
a chain reaction of minor changes, where the slight improvement in coordination is
more than offset by the effort spent in getting it. On the other hand, being too
insensitive can lead to very poor performance, as agents' local activities do not
mesh well because each is expecting the other to act according to the partial global
plan, which is not being followed very closely anymore. In PGP, a system designer
has the ability to specify parametrically the threshold that defines significant
temporal deviation from planned activity.

Task reallocation - In some circumstances, the exogenous task decomposition and
allocation might leave agents with disproportionate task loads. Through PGP,
agents that exchange abstract models of their activities will be able to detect whether
they are overburdened, and candidate agents that are underburdened. By generating
and proposing partial global plans that represent others taking over some of its
tasks, an agent essentially suggests a contracting relationship among the agents. A
recipient has an option of counter proposing by returning a modified partial global
plan, and the agents could engage in protracted negotiations. If successful, however,
the negotiations will lead to task reallocation among the agents, allowing PGP to be
useful even in situations where tasks are quite centralized.

Summary - PGP fills a distributed planning niche, being particularly suited to
applications where some uncoordinated activity can be tolerated and overcome,
since the agents are individually revisiting and revising their plans midstream,
such that the system as a whole might at times (or even through the whole task
episode) never settle down into a stable collection of local plans. PGP focuses on
dynamically revising plans in cost-effective ways given an uncertain world, rather
than on optimizing plans for static and predictable environments. It works well for
many tasks, but could be inappropriate for domains such as air-traffic control where
guarantees about coordination must be made prior to any execution.

3.7.4 Runtime Plan Coordination Without Communication

While tailored for dynamic domains, PGP still assumes that agents can and will
exchange planning information over time to coordinate their actions. In some
applications, however, runtime recoordination needs to be done when agents

cannot or should not communicate. We briefly touch on plan coordination
mechanisms for such circumstances.

One way of coordinated without explicit communication is to allow agents to infer
each others plans based on observations. The plan recognition literature focuses on
how observed actions can lead to hypotheses about the plans being executed by
others. While generally more uncertain than coordination using explicit
communication, observation-based plan coordination can still achieve high-quality
results and, under some circumstances can outperform communication-based
distributed planning [Huber 1996].

Another way of coordinating without explicit communication is to allow agents to
make inferences about the choices others are likely to make based on assumptions
about their rationality [Rosenschein 1989] or about how they view the world. For
example, if Distributed Delivery agents are going to hand off objects to each other,
they might infer that some locations (such as a hub) are more likely to be mutually
recognized as good choices. Such solutions to choice problems have been referred to
as focal points [Fenster 1995].

3.8. Conclusions

Distributed planning has a variety of reasonably well-studied tools and techniques
in its repertoire. One of the important challenges to the field is in characterizing
these tools and undertanding where and when to apply each. To some extent, the
lack of specificity in the term “distributed planning” in terms of whether the process
or the product or both of planning is distributed has hampered communication
within the field, but more fundamental issues of articulating the foundational
assumptions behind different approaches still need to be addressed. Until many of
the assumed context and semantics for plans are unveiled, the goal of having
heterogeneous plan generation and plan execution agents work together is likely to
remain elusive.

The field of distributed problem solving is even more wide open, because the
characterization of a “problem” is that much broader. As we have tried to
emphasize, distributed plan formation and, in many cases, execution can be thought
of as distributed problem solving tasks. Representations and general-purpose
strategies for distributed problem solving are thus even more elusive. In this
chapter we have characterized basic classes of strategies such as task-sharing and
result-sharing. Ultimately, the purpose of any strategy is to share the right
information about tasks, capabilities, availabilities, partial results, or whatever so
that each agent is doing the best thing that it can for the group at any given time. Of
course, exchanging and using the information that renders such choices can itself be
costly, and opens the door to misinterpretation that makes matters worse rather
than better. All of these considerations factor into the definition and
implementation of a distributed problem strategy, but formulating such a strategy is
still has more “art” to it than we like to see in an engineering discipline.

Acknowledgements: The effort of compiling (and in some cases developing) the
ideas in this chapter was supported, in part, by the NSF under PYI award 91-58473,
and by DARPA under contract N66001-93-D-0058. I would like to thank my
colleagues and my current and former graduate students, who have contributed the
partial solutions assembled here.

