
A Survey of Concurrent METATEM
— The Language and its Applications

Michael Fisher

Department of Computing
Manchester Metropolitan University

Manchester M1 5GD
United Kingdom

M.Fisher@mmu.ac.uk

Abstract. In this paper we present a survey of work relating to the Concurrent
METATEM programming language. In addition to a description of the basic Con-
current METATEM system, which incorporates the direct execution of temporal
formulae, a variety of extensions that have either been implemented or proposed
are outlined. Although still in the development stage, there appear to be many
areas where such a language could be applied. We present a variety of sample
applications, highlighting the particular features of Concurrent METATEM that we
believe will make it appropriate for use in these areas.

1 Introduction

Concurrent METATEM is a language based upon the direct execution of temporal for-
mulae [15]. It consists of two distinct aspects: an execution mechanism for temporal
formulae in a particular form; and an operational model that treats single executable
temporal logic programs as asynchronously executing objects in a concurrent object-
based system. The motivation for the development of this language has been provided
by many areas. For example, being based upon executable logic, the language can be
used as part of the specification and prototyping of reactive systems. Also, as it uses
temporal, rather than classical, logic the language provides a high-level programming
notation in which the dynamic attributes of individual components can be concisely
represented. Finally, it incorporates a novel model of concurrent computation which
has a range of applications in distributed systems.

The logic used as a basis for Concurrent METATEM is a discrete, linear temporal lo-
gic. This presents a simple view of time and, in doing so, provides the systems designer
with a direct analogy between the models for the logic and the discrete, linear execution
sequences with which he or she is familiar. This, together with the fact that a restricted
form of this temporal logic is executed, ensures that the temporal aspects of Concurrent
METATEM are manageable, both for the programmer and for the implementation of the
system.

Each object executes its own set of temporal formulae and, in doing so, (effect-
ively) generates an infinite sequence of states. As each object executes asynchronously,
it constructs a separate execution sequence. Further, within Concurrent METATEM, a

mechanism is provided for communication between separate objects. This simply con-
sists of a partition of each object’s propositions into those controlled by the object and
those controlled by the environment. To fit in with this logical view of communication,
whilst also providing a flexible and powerful message-passing mechanism, broadcast
message-passing is used to pass information between objects.

This relatively straightforward combination of executable temporal logic, a concur-
rent object-model and broadcast message-passing forms the basis of Concurrent MET-
ATEM. Together, these features provide an coherent and consistent programming model
within which a variety of reactive systems can be represented and implemented.

This review is structured as follows. Firstly, in §2, we will present the core elements
of the language, including basic temporal execution, together with its operational and
communication model. In §3, we will outline various extensions to the core language
that have either been proposed or implemented. Thus, together, these two sections will
provide a survey of the language itself. In §4, we provide a range of sample applications
of Concurrent METATEM, utilising both the core features of the language and its exten-
sions. Although, in some cases, these are only potential applications, we will argue that
the properties that Concurrent METATEM exhibits make it suitable for application in
these areas. Thus, the range of examples in this section provide a survey of the current
and potential applications of the language. Finally, in §5, we present concluding re-
marks, including brief overviews of related work, current status of the implementation,
and possible future work.

2 Concurrent METATEM

In this section, we will provide an introduction to the Concurrent METATEM system,
which consists of objects, whose behaviour is implemented using executable temporal
logic, communicating via broadcast message-passing. Concurrent METATEM itself was
originally developed as an extension of the sequential execution of temporal logic pro-
grams provided by METATEM, an executable temporal logic described in [3, 10]. The
rules that are executed are based upon the normal form developed for temporal theorem-
proving [14], while the concurrent operational model was outlined in [9] and developed
to its current state in [15].

2.1 An Overview of the Approach

While it is possible to program objects in Concurrent METATEM using a small range
of temporal operators (just the last-time and sometime in the future operators), a large
range of temporal operators are available in the interests of convenience. Most of these
operators are eliminated during the transformation from the rules input by the pro-
grammer to rules that are actually executed. These transformations follow those used
in producing a normal form for temporal formulae [14]. The transformed rules are then
executed directly, providing the dynamic behaviour of the individual object. The com-
ponents of this core language represent the basic descriptive elements of our system:

– logical properties of individual states, through the use of classical logic to represent
declarative description of a state;

– properties of state transformation steps, through the use of the last-time operator in
conjunction with constraints on the present state;

– global properties of temporal sequences, through the use of multiple state trans-
formation steps together with the sometime in the future operator.

An important aspect of the language is the mixture, within the execution of these tem-
poral formulae, of both declarative and imperative aspects. For example, we might
provide a declarative description of a particular state through a formula such as p ∧ q,
while also providing an imperative rule describing how to generate the current state
from the last one, such as ccdeeffgp ⇒ q (here, ‘ ccdeeffg’ is the last-time operator).

2.2 Temporal Logic

Temporal logic can be seen as classical logic extended with various modalities repres-
enting temporal aspects of logical formulae. The temporal logic we use is based on a
discrete, linear model and, thus, time is modelled as an infinite sequence of discrete
states, with an identified starting point, called ‘the beginning of time’. Classical formu-
lae are used to represent constraints within individual states, while temporal formulae
represent constraints between states. As formulae are interpreted at particular states in
this sequence, operators which refer to both the past and future are required.

The logic we use, called First-Order METATEM Logic (FML) is a simple first-order
temporal logic, based on discrete, linear models with finite past and infinite future.
Below we give an outline of its syntax and semantics (for a more detailed presentation,
see [3, 14]).

Syntax As in classical logics, the terms the language are constructed from a set of
constant symbols (Lc), a set of variable symbols (Lv) and a set of function symbols
(Lƒ). From these elements, the set of terms, Lt, can be generated. The other symbols
used in FML are as follows.

– A set, Lp, of predicate symbols, contains elements usually represented by strings
of lower-case alphabetic characters.

– Classical connectives, ¬, ∨, ∧, ⇒, and ⇔.
– Future-time temporal operators, including unary operators g, } and , and bin-

ary operators U and W .
– Past-time temporal operators, including unary operators ccdeeffg, w, ♦ and , and

binary operators S and Z .
– Quantifiers, ∀ and ∃.
– ‘(’ and ‘)’ which are, as usual, used to avoid ambiguity.

The set of well-formed formulae of FML (WFFƒ) is defined as follows.

1. If t1, … , tn are in Lt, and p is a predicate of arity n, then p(t1, … , tn) is in WFFƒ.
2. if A and B are in WFFƒ, then the following are in WFFƒ

¬A A ∨ B A ∧ B A ⇒ B (A)}A A AU B AW B gA
♦A A AS B AZ B ccdeeffgA wA

3. If A is in WFFƒ and v is in Lv, then ∃v. A and ∀v. A are both in WFFƒ.

Sub-classifications of WFFƒ are defined as follows. A literal is defined as either a pre-
dicate symbol applied to an appropriate term, or the negation of such a predicate.
A State-formula is either a literal or a non-temporal combination of other state-formulae.
Future-time formulae contain only classical and future-time temporal operators, while
past-time formulae contain only classical and past-time temporal operators. Strict ver-
sions of both these categorisations can be formed by removing from them formulae that
refer to the present.