3.9. Exercises

1. (level 1) The ToH time complexity analysis that reduces the complexity to
logarithmic time assumed that the number of levels was a function of the problem
size. More realistically, an organization would be developed for a variety of
problems, rather than on a case-by-case basis. Assume the number of levels is fixed
(and so the ratio between hierarchy levels will vary with the problem size). Now
what is the expected time complexity for the ToH in a distributed problem-solving
scenario. What does this answer tell you?

2. (level 1) Consider Contract Net without focused addressing (that is,
announcements are broadcast).
a. Name a real-life example where task announcment makes much more sense
than availability announcement. Justify why.
b. Now name a real-life example where availability announcement makes much
more sense. Justify why.
c. Let’s say that you are going to build a mechanism that oversees a distributed
problem-solving system, and can “switch” it to either a task or availability
announcement mode.

i. Assuming communication costs are negligible, what criteria would you use to
switch between modes? Be specific about what you would test.

ii. If communication costs are high, now what criteria would you use? Be specific
about what you would test.

3. (level 2 or 3) We noted that task announcing can be tricky: If a manager is too
fussy about eligibility, it might get no bids, but if it is too open it might have to
process too many bids, including those from inferior contractors. Let us say that the
manager has n levels of eligibility specifications from which it needs to choose one.
Describe how it would make this choice based on a decision-theoretic formulation.
How would this formulation change if it needed to consider competition for
contractors from other managers?

4. (level 2) A folk theorem in the organization literature is that, in human
organizations, task decompositions invariably lead to clear assignments of subtasks
to members of the organization. Give an example of where decomposition without
look-ahead to available contractors can be detrimental. Give an example where
biasing decomposition based on available contractors can instead be detrimental.
Finally, give an algorithm for alternating between decomposition and assignment
to incrementally formulate a distributed problem-solving system. Is your algorithm
assured of yielding an optimal result? Is it complete?

5. (level 1) Consider the pursuit task, with four predators attempting to surround
and capture a prey. Define an organizational structure for the predators. What are
the roles and responsibilities of each? How does the structure indicate the kinds of
communication patterns (if any) that will lead to success.

6. (level 2) In the problem of distributed meeting scheduling, let us say that the
chances that a specific meeting time proposal will be accepted is p.

a. If each iteration of the scheduling protocol has an agent propose a specific time
to the others, what is the probability that the meeting will be scheduled in exactly I
iterations? What is the expected number of iterations to schedule the meeting?

b. If each iteration instead proposes N specific times, now what is the probability
that the meeting will be scheduled in exactly I iterations? What is the expected
number of iterations to schedule the meeting? What happens when N approaches
1? How about when N grows very large?

c. Based on the above, how would you choose a value for N to use in a distributed
meeting scheduling system? What other considerations might to be taken into
account besides a desire to keep the number of iterations low?

7. (level 2) Consider the following simple instance of the distributed delivery task.
Robot A is at position a and robot B is at position 3. Article X is at position & and
needs to go to position |, and article Y is at position) and needs to go to {. Positions

a, B, & Y, and C are all different.

a. Define in STRIPS notation, suitable for Partial Order Planning, simple operators
Pickup, Dropoff, PickDrop, and Return, where Pickup moves the robot from its
current position to a Pickup position where it then has the article associated with
that position; Dropoff moves a robot and an article it holds to a dropoff position
where it no longer has the article; PickDrop combines the two (it drops off its article
and picks up another associated with that position); and Return moves a robot back
to its original position.

b. Using these operators, generate the partial order plan with the shortest sequence
of plan steps to accomplish the deliveries. Decompose and distribute this plan to the
robots for parallel execution, inserting any needed synchronization actions. How
does the use of multiple robots affect the plan execution?

c. Using the operators, generate the partial order plan that, when distributed, will
accomplish the deliveries as quickly as possible. Is this the same plan as in the
previous part of this problem? Why or why not?

8. (level 2) Given the problem of question 7, include in the operator descriptions
conditions that disallow robots to be at the same position at the same time (for
example, a robot cannot do a pickup in a location where another is doing a dropoff).
Assuming each robot was given the task of delivering a different one of the articles,
generate the individual plans and then use the plan merging algorithm to
formulate the synchronized plans, including any synchronization actions into the
plans. Show your work.

9. (level 2) Consider the problem of question 7. Assume that delivery plans can be
decomposed into 3 subplans (pickup, dropoff, and return), and that each of these
subplans can further be decomposed into individual plan steps. Furthermore,
assume that robots should not occupy the same location at the same time not just at
dropoff/pickup points, but throughout their travels. Use the hierarchical protocol
to resolve potential conflicts between the robots plans, given a few different layouts
of the coordinates for the various positions (that is, where path-crossing is
maximized and minimized). What kinds of coordinated plans arise depending on
what level of the hierarchy the plans’ conflicts are resolved through
synchronization?

10. (level 2) Assume that agents in the distributed delivery domain could be given
delivery requests at any given time, and operate in a finite, fully shared delivery
region. Describe social laws that can assure that no matter what deliveries are asked
of them and when, the agents can be assured of avoiding collisions no matter where
the pickup and dropoff positions are. You may assume that the world begins in a
legal state. In what circumstances would using these laws be very inefficient?

11. (level 3) Assume that distributed delivery robots are in an environment where
delivery tasks pop up dynamically. When a delivery needs to be done, the article to
be delivered announces that it needs to be delivered, and delivery agents within a
particular distance from the article hear the announcement.

a. Assume that the distance from which articles can be heard is small. What
characteristics would an organizational structure among the delivery agents have to
have to minimize the deliveries that might be overlooked?

b. Assume that the distance is instead large. Would an organizational structure be
beneficial anyway? Justify your answer.

c. As they become aware of deliveries to be done, delivery agents try to incorporate
those into their current delivery plans. But the dynamic nature of the domain
means that these plans are undergoing evolution. Under what assumptions would
partial global planning be a good approach for coordinating the agents in this case?

d. Assume you are using partial global planning for coordination in this problem.
What would you believe would be a good planning level for the agents to
communicate and coordinate their plans? How would the agents determine
whether they were working on related plans? How would they use this view to
change their local plans? Would a hill-climbing strategy work well for this?

3.10. References

[Briggs 1995] Will Briggs and Diane J. Cook. Flexible social laws. Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),
August 1995.

[Conry 1991] Susan E. Conry, Kazuhiro Kuwabara, Victor R. Lesser, and Robert A.
Meyer. Multistage negotiation for distributed constraint satisfaction. IEEE Trans. of
Systems, Man, and Cybernetics SMC-21(6):1462-1477, Nov. 1991.

[Corkill 1982] Daniel D. Corkill. A Framework for Organizational Self-Design in
Distributed Problem Solving Networks. PhD thesis, University of Massachusetts,
December 1982.

[Davis 1983] Randall Davis and Reid Smith. Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence 20:63-109, 1983.

[Decker 1993] Keith Decker and Victor Lesser. A one-shot dynamic coordination
algorithm for distributed sensor networks. Proceedings of the Eleventh National
Conference on Artificial Intelligence (AAAI-93), pages 210-216, July 1993.

[Decker 1995] Keith Decker and Victor Lesser. Designing a family of coordination
mechanisms. Proceedings of the First International Conf. on Multi-Agent Systems
(ICMAS-95), pages 73-80, June 1995.

[Durfee 1987] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill.
“Cooperation Through Communication in a Distributed Problem Solving
Network,” Chapter 2 in M. Huhns (ed.) Distributed Artificial Intelligence , Pitman
1987.

[Durfee 1988] Edmund H. Durfee. Coordination of Distributed Problem Solvers,
Kluwer Academic Press, Boston 1988.

[Durfee 1991] Edmund H. Durfee and Thomas A. Montgomery. “Coordination as
Distributed Search in a Hierarchical Behavior Space.” IEEE Transactions on
Systems, Man, and Cybernetics, Special Issue on Distributed Artificial Intelligence,
SMC-21(6):1363-1378, November 1991.

[Durfee 1997] Edmund H. Durfee, Patrick G. Kenny, and Karl C. Kluge. Integrated
Premission Planning and Execution for Unmanned Ground Vehicles. Proceedings
of the First International Conference on Autonomous Agents, pages 348-354,
February 1997.

[Ephrati 1994] Eithan Ephrati and Jeffrey S. Rosenschein. Divide and conquer in
multi-agent planning. Proceedings of the Twelfth National Conf. on Artificial
Intelligence (AAAI-94), pages 375-380, July 1994.

[Ephrati 1995] Eithan Ephrati, Martha E. Pollack, and Jeffrey S. Rosenschein. A
tractable heuristic that maximizes global utility through local plan combination.
Proceedings of the First International Conf. on Multi-Agent Systems (ICMAS-95),
pages 94-101, June 1995.

[Fennell 1977] R. D. Fennell and V. R. Lesser. Parallelism in Al problem solving: A
case study of HEARSAY-II. IEEE Trans. on Computers C-26(2):98-111, 1977.