Semantics The basic models of FML are discrete, linear structures with finite past
and infinite future. To this structure a domain, D, and mappings from elements of the
language to denotations are added. Thus the full model structure for FML isM = hσ ,D, πc, πƒ, πpi
where

– σ , a sequence of states s0, s1, s2, s3, …,
– D is the object-level domain,
– πc is a map from Lc to D,
– πƒ is a map from Lƒ to Dn → D, where n is the arity of ƒ, and,
– πp is a map from N × Lp to Dn → fT, Fg.

Thus, for a particular state s, and a particular predicate p of arity n, πp(s, p) represents a
map from n-tuples of elements ofD to T or F. Note that the constant domain assumption
is used, i.e. that D is constant for every state, and that both constant and function
symbols have fixed interpretations.

The semantics of FML is given with respect to a model, M, a state, si, at which
the formula is to be interpreted, and a variable assignment, V. From the model and the
variable assignment, we are able to generate a term assignment, τvπ , which maps every
term to its appropriate element of the domain, D.

We first consider the semantics of atomic predicates:hM, si, Vi |= p(x1, … , xn) iff πp(i, p)(τvπ(x1), … , τvπ (xn)) = T .

The semantics of the standard propositional connectives is as in classical logic, e.g.,hM, si, Vi |= ϕ ∨ ψ iff hM, si, Vi |= ϕ or hM, si, Vi |= ψ

The semantics of the unary future-time temporal operators is defined as followshM, si, Vi |= gϕ iff hM, si+1, Vi |= ϕhM, si, Vi |= }ϕ iff there exists a j ≥ i such that hM, sj, Vi |= ϕhM, si, Vi |= ϕ iff for all j ≥ i then hM, sj, Vi |= ϕ .

The informal semantics of these operators is as follows: gϕ means that ϕ must be
satisfied in the next state;}ϕ means that ϕ must be satisfied at some state in the future;

ϕ means that ϕ must be satisfied at all states in the future.

The two binary future-time temporal operators that we use are interpreted as followshM, si, Vi |= ϕ U ψ iff there exists a k ≥ i such that hM, sk, Vi |= ψ
and for all i ≤ j < k then hM, sj, Vi |= ϕhM, si, Vi |= ϕW ψ iff for all j ≥ i then hM, sj, Vi |= ϕ
or hM, si, Vi |= ϕ U ψ

If past-time temporal formulae are interpreted at a particular state, si, then states with
indices less than i are ‘in the past’ of the state si. The semantics of unary past-time
operators is given as follows:hM, si, Vi |= wϕ iff i = 0 or hM, si−1, Vi |= ϕhM, si, Vi |= ccdeeffgϕ iff i > 0 and hM, si−1, Vi |= ϕhM, si, Vi |= ♦ϕ iff there exists j such that 0 ≤ j < i and hM, sj, Vi |= ϕhM, si, Vi |= ϕ iff for all j such that 0 ≤ j < i then hM, si, Vi |= ϕ

Note that, in contrast to the future-time operators, the ♦ and operators are inter-
preted as being strict, i.e. the current index is not included in the definition. Also, as
there is a unique start state, termed the beginning of time, two different last-time oper-
ators are used. The difference between ‘ ccdeeffg’ and ‘ w’ is that for any formula ϕ, ccdeeffgϕ is
false at the beginning of time, while wϕ is true at the beginning of time. In particular,wfalse is only true when interpreted at the beginning of time; otherwise it is false.
Note that, as the formula wfalse appears so regularly in Concurrent METATEM, we of-
ten abbreviate it with the nullary operator ‘start’, thus making obvious its association
with the beginning of time (and the beginning of execution).

The semantics for the binary past-time operators S and Z relates to that for U
and W just as the unary past-time operators relate to the unary future-time operators.
Finally, the semantics of quantifiers is defined as follows.hM, s, Vi |= ∀x. ϕ iff for all d ∈ D. hM, s, V † [x 7! d]i |= ϕhM, s, Vi |= ∃x. ϕ iff there exists d ∈ D. such that hM, s, V † [x 7! d]i |= ϕ

As the interpretation consists of a triple, comprising model, state, and assignment com-
ponents, a well-formed formula, ϕ, is satisfied in a particular model, M, at the begin-
ning of time, s0, under a particular variable assignment, V, if hM, s0, Vi |= ϕ.

2.3 Executable Rules

Next, we define the subset of FML that can be used in a Concurrent METATEM program.
The description of a Concurrent METATEM object is a set of rules, represented by

î

Ri

where each Ri is, in turn, of the form

‘past and present formula’ implies ‘present or future formula’

Taking quantification into account, the general form of these rules becomes

n̂

i=1

∀X̄i. Pi(X̄i) ⇒ Fi(X̄i)

where ‘X̄i’ represents a vector of variables, Xi1 , Xi2 , …, Xim .
Each rule is further restricted to be one of the following.

∀X̄. [start ∧
ĥ

b=1

lb(X̄)] ⇒
r_

j=1

mj(X̄) (an initial -rule)

∀X̄. [(ccdeeffg ĝ

a=1

ka(X̄)) ∧
ĥ

b=1

lb(X̄)] ⇒
r_

j=1

mj(X̄) (a global -rule)

∀X̄. [start ∧
ĥ

b=1

lb(X̄)] ⇒ }l(X̄) (an initial}-rule)

∀X̄. [(ccdeeffg ĝ

a=1

ka(X̄)) ∧
ĥ

b=1

lb(X̄)] ⇒ }l(X̄) (a global}-rule)

where each ka, lb, mj or l is a literal. Note that the left-hand side of each initial rule is a
constraint only on the first state, while the left-hand side of each global rule represents
a constraint upon a state together with its predecessor. The right-hand side of each -
rule is simply a disjunction of literals referring to the current state, while the right-hand
side of each }-rule is a single eventuality (i.e., ‘}’ applied to a literal).

Note also that, although arbitrary FML formulae can be transformed into a set of
rules of the form

∀X̄. [(∀Ȳ. start ∧
ĥ

b=1

lb(X̄, Ȳ)) ⇒ ∃Z̄.
r_

j=1

mj(X̄, Z̄)]

∀X̄. [(∀Ȳ. (ccdeeffg ĝ

a=1

ka(X̄, Ȳ)) ∧
ĥ

b=1

lb(X̄, Ȳ)) ⇒ ∃Z̄.
r_

j=1

mj(X̄, Z̄)]

∀X̄. [(∀Ȳ. start ∧
ĥ

b=1

lb(X̄, Ȳ)) ⇒ ∃Z̄. }l(X̄, Z̄)]

∀X̄. [(∀Ȳ. (ccdeeffg ĝ

a=1

ka(X̄, Ȳ)) ∧
ĥ

b=1

lb(X̄, Ȳ)) ⇒ ∃Z̄. }l(X̄, Z̄)]

where each ka, lb, mj or l is a literal, we here choose to execute only a subset of this
normal form [14].

2.4 Execution within Objects

We now describe how a set of rules for a given object in Concurrent METATEM is
executed in order to provide its basic behaviour. Concurrent METATEM uses a set of
‘rules’ of the above form to represent an object’s internal definition. Due to the outer
‘ ’ operator present in this rule form, the rules are applied at every moment in time
(i.e., at every step of the execution) during the construction of a model for the formula.