[Fenster 1995] Maier Fenster, Sarit Kraus, and Jeffrey S. Rosenschein. Coordination
without communication: experimental validation of focal point techniques.
Proceedings of the First International Conf. on Multi-Agent Systems (ICMAS-95),
pages 102-108, June 1995.

[Fikes 1971] R. E. Fikes and N.]J. Nilsson. “STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2(3-
4):189-208, 1971.

[Fisher 1997] Michael Fisher and Michael Wooldridge. Distributed problem-solving
as concurrent theorem-proving. Proceedings of MAAMAW’97, Lecture notes in
Artificial Intelligence, Springer-Verlag.

[Georgetf 1983] Michael Georgeff. Communication and Interaction in multi-agent
planning. Proceedings of the Third National Conf. on Artificial Intelligence (AAAI-
83), pages 125-129, July 1983.

[Goldman 1994] Claudia Goldman and Jeffrey S. Rosenschein. Emergent
coordination through the use of cooperative state-changing rules. Proceedings of the
Twelfth National Conf. on Artificial Intelligence (AAAI-94), pages 408-413, July 1994.

[Huber 1996] Marcus J. Huber and Edmund H. Durfee. An initial assessment of plan-
recognition-based coordination for multi-agent teams. Proceedings of the Second
International Conf. on Multi-Agent Systems (ICMAS-96), pages 126-133, December
1996.

[Ishida 1992] Toru Ishida, Les Gasser, and Makoto Yokoo. Organization self-design of
distributed production systems, IEEE Trans on Knowl and Data Sys DKE4(2):123-134.

[Kabanza 1995] Froduald Kabanza. Synchronizing multiagent plans using temporal
logic specifications. Proceedings of the First International Conf. on Multi-Agent
Systems (ICMAS-95), pages 217-224, June 1995.

[Kambhampati 1991] Subbarao Kambhampati, Mark Cutkosky, Marty Tenenbaum,
and Soo Hong Lee. Combining specialized reasoners and general purpose planners:
A case study. Proceedings of the Ninth National Conference on Artificial
Intelligence, pages 199-205, July 1991.

[Kinney92] David Kinney, Magus Ljungberg, Anand Rao, Elizabeth Sonenberg, Gil
Tidhar, and Eric Werner, "Planned Team Activity," Preproceedings of the Fourth
European Workshop on Modeling Autonomous Agents in a MultiAgent World,
July 1992.

[Knoblock 1993] Craig A. Knoblock. Generating Abstraction Hierarchies: An
Automated Approach to Reducing Search in Planning. Kluwer Academic
Publishers, 1993.

[Korf 1987] Richard E. Korf. Planning as search: A qualitative approach. Artificial
Intelligence 33(1):65-88, 1987.

[Lander 1993] Susan E. Lander and Victor R. Lesser. Understanding the role of
negotiation in distributed search among heterogeneous agents. Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93) ,
pages 438-444, August 1993.

[Lansky 1990] Amy L. Lansky. Localized Search for Controlling Automated
Reasoning. Proceedings of the DARPA Workshop on Innovative Approaches to
Planning, Scheduling, and Control, pages 115-125, November 1990.

[Lee 1997] Jaeho Lee. An Explicit Semantics for Coordinated Multiagent Plan
Execution. PhD dissertation. University of Michigan, 1997.

[Lesser 1981] Victor R. Lesser and Daniel D. Corkill. Functionally accurate,
cooperative distributed systems. IEEE Trans. on Systems, Man, and Cybernetics
SMC-11(1):81-96, 1981.

[Liu 1996] Jyi-Shane Liu and Katia P. Sycara. Multiagent coordination in tightly
coupled task scheduling. Proceedings of the Second International Conf. on Multi-
Agent Systems (ICMAS-96), pages 181-188, December 1996.

[MacIntosh 1991] Douglas MacIntosh, Susan Conry, and Robert Meyer. Distributed
automated reasoning: Issues in coordination, cooperation, and performance. IEEE
Trans. on Systems, Man, and Cybernetics SMC-21(6):1307-1316.

[von Martial 1992] Frank von Martial. Coordinating Plans of Autonomous Agents.
Lecture notes in Artificial Intelligence, Springer-Verlag, 1992.

[Montgomery 1993] Thomas A. Montgomery and Edmund H. Durfee. “Search
Reduction in Hierarchical Distributed Problem Solving.” Group Decision and
Negotiation 2:301-317 (Special issue on Distributed Artificial Intelligence), 1993.