As an example of a simple set of rules for a single object, consider the following.
(Note that these rules are not meant to form a ‘meaningful’ program – they are only
given for illustrative purposes.)

start ⇒ popped(a)ccdeeffgpop(X) ⇒ }popped(X)ccdeeffgpush(Y) ⇒ stack-full() ∨ popped(Y)

Note that the ‘X’ and ‘Y’ here represent universally quantified variables. Looking at these
program rules, we see that popped(a) is satisfied at the beginning of time and whenever
pop(X) is satisfied in the previous moment in time, a commitment to eventually satisfy
popped(X) is given. Similarly, whenever push(Y) is satisfied in the previous moment
in time, then either stack-full() or popped(Y) must be satisfied.

The temporal language which forms the basis of execution within particular objects
in Concurrent METATEM also provides two orthogonal mechanisms for representing
choice. These are

– static indeterminacy, through the classical operator ‘∨’, and,
– temporal indeterminacy, through ‘}’, the temporal operator representing sometime

in the future.

A logical description, containing the ‘∨’ operator, of the properties of a given state
represents a choice about the exact nature of the state. Although other constraints upon
the state might restrict this choice, the potential for a completely non-deterministic
choice is present. A formula such as }a states that the proposition a must be satisfied at
some time in the future. Thus, it represents a form of temporal indeterminacy. However,
we do not model this as a truly non-deterministic choice. Rather, given a constraint, such
as }a, the execution mechanism attempts to satisfy a as soon as possible (taking in to
account any other temporal constraints). Thus, a formula such as}a ∧ }b ∧ }c

when executed, would ensure that a, b and c are all satisfied as soon as possible. If
necessary, we can add further temporal formulae representing extra ordering within
these constraints, for example to ensure that c can not be satisfied until both a and b
have been satisfied.

Once the object has commenced execution, it continually follows a cycle of check-
ing which rules have antecedents satisfied by the previous state, conjoining together
the consequents of these rules, rewriting this conjunction into a disjunctive form and
choosing one of these disjuncts to execute. From this disjunct a state is constructed, with
predicates remaining false unless otherwise constrained. The computation then moves

forward to the next state where this cycle begins again. If a contradiction is found, it
may be possible to backtrack to a previous choice (but see §2.5 for restrictions). This
choice is constrained by the currently outstanding eventualities, i.e., formulae of the
form }a that have not yet been satisfied. As many as possible of these formulae are
satisfied in the state constructed, starting with oldest outstanding eventuality.

Note that this basic execution mechanism is similar to that provided for (sequential)
METATEM [3, 10].

We now describe the general operational model for Concurrent METATEM objects ex-
ecuting in the above manner. This incorporates the asynchronous execution of indi-
vidual objects, dynamic attributes of object interfaces, and the communication mech-
anism between objects.

2.5 Concurrent Object-Based Operational Model

The computational model used in Concurrent METATEM combines the two notions of
objects and concurrency. Objects are here considered to be self contained entities, en-
capsulating both data and behaviour, and communicating via message-passing. In par-
ticular, Concurrent METATEM has the following fundamental properties.

1. The basic mechanism for communication between objects is broadcast message-
passing.

2. Objects are not message driven — they begin executing from the moment they are
created and continue even while no messages are received.

3. Each object contains a set of temporal rules representing its behaviour.
4. Objects execute asynchronously.

So, rather than seeing computation as objects sending mail messages to each other,
and thus invoking some activity (as in Actor systems [2]), computation in a collection
of Concurrent METATEM objects can be visualised as independent entities listening to
messages broadcast from other objects.

In addition to this basic framework, the operational model exhibits several important
features which are described in more detail below.

Communication Mechanism Broadcast communication is used, not only as it is a
flexible and powerful communication mechanism, but also as it has a logical mean-
ing within our system, namely that of passing valuations for predicates throughout the
system.

In order to implement communication as an integral part of execution, we categorise
the basic predicates used in the language, with several categories of predicate corres-
ponding to messages to and from the object, as follows.

– Environment predicates, which represent incoming messages.
An environment predicate can be made true if, and only if, the corresponding mes-
sage has just been received. Thus, a formula containing an environment predicate,
such as ‘push(Y)’, is only true if a message of the form ‘push(b)’ has just been
received (for some argument ‘b’, which unifies with ‘Y’).

– Component predicates, which represent messages broadcast from the object.
When a component predicate is made true, it has the (side-)effect of broadcast-
ing the corresponding message to the environment. For example, if the formula
‘popped(e)’ is made true, where popped is a component predicate, then the mes-
sage ‘popped(e)’ is broadcast.

– Internal predicates, which have no external effect.
These predicates are used as part of formulae participating in the internal compu-
tation of the object and, as such, do not correspond either to message-sending or
message reception.
This category of predicates may include various primitive operations.

Object Interfaces Networks of Concurrent METATEM objects communicate via broad-
casting messages and individual objects only act upon certain identified messages. Thus,
an object must be able to filter out messages that it wishes to recognise, ignoring all
others. The definition of which messages an object recognises, together with a defin-
ition of the messages that an object may itself produce, is provided by the interface
definition for that particular object.

The interface definition for an object, for example ‘stack’, is defined in the fol-
lowing way

stack(pop,push)[popped,stack-full].

Here, fpop, pushg is the set of messages the object recognises, while the object itself is
able to produce the messages fpopped, stack-fullg. Note that these sets of messages
need not be disjoint – an object may broadcast messages that the object itself recognises.
In this case, messages sent by an object to itself are recognised immediately. Note also
that many distinct objects may broadcast and recognise the same messages.

Backtracking In general, if an object’s execution mechanism is based on the execu-
tion of logical statements, then a computation may involve backtracking. Objects may
backtrack, with the proviso that an object may not backtrack past the broadcasting of
a message. Consequently, in broadcasting a message to its environment, an object ef-
fectively commits the execution to that particular path. Thus, the basic operation of an
object can be thought of as a period of internal execution, possibly involving back-
tracking, followed by appropriate broadcasts to its environment. The analogy with a
collections of humans is of a period of thinking, followed by some (broadcasted) ac-
tion, e.g. speech. Backtracking can occur during thinking, but once an action has been
carried out, it cannot be undone.

3 Extensions of the Basic System

Above, we have described the principles behind the basic Concurrent METATEM system.
In this section, we will outline various extensions that have ither been implemented, or
are actively under development.

3.1 Autonomous Objects

There are a variety of extensions to Concurrent METATEM that allow objects to have
control, to some extent, over their own execution. In particular, these extensions allow
objects to control their interface with their environment.

Dynamic Interfaces The interface definition of an object defines the initial set of mes-
sages that are recognised by that object. However, the object may dynamically change
the set of messages that it recognises. In particular, an object can either start ‘listening’
for a new type of message, or start ‘ignoring’ previously recognised message types. For
example, given an original object interface such as

stack(pop,push)[popped,stack-full]

the object may dynamically choose to stop recognising ‘pop’ messages, for example
by executing ‘ignore(pop)’. This effectively gives the object the new interface

stack(push)[popped,stack-full].

Dynamic Message Queues Each object in the system has, associated with it, a mes-
sage queue representing the messages that the object has recognised, but has yet to
process. The number of messages that an object reads from its message queue during
an execution step is initially defined by the object’s interface. In principle, the execution
of an object is based on the set of messages received by the object since the last execu-
tion step it completed. Thus, Concurrent METATEM objects process sets of messages,
rather than enforcing some linearisation on the order of arrival of messages.

We are developing extensions to enable the object to dynamically modify its own
behaviour regarding the manipulation of its message queue. The default behaviour of
an object is for it to, at every execution step, read a sequence of messages from its input
queue up to either the end of the queue, or the repetition of a message. For example, if
the message queue is

pop(a), push(c), pop(d), pop(e), push(c), pop(f), pop(a), ...

then in one execution step the set of messages read in isf pop(a), push(c), pop(d), pop(e) g
and the message queue remaining is

push(c), pop(f), pop(a), ...

This behaviour can be modified dynamically so that, for example, objects read only
one message at a time from their input queue, or read up to the second occurrence
of either of several messages. Complex varieties of message queue manipulation may
be defined, depending on the properties of the Concurrent METATEM objects. Such
an extension is being developed through the use of extended primitive predicates (an
alternative approach is through the use of meta-level features [4]).

3.2 Synchronisation Mechanisms

There are two approaches to the synchronisation of asynchronously executing objects
in Concurrent METATEM, outlined as follows.

1. An object asks for something, continues processing, but does something when the
answer arrives.
Thus, a request is made and execution continues, but when a reply is received from
the environment, some suitable action is taken.

.... ⇒ askccdeeffg answer ⇒ do_it

Here ask is a component predicate and answer is an environment predicate.
2. An object asks for something, waits for an answer, and does something when the

answer arrives.
To suspend execution whilst waiting for a synchronisation message, an extra syn-
chronisation rule is added to (1) above, giving:

.... ⇒ askccdeeffg answer ⇒ do_itccdeeffg ask ⇒ answer

If an ask message has been sent, then the only way to satisfy this last rule is to
ensure that answer is received in the next state. Thus, the object cannot execute
further until the required message arrives, and consequently it is suspended.
Note that, until the appropriate synchronisation message arrives, execution of the
process suspends and no further incoming messages are processed (though they are
recorded).

3.3 Point-to-point message-passing

Although broadcast message passing has been defined as the primitive mechanism for
communication, point-to-point message-passing can be implemented on top of this.
Such a mechanism can either be provided as part of the implementation of Concurrent
METATEM, and made available through extra primitives, or can be provided by utilising
meta-level features within each Concurrent METATEM object (see [4] for an outline
of these basic features). To provide point-to-point message-passing using meta-level
features, every Concurrent METATEM object (that wishes to take part in such a scheme)
must include a ‘meta-rule’ of the form

send(me,X) ⇒ X

within its definition. Here ‘me’ is the name of that particular object. Thus, whenever an
object, obj1, wishes to send the message ‘p(a)’ to another object, obj2, the following
message must be broadcast by obj1:

send(obj2,p(a)).

If such a scheme is enforced in all objects, then point-to-point message passing is avail-
able throughout the system.

An alternative approach is to add an extra destination argument to each message.
Thus, to send the message ‘p(a)’ to object ‘obj2’, we broadcast

p(obj2,a)

and ensure that the rules in obj2 itself deal with this appropriately.

3.4 Synchronous Concurrent METATEM

A variation on the basic execution scheme for Concurrent METATEM is the development
of Synchronous Concurrent METATEM. In this system, each object executes in step and
messages sent from any object reach all other objects by the start of the next step. This
simplification removes the need for synchronisation using environment predicates, but
also reduces the flexibility of the approach (see [5] for an outline of this approach).

3.5 Groups

Finally, objects are also members of groups. Each object may be a member of several
groups. When an object sends a message, that message is, by default, broadcast to all
the members of its group(s), but to no other objects. Alternatively an object can select to
broadcast only to certain groups (of which it is a member). This mechanism allows the
development of complex structuring within the object space and provides the potential
for innovative applications, such as the use of groups to represent physical properties
of objects. For example, if we assume that any two objects in the same group can ‘see’
each other, then movement broadcast from one object can be detected by the other
object. Similarly, if an object moves ‘out of sight’, it moves out of the group and thus
the objects that remain in the group ‘lose sight’ of it. Examples, such as this (see also
§4.3), show some of the power of the group concept.

4 Examples

In this section we provide a range of examples exhibiting some of the applications of
Concurrent METATEM. Several of these examples represent abstractions of particular
application areas and, within each example, we will attempt to identify the properties
of Concurrent METATEM that make it suitable for use in that particular area. In addition
to those provided here, other ‘standard’ examples, such as the dining philosophers and
producer/consumer problems can be defined using Concurrent METATEM.

4.1 Snow White and The Seven Dwarves — A tale of 8 objects

We will first give a ‘toy’ example. This not only provides a simple and appealing in-
troduction to Concurrent METATEM, but also exhibits some of the features used later
in more complex systems. This example, taken from [15], is a descendent of the ‘re-
source controller’ example used in earlier papers on METATEM and, as such, is related

to a variety of resource allocation systems. However, the individual objects can be spe-
cified so that they show a form of ‘intelligent’ behaviour, and so this example system is
also related to applications in Distributed AI [12]. First, a brief outline of the properties
of the leading characters in this example will be given.

The Scenario Snow White has a bag of sweets. All the dwarves want sweets, though
some want them more than others. If a dwarf asks Snow White for a sweet, she will
give him one, but maybe not straight away. Snow White is only able to give away one
sweet at a time.

Snow White and the dwarves are going to be represented as a set of objects in
Concurrent METATEM. Each dwarf has a particular strategy that it uses in asking for
sweets, which is described below.

1. eager initially asks for a sweet and, from then on, whenever he receives a sweet,
asks for another.

2. mimic asks for a sweet whenever he sees eager asking for one.
3. jealous asks for a sweet whenever he sees eager receiving one.
4. insistent asks for a sweet as often as he can.
5. courteous asks for a sweet only when eager, mimic, jealous and insistent

have all asked for one.
6. generous asks for a sweet only when eager, mimic, jealous, insistent and

courteous have all received one.
7. shy only asks for a sweet when he sees no one else asking.
8. snow-white can only allocate one sweet at a time. She keeps a list of outstanding

requests and attempts to satisfy the oldest one first.
If a new request is received, and it does not occur in the list, it is added to the end.
If it does already occur in the list, it is ignored. Thus, if a dwarf asks for a sweet n
times, he will eventually receive at most n, and at least 1, sweets.

This example may seem trivial, but it represents a set of objects exhibiting different
behaviours, where an individual object’s internal rules can consist of both safety and
liveness constraints, and where complex interaction can occur between autonomous
objects.

The Program The Concurrent METATEM program for the scenario described above
consists of the definitions of 8 objects, given below. To give a better idea of the meaning
of the temporal formulae representing the internals of these objects, a brief description
will be given with each object’s definition. Requests to Snow White are given in the
form of an ask() message with the name of the requesting dwarf as an argument. Snow
White gives a sweet to a particular dwarf by sending a give() message with the name
of the dwarf as an argument. Finally, upper-case alphabetic characters, such as X and Y
represent universally quantified variables.

1. eager(give)[ask] :
start ⇒ ask(eager)ccdeeffggive(eager) ⇒ ask(eager)

Initially, eager asks for a sweet and, whenever he has just received a sweet, he
asks again.

2. mimic(ask)[ask] :ccdeeffgask(eager) ⇒ ask(mimic)
If eager has just asked for a sweet then mimic asks for one.

3. jealous(give)[ask] :ccdeeffggive(eager) ⇒ ask(jealous)
If eager has just received a sweet then jealous asks for one.