[Pattison 1987] H. Edward Pattison, Daniel D. Corkill, and Victor R. Lesser.
Instantiating descriptions of organizational structures. In M. Huhns (ed.)
Distributed Artificial Intelligence. London, Pittman.

[Prasad 1996] M. V. Nagendra Prasad, Keith Decker, Alan Garvey, and Victor Lesser.
Exploring organizational designs with TAEMS: A case study of distributed data
processing. Proceedings of the Second International Conf. on Multi-Agent Systems
(ICMAS-96), pages 283-290, December 1996.

[Rosenschein 1989] Jeffrey S. Rosenschein and John S. Breese. Communication-free
interactions among rational agents: A probabilistic approach. In Gasser and Huhns
(eds.) Distributed Artificial Intelligence volume II, pages 99-118, Morgan Kaufmann
Publishers.

[Seghrouchni 1996] Amal El Fallah Seghrouchni and Serge Haddad. A recursive
model for distributed planning. Proceedings of the Second International Conf. on
Multi-Agent Systems (ICMAS-96), pages 307-314, December 1996.

[Sen 1996] Sandip Sen and Edmund H. Durfee. A contracting model for flexible
distributed scheduling. Amnnals of Operations Research, vol. 65, pp. 195-222, 1996.

[Shoham 1992] Yoav Shaham and Moshe Tennenholtz. On the synthesis of useful
social laws for artificial agent societies. Proceedings of the Tenth National Conf. on
Artificial Intelligence (AAAI-92), pages 276-281-380, July 1992.

[So 1996] Young-pa So and Edmund H. Durfee. Designing tree-structured
organizations for computational agents. Computational and Mathematical
Organization Theory 2(3):219-246, Fall 1996.

[Stankovic 1985] John A. Stankovic, Krithi Ramamritham, and S.-C. Cheng.
Evaluation of a flexible task scheduling algorithm for distributed hard real-time
systems. IEEE Trans. on Computers C-34(12):1130-1143, 1985.

[Sugawara 1995] Toshiharu Sugawara. Reusing past plans in distributed planning.
Proceedings of the First International Conf. on Multi-Agent Systems (ICMAS-95),
pages 360-367, June 1995.

[Sycara 1991] Katia Sycara, Steven Roth, Norman Sadeh, and Mark Fox. Distributed
constrained heuristic search. IEEE Transactions on Systems, Man, and Cybernetics
SMC-21(6):1446-1461.

[Wellman 1993] Michael P. Wellman. A market-oriented programming
environment and its application to distributed multicommodity flow problems.
Journal of Artificial Intelligence Research , 1:1-23, 1993.

[Werkman 1992] Keith J. Werkman. Multiple agent cooperative design evaluation
using negotiation. Proceedings of the Second International Conference on Artificial
Intelligence in Design, Pittsburgh PA, June 1992.

[Wilkins 1995] D. E. Wilkins and K. L. Myers. “A common knowledge
representation for plan generation and reactive execution.” Journal of Logic and
Computation, 5(6):731-761, 1995.

[Zhang 1992] Chengi Zhang. Cooperation under uncertainty in distributed expert
systems. Artificial Intelligence 56:21-69, 1992.

—A—
ACT, 30

—B—
blackboard architecture, 11

—C—

competence, 1

content language, 29

contingency planning, 31

Contract Net protocol, 7
cooperative planning, 20
cooperative state-changing rules, 32

—D—

DARES, 17

distraction, 12

Distributed Constrained Heuristic Search (DCHS), 13, 23
distributed delivery, 3

distributed hierarchical planning, 25

distributed meeting scheduling, 17

distributed sensor network establishment, 3

distributed vehicle monitoring, 3

—F—

favor relations, 29
focal points, 36
Functionally Accurate Cooperation, 11

—H—
hierarchical behavior-space search, 25

—_]
interaction analysis, 23

—K—
KQML, 8

—M—

Meta-Level Organization, 33
murmuring, 18
mutual selection., 10

—N—
Negotiated Search, 12, 21

—0O—

observation-based plan coordination, 36

organizational structure, 15

—P—

Partial Global Planning, 33
partial order planner, 19
plan combination search, 24
Plan Merging, 21

Plan synchronization, 23
protocol, 29

—R—
Result Sharing, 10
Result synthesis, 4

—S—
socia laws, 32
STRIPS operator, 22

—T—

TAEMS, 18

Task accomplishment, 4
Task allocation, 4

Task decomposition, 4, 20
Task Sharing, 4

team plan, 31

Tower of Hanoi, 2