4. insistent[ask] :
start ⇒ ask(insistent)

From the beginning of time insistent asks for a sweet as often as he can.
5. courteous(ask)[ask] :2664 (¬ask(courteous))S ask(eager) ∧

(¬ask(courteous))S ask(mimic) ∧
(¬ask(courteous))S ask(jealous) ∧
(¬ask(courteous))S ask(insistent)

3775 ⇒ ask(courteous)

If courteous has not asked for a sweet since eager asked for one, has not asked
for a sweet since mimic asked for one, has not asked for a sweet since jealous
asked for one, and, has not asked for a sweet since insistent asked for one, then
he will ask for a sweet.

6. generous(give)[ask] :266664 (¬ask(generous))S give(eager) ∧
(¬ask(generous))S give(mimic) ∧
(¬ask(generous))S give(jealous) ∧
(¬ask(generous))S give(insistent) ∧
(¬ask(generous))S give(courteous)

377775 ⇒ ask(generous)

If generous has not asked for a sweet since eager received one, has not asked
for a sweet since mimic received one, has not asked for a sweet since jealous
received one, has not asked for a sweet since insistent received one, and, has
not asked for a sweet since courteous received one, then he will ask for a sweet!

7. shy(ask)[ask] :
start ⇒ }ask(shy)ccdeeffgask(X) ⇒ ¬ask(shy)ccdeeffgask(shy) ⇒ }ask(shy)

shy initially wants to ask for a sweet but is prevented from doing so whenever he
sees some other dwarf asking for one. Thus, he only succeeds in asking for one
when he sees no one else asking and, as soon as he has asked for a sweet, he wants
to try to ask again!

8. snow-white(ask)[give] :ccdeeffgask(X) ⇒ }give(X)
give(X) ∧ give(Y) ⇒ X=Y

If snow-white has just received a request from a dwarf, a sweet will be sent to
that dwarf eventually. The second rule ensures that sweets can not be sent to two
dwarves at the same time by stating that if both give(X) and give(Y) are to be
broadcast, then X must be equal to Y.

Note that, in this example, several of the dwarves were only able to behave as required
because they could observe all the ask() and give() messages that were broadcast.
The dwarves can thus be programmed to have strategies that are dependent on the
behaviour of other dwarves. Also, the power of executable temporal logic is exploited
in the definition several objects, particularly those using the ‘}’ operator to represent
multiple goals.

Though this example is fairly simple, it does give some idea of how complex inter-
acting systems can be developed using Concurrent METATEM. It also shows how useful
the model is, particularly when ‘intelligent’ objects (agents) are considered.

We also note that, as the objects behaviour is represented explicitly, and in a logical
way, the verification of properties of the system is possible. For example, given the
objects’ definitions, we are able to prove that every dwarf, except ‘shy’ will eventually
receive a sweet. (For further work on the verification of properties of such systems,
see [13].)

4.2 Cooperative and Competitive Behaviour

We now extend the type of example given above to incorporate the notion of some
other resource that the dwarves can attempt to exchange with Snow White for sweets,
e.g. money. Note that this example is taken from [11].

The purpose of this extension of the scenario is to show how not only can the
behaviours of single objects be developed, but also how more complex social structures
can be represented. In particular, we outline how both cooperation and competition can
be represented in Concurrent METATEM.

Bidding Initially, we will simply change the ask predicate so that it takes an extra
argument representing the amount the dwarf is willing to pay for a sweet. This enables
dwarves to ‘bid’ for a sweet, rather than just asking for one. For example, dwarf1 below
asks for a sweet, bidding ‘2’.

dwarf1()[ask] :
start ⇒ ask(dwarf1,2)

We can further modify a dwarf’s behaviour so that it does not bid more than it can
afford by introducing some record of the amount of money that the dwarf has at any
one time. Thus, the main rule defining the ‘bidding’ behaviour of a dwarf might become
something like ccdeeffg[money(N) ∧ N≥ 2] ⇒ ask(dwarf1,2)

Note that the behaviour of Snow White might also change so that all the bids are re-
corded then a decision over which bid to accept is made based upon the bids received.
Once a decision is made, give is again broadcast, but this time having an extra argu-
ment showing the amount paid for the sweet. For example, if Snow White accepts the
bid of ‘2’ from dwarf1, then give(dwarf1,2) is broadcast.

Finally, a dwarf whose bid has been accepted, in this case dwarf1, must remember
to record the change in finances:ccdeeffg[money(N) ∧ give(dwarf1,C)] ⇒ money(N-C)

Renewable Resources Dwarves who keep buying sweets will eventually run out of
money. Thus, we may want to add the concept of the renewal of resources, i.e., being
paid. This can either happen at a regular period defined within each dwarf’s rules, e.g.

start ⇒ money(100) ∧ paidccdeeffg[money(N) ∧ ccdeeffgccdeeffgccdeeffgccdeeffgpaid) ⇒ money(N+100) ∧ paid

or the dwarf can replenish its resources when it receives a particular message from its
environment, e.g.

dwarf1(go)[ask] :
start ⇒ money(100)ccdeeffg(money(N) ∧ go) ⇒ money(N+100)

Competitive Bidding As the bids that individual dwarves make are broadcast, other
dwarves can observe the bidding activity and can revise their bids accordingly. We saw
earlier that the ‘mimic’ dwarf asks for a sweet when it sees the ‘eager’ dwarf asking
for one. Similarly, dwarf2 might watch for any bids by dwarf1 and then bid more, e.g.,ccdeeffg[ask(dwarf1,B) ∧ myhigh(M) ∧ B>M] ⇒ ask(dwarf2,B+1) ∧ myhigh(B+1)

Although we will not give further detailed examples in this vein, it is clear that a range
of complex behaviours based upon observing others’ bids can be defined.

Borrowing Money Above we showed how individual dwarves might compete with
each other for Snow White’s sweets. Now, we will consider how dwarves might co-
operate in order to get sweets from Snow White. In particular, we consider the scenario
where one dwarf on its own does not have enough money to buy a sweet, and thus re-
quires a loan from other dwarves. In order to borrow money from other dwarves to
enable a single dwarf to buy a sweet, the dwarf can broadcast a request for a certain
amount. For example, if the dwarf (dwarf3 in this case) knows that the highest amount
bid for a sweet so far is X and he only has Y, then he can ask to borrow X-Y, possibly
as follows.

dwarf3(lend)[borrow, ask] :ccdeeffg[highest(X) ∧ money(Y) ∧ X>Y] ⇒ borrow(dwarf3,(X-Y)+1)

Now, if another dwarf, say dwarf4, offers to lend a certain amount, say Z, to dwarf3,
then another rule recording the loan must be added to dwarf3’s rule-set:ccdeeffg[lend(dwarf4,dwarf3,Z) ∧ money(Y)] ⇒ money(Y+Z) ∧ owe(dwarf4,Z)

Lending Behaviour Dwarves might have various strategies of lending and borrowing
money. For example, perhaps a dwarf won’t lend any more money to any dwarf who
still owes money. Further, a dwarf might be less likely to lend money to any dwarf who
has never offered to help his previous requests.

Again, a variety of strategies for lending and borrowing in this way can be coded in
Concurrent METATEM. Rather than giving further examples of this type, we next con-
sider the use of groups in the development of structured systems of interacting objects.

4.3 Societies of Dwarves

As described earlier, as well as the notion of autonomous objects, Concurrent META-
TEM also provides a larger structuring mechanism through the ‘groups’ extension. This
restricts the extent of an object’s communications and thus provides an extra mech-
anism for the development of strategies for organisations. Rather than giving detailed
examples, we will outline how the group mechanism could be used in Concurrent MET-
ATEM to develop further cooperation, competition and interaction amongst objects.

Again, we will consider a scenario similar to Snow White and the Seven Dwarves
described above, but will assume the existence of a large number of dwarves, and
possibly several Snow White’s! We will outline several examples of how the grouping
of these objects can be used to represent more complex or refined behaviour.

Collective Bidding If we again have a situation where dwarves bid for sweets, then
we can organise cooperation within groups so that the group as a whole puts together
a bid for a sweet. If successful, the group must also decide who to distribute the sweet
to. Thus, a number of groups might be cooperating internally to generate bids, but
competing (with other groups) to have their bid accepted.

Forming Subgroups Within a given group, various subgroups can be formed. For ex-
ample, if several members of a group are unhappy with another member’s behaviour,
they might be able to create a new subgroup within the old grouping which excludes the
unwanted object. Note that members of the subgroup can hear the outer group’s com-
munications, while members of the outer one cannot hear the inner group’s communic-
ations. Although we have described this as a retributive act, such dynamic restructuring
is natural as groups increase in size.

As we have seen above, by using a combination of individual object strategies and
of grouping objects together, we are able to form simple societies. In particular, we
can represent societies where individuals cooperate with their fellow group members,
but where the groups themselves compete for some global resource. Although our ex-
amples have been based upon objects competing and cooperating in order to get a
certain resource, many other types of multi-agent system can be developed in Concur-
rent METATEM. Finally, it is important to note that there is no explicit global control or
global plan in these examples. Individual objects perform local interactions with each
other and their environment.

4.4 Distributed Problem Solving

The next example we will look at is taken from [13], and defines simple, abstract distrib-
uted problem solving systems. We will assume that individual problem-solving objects
can be implemented in Concurrent METATEM and will look at how such objects can be
organised to form useful problem-solving architectures.

Hierarchical Problem Solving Once we have defined individual problem solvers, for
example simple planner objects, we can construct distributed problem solving systems.
The simplest approach is for one object to assign sub-plans to individual problem-
solvers. This can be achieved by defining an appropriate manager object which knows
about a variety of other problem-solving objects, can split a plan up and can assign
a particular sub-problem to a specific object. This approach would involve the use of
point-to-point message passing as the manager only wishes to pass each task on to one
specific object.

Group Problem Solving While the above approach is often used in real problem-
solving systems, a more dynamic and flexible architecture can be defined by utilising
the facility, in Concurrent METATEM, for having multiple objects recognising the same
messages. In particular, we can, in a way similar to the Contract Net approach [22],
broadcast sub-problems to be solved to a set of objects. Each object might attempt to
solve the problem in its own way, but the top-level object again waits until at least one
solution has been returned from the set of objects. Note that the manager object in this
case need not know exactly what other problem-solving objects exist.

We might define such a Concurrent METATEM system below.

manager(solution1)[problem1,solved1]:
start ⇒ }problem1;ccdeeffgsolution1 ⇒ solved1.

solvera(problem2)[solution2]:ccdeeffgproblem2 ⇒ solution2.

solverb(problem1)[solution2]:ccdeeffgproblem1 ⇒ }solution1.

solverc(problem1)[solution1]:ccdeeffgproblem1 ⇒ }solution1.

Here, solvera can solve a different problem from the one manager poses, while
solverb can solve the desired problem, but doesn’t announce the fact (as solution1
is not a component proposition for solverb); solverc can solve the problem posed
by manager, and will eventually reply with the solution.

Cooperative Problem-Solving We now look at a refinement of the above system,
where solverc has been removed and replaced by by two objects which together can
solve problem1, but can not manage this individually. These objects, called solverd
and solvere are defined below.

solverd(problem1,solution1.2)[solution1]:
(ccdeeffgsolution1.2 ∧ ♦problem1) ⇒ }solution1.

solvere(problem1)[solution1.2]:ccdeeffgproblem1 ⇒ }solution1.2.

Thus, when solverd receives the problem it cannot do anything until it has heard from
solvere. When solvere receives the problem, it broadcasts the fact that it can solve
part of the problem (i.e., it broadcasts solution1.2). When solverd sees this, it knows
it can solve the other part of the problem and broadcasts the whole solution.

More complex problem-solving architectures can be developed in a similar way.

4.5 Process Control

Next, we will describe an example system presented in [8] which models simple rail
networks and the movement of trains within them. The essential properties of this ex-
ample are that each station is represented by a Concurrent METATEM object, and each
object knows the identity of the next stations on its line(s). We then define a general
protocol in terms of permissions for trains to enter stations and the general goal of each
station to move trains on. Finally, we add initial conditions such as the initial placement
of trains within the system. As the set of Concurrent METATEM objects execute, they
communicate with each other in order to organise the movement of trains around the
system.

The Scenario First we will give a brief outline of the problem, then we show how
the elements can be abstractly modelled and prototyped using Concurrent METATEM.
Here, we model, abstractly, the behaviour of several networks of stations within a rail-
way system. We do not intend to describe all the details, but simply present executable
temporal logic programs that characterise the general behaviour of the system. Con-
sequently, the model we use will not correspond directly to a real-life transport system.
It represents an abstraction of such a system exhibiting several features fundamental to
the behaviour of transport systems. We will look at various configurations of lines and
stations, and will use the following simplifying restrictions.

– Each station can be occupied by at most one train.
– Each train is assigned to a particular line, and can only ever travel on that line.
– Trains can only travel in one direction on a particular line, and each line has a

direction associated with it.
– Networks consists only of stations, connected to each other.

Sample Network We will now show how a particular rail configuration can be rep-
resented in Concurrent METATEM by constraints within objects. This example, while
being simple, represents an abstraction of the typical properties of many networks. We
describe the network using the following predicates:

station(S) — the names of the stations.
line(T, L) — the line L of each train T.
has(S, T) — a predicate storing the name of the train T currently at station S.
next(S1, L, S2) — a predicate which stores, for each station S1, and line L, the next

station S2.

Whereas, in general, predicates can change value as the execution progresses, we con-
strain the station and next predicates as being constant throughout time.

The particular network given here consists of two lines, one moving clockwise and
one moving anti-clockwise, as shown in Figure 1. Thus, the lines join at station ‘D’,

lower line

upper line

F E

I

H

G

B

A C
D

Fig. 1. A double ring network

split at station ‘F’, and use same track at station ‘E’. So, if ‘upper’ is the line running
through A–B–C–D–E–F–A and ‘lower’ is the line running through G–H–I–D–E–F–G,
then the definitions of next are as follows

next(A,upper,B), next(D,upper,E), next(D,lower,E), next(G,lower,H),
next(B,upper,C), next(E,upper,F), next(E,lower,F), next(H,lower,I),
next(C,upper,D), next(F,upper,A), next(F,lower,G), next(I,lower,D)

The initial configuration uses two trains on each line: trains ‘1’ and ‘2’ run only on the
upper line, while trains ‘3’ and ‘4’ run only on the lower line. The initial placement of
these four trains is train ‘1’ at station ‘C’, train ‘2’ at station ‘E’, train ‘3’ at station ‘F’,
and train ‘4’ at station ‘H’.

Station ‘D’ differs from the other stations in this example in that it has two entry
points — station ‘C’ on the upper line and station ‘I’ on the lower line. This ‘mer-
ging’ station requires more sophisticated control rules than the single-entry stations.
The initial configuration for the double ring is:

has(train1,C), has(train3,F),
has(train2,E), has(train4,G)

The Program We will now show how the rail configurations described above together
with the movement of trains between stations can be modelled in Concurrent META-
TEM. Each station will be represented as a separate Concurrent METATEM object and
we will introduce a communication protocol which will enable stations to negotiate
the passing of trains between stations. Thus, rather than having a global model of the
system, the state of each station will be represented locally, with the station’s has and
next constraints being private to that station. Thus, for example, the Concurrent MET-
ATEM object representing station ‘F’ in the double ring network described above would
contain the following initial constraints

station(F), has(train3)

together with the following network details

next(upper, A), next(lower, G)

Each separate station will use the same set of Concurrent METATEM rules. The only
differences between stations will be their local next and has constraints. These for-
mulae representing initial placement and network configuration will thus be partitioned
amongst the appropriate objects. The rules will use the predicates defined earlier, to-
gether with the extra predicates request(), permit(), and moved(), whose effect can
be described as follows.

request(S, T) — a request message which is broadcast asking for permission for
train T to move to station S.

permit(S, T) — a message which is broadcast permitting train T to move to station
S.

moved(S, T) — a message which is broadcast as train T moves to station S.

Thus, in order for a train to move, the station it occupies must request the ‘next’ station
for permission to move the train on. A station can only give permission for a train to
move to it if the station is currently empty and no permission has been given to another
train. The interface definition for each station object is simply

station(request,permit,moved)[request,permit,moved].

showing that each station object both recognises and broadcasts instances of request,
permit and moved messages. The internal definition of each station is represented by
a set of 9 rules, described below. Note that, as usual, all upper-case letters represent
universally quantified variables. Also, the variables T1, T2 and T3 represent trains, while
S1 and S2 represent stations.

1. ccdeeffg[has(T1) ∧ line(T1,L) ∧ next(L,S1) ∧ ¬moved(S1,T1)] ⇒ has(T1)
If a station had a train, and the train has not moved, then the station still has that
train. Note that this can be seen as a simple frame condition.

2. 24 ccdeeffg[has(T1) ∧ line(T1,L) ∧ next(L,S1)]
∧

(¬request(S1,T1))Z(¬has(T1))

35 ⇒ request(S1,T1)

If a station had a train, and a request to move the train on has not been made during
this time, then the station will make such a request to the next station on the train’s
line.

3. ccdeeffg[has(T1)∧ line(T1,L)∧ next(L,S1)∧ permit(S1,T1)] ⇒ moved(S1,T1)
If a station had a train, and it has just received permission to move the train on to
its next station, then the train can be moved to its next station.

4. ccdeeffg[station(S2) ∧ moved(S2,T1)] ⇒ has(T1)
If a train has just moved to a station, then that station has it.

5. ccdeeffg[station(S2) ∧ moved(S2,T1)] ⇒ ¬permit(S2,T2)
If a train has just moved to a station, then that station cannot give permission to
any other trains to move to that station.

6. ccdeeffg[station(S2) ∧ request(S2,T1)] ⇒ }permit(S2,T1)
If a station receives a request for a train to be moved to the station, then eventually
it will give permission for this move.

7. [station(S2) ∧ permit(S2,T2) ∧ permit(S2,T3)] ⇒ T2 = T3
A station can only ever give permission to one move at a time.

8. ccdeeffg[station(S2) ∧ has(T1)] ⇒ ¬permit(S2,T2)
If a station has a train, then it can not give permission to any train wanting to move
to the station.

9. ccdeeffgstation(S2) ∧ (¬moved(S2,T1))S permit(S2,T1) ⇒ ¬permit(S2,T2)
If a station has given permission for a move, but the move has not yet occurred,
then the station can not give permission for any move (until the outstanding move
has been completed).

Again, though the above examples are simple abstractions of railway networks, they
exhibit features found in much larger, more complex rail systems. We also note that the
temporal rules within each object encapsulate both the protocol for transferring trains
and the goal of moving them along the line. As each station is represented by an object,
it has complete control over both the station’s state and the permissions granted to other
stations to send trains forward.

4.6 Fault Tolerant Systems

We next consider an application which utilises the combination of broadcast message-
passing and group structuring found in Concurrent METATEM. Many real-life fault-
tolerant systems, such as Distributed Operating Systems [6], utilise the power of broad-
cast message-passing to provide duplication of important resources. One common ap-
proach is that of ‘process pairs’ [7]. In this section, we outline the use of process pairs
for fault-tolerance, exhibiting the prower of the model of communication that we use.
It will hopefully be obvious to the reader that such systems can also be developed in
Concurrent METATEM.

Consider an ‘essential’ process in a distributed operating system, for example a
network server of some kind. This can be represented as the primary process in Figure 2.
Here, this process, if represented in Concurrent METATEM, might have an interface of
the form

primary(r1,...,rn)[a1,...,am]

where r1 to rn are the requests that the process recognises, while a1 to am are the replies
that it might send. The secondary object listens for exactly the same messages — this
is possible since all requests are broadcast. Further, the secondary object simulates
the behaviour of the primary object, with the exception that it does not broadcast any
messages of its own. Thus the secondary object would have the following interface.

secondary(r1,...,rn)[]

PRIMARY SECONDARY

Fig. 2. A Process and its ‘shadow object’

Now, the secondary object also notes the primary object’s activity. If the primary object
has not responded to a request for a specific amount of time, the secondary object
assumes that the primary object’s processor has ‘crashed’ and takes over the duties
associated with the service. This requires changing the object’s interface so that it now
broadcasts replies. At this stage, the secondary object has become the primary one and
it spawns a new copy of itself to act as the new secondary one. This final configuration
is shown in Figure 3. In this way, fault-tolerance can be added ‘seamlessly’ to certain

SECONDARYPRIMARY
SECONDARY

PRIMARY

Fig. 3. Secondary object takes over.

types of distributed systems. Note that, to implement this in Concurrent METATEM we
require both the ability to dynamically change an object’s interface and the ability to
create new objects. It should be clear from this example, that it is the use of broadcast
message-passing that is the main reason for the utility of such an approach.

4.7 Heterogeneous Systems

Finally, we note that the set of rules in each Concurrent METATEM object is effectively
a specification of the behaviour of that object (under a particular operational interpret-
ation). Thus, we can also view Concurrent METATEM as a framework for specifying
heterogeneous systems, with each object being implemented in several possible ways.
As long as each object satisfies its specification and observes the protocols regarding
communication, then the real implementation of the object can be anything: a Cobol
program, a Prolog program, a ‘real’ item of hardware, even a human.

5 Concluding Remarks

Concurrent METATEM not only provides a novel model for the simulation and imple-
mentation of reactive systems, but also incorporates executable temporal logic to im-
plement individual objects. Consequently, such objects have explicit logical semantics
and the behaviour of certain types of system is easily coded as temporal logic rules.
Concurrent METATEM has potential applications in a wide range of areas, for example
simulation and programming in concurrent and distributed systems, the development of
distributed algorithms, distributed process control, distributed learning/problem solv-
ing, and multi-agent AI. An advantage of this approach, at least when representing
certain systems from Distributed AI, is that the model follows the way in which hu-
mans communicate and cooperate.

5.1 Implementation

An implementation of (propositional) Concurrent METATEM has been developed. This
program provides a platform on which simple experiments into both synchronous and
asynchronous systems can be carried out. Experience with this system is directing the
implementation of full (first-order) Concurrent METATEM. Future implementation work
will include the development of efficient techniques for recognising and compiling both
point-to-point message-passing and groups via multi-cast message-passing.

5.2 Related Work

In [16], Gehani describes Broadcasting Sequential Processes (BSP) which is also based
on the asynchronous broadcasting of messages. As in Concurrent METATEM, objects
may screen out certain messages, but not only is the identity of the sender always in-
corporated into a message, but also objects cannot manipulate their message queue as
is intended in Concurrent METATEM. One, more fundamental, difference between BSP
and our approach is that objects in BSP are message driven. The Linda model [17]
has some similarities with this approach in that the shared data structures represented
in the Linda tuple space can be seen as providing a broadcast mechanism for data.
However, our computational model fixes much more than just the basic communica-
tion and distribution system. As mentioned earlier, the Concurrent METATEM model
has some similarities with the Actor model, the main differences being the ability to

act in a non message-driven way, the ability to process sets of incoming messages, and
the ability to synchronise with other objects. Maruichi et. al. [18] use a model of com-
putation similar to Concurrent METATEM for their investigation in DAI systems, while
several distributed operating systems also use the notion of process groups (what we
call ‘groups’) in order to group processes (objects) together [6].

Various executable temporal logics have been developed, for example [19, 1], but
few have incorporated the notions of concurrency and we know of none that are based
upon a computational model similar to the one described here. However, one compar-
able approach is Shoham’s work on Agent Oriented-Programming (AOP) [21]. Here,
individual agents are represented within a multi-modal logic, which is more concerned
with the beliefs, intentions and actions of agents that we are here. Further, both the
logical basis and the model of computation use in AOP are different to that considered
here.

5.3 Future work

Given an object’s interface definition, the internal computation method can be defined
in any way that is consistent with the interface. The possibility of using a mixture of
languages for the each object’s internal computation will be investigated. Within the
Concurrent METATEM model, both point-to-point message-passing and synchronous
processes can be developed. The current Concurrent METATEM interpreter already in-
cludes the possibility of executing objects synchronously, but more support needs to
be added to ensure that, if point-to-point message-passing is defined using broadcast
message-passing, it remains efficient.

We also intend to look at the incorporation of dynamic object creation into the
Concurrent METATEM system. On the formal side, we are developing a specification
and development framework for Concurrent METATEM systems and looking at giving
an algebraic semantics for Concurrent METATEM, for example based upon [20].

5.4 Acknowledgements

The author would like to thank Michael Wooldridge, Richard Owens, Howard Barringer
and Marcello Finger who have collaborated on several of the papers summarised here,
and Mark Reynolds who provided useful suggestions relating to the language.

References

1. M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Symbolic Computation,
8: 277–295, 1989.

2. G. Agha. Actors - A Model for Concurrent Computation in Distributed Systems. MIT Press,
1986.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A Framework
for Programming in Temporal Logic. In Proceedings of REX Workshop on Stepwise Refine-
ment of Distributed Systems: Models, Formalisms, Correctness, Mook, Netherlands, June
1989. (Published in LNCS volume 430, Springer Verlag).

4. H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-Reasoning in Executable Tem-
poral Logic. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning (KR), Cambridge, Massachusetts, April 1991.

5. H. Barringer and D. Gabbay. Executing temporal logic: Review and prospects (Extended
Abstract). In Proceedings of Concurrency ’88, 1988.

6. K. Birman. The Process Group Approach to Reliable Distributed Computing. Techanical
Report TR91-1216, Department of Computer Science, Cornell University, July 1991.

7. A. Borg, J. Baumbach, and S. Glazer. A Message System Supporting Fault Tolerance. In
Proceedingsof the Ninth ACM Symposium on Operating System Principles, New Hampshire,
October 1983. ACM. (In ACM Operating Systems Review, vol. 17, no. 5).

8. M. Finger, M. Fisher, and R. Owens. METATEM at Work: Modelling Reactive Systems Us-
ing Executable Temporal Logic. In Sixth International Conference on Industrial and Engin-
eering Applications of Artificial Intelligence and Expert Systems (IEA/AIE-93), Edinburgh,
U.K., June 1993. Gordon and Breach Publishers.

9. M. Fisher and H. Barringer. Concurrent METATEM Processes — A Languagefor Distributed
AI. In Proceedings of the European Simulation Multiconference, Copenhagen, June 1991.

10. M. Fisher and R. Owens. From the Past to the Future: Executing Temporal Logic Programs.
In Proceedings of Logic Programming and Automated Reasoning (LPAR), St. Petersberg,
Russia, July 1992. (Published in LNCS volume 624, Springer Verlag).

11. M. Fisher and M. Wooldridge. A Logical Approach to the Representation of Societies of
Agents. In Proceedings of Second International Workshop on Simulating Societies (SimSoc),
Certosa di Pontignano, Siena, Italy, July 1993.

12. M. Fisher and M. Wooldridge. Executable Temporal Logic for Distributed A.I. In Twelfth
International Workshop on Distributed A.I., Hidden Valley Resort, Pennsylvania, May 1993.

13. M. Fisher and M. Wooldridge. Specifying and Verifying Distributed Intelligent Systems. In
Portuguese Conference on Artificial Intelligence (EPIA). Springer-Verlag, October 1993.

14. M. Fisher. A Normal Form for First-Order Temporal Formulae. In Proceedings of Eleventh
International Conference on Automated Deduction (CADE), Saratoga Springs, New York,
June 1992. (Published in LNCS volume 607, Springer Verlag).

15. M. Fisher. Concurrent METATEM — A Language for Modeling Reactive Systems. In Par-
allel Architectures and Languages, Europe (PARLE), Munich, Germany, June 1993.

16. N. Gehani. Broadcasting Sequential Processes. IEEE Transactions on Software Engineer-
ing, 10(4):343–351, July 1984.

17. D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel programming in Linda. In
International Conference on Parallel Processing, August 1985.

18. T. Maruichi, M. Ichikawa, and M. Tokoro. Modelling Autonomous Agents and their
Groups. In Decentralized AI 2 – Proceedings of the 2nd European Workshop on Modelling
Autonomous Agents and Multi-Agent Worlds (MAAMAW). Elsevier/North Holland, 1991.

19. B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, Cam-
bridge, U.K., 1986.

20. K. V. S. Prasad. A Calculus of Broadcasting Systems. In Proceedings of the International
Joint Conference on Theory and Practice of Software Development (TAPSOFT), pages 338–
358, Brighton, U.K., April 1991. (Published in LNCS volume 493, Springer Verlag).

21. Y. Shoham. Agent Oriented Programming. Technical Report STAN–CS–1335–90, Depart-
ment of Computer Science, Stanford University, California, USA, 1990.

22. R. G. Smith and R. Davis. Frameworks for Cooperation in Distributed Problem Solving.
IEEE Transactions on Systems, Man and Cybernetics, 11(1):61–70, 1981.

This article was processed using the LATEX macro package with LLNCS style

