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Lecture 6: Probabilistic Reasoning

Introduction

The last lecture introduced probability theory and the notions of indepen-
dence and conditional independence. We move on to study how these are ap-
plied to reasoning given uncertainty.

Bayesian Network

The joint probability distribution specifies all the information about our do-
main, but it is also hard to apply as it becomes very large with increasing num-
ber of variables. A Bayesian network is a more compact representation of the
joint probability distribution.

A Bayesian network is a directed acyclic graph (DAG). Each node represents
a random variable and an edge connects two dependent nodes. If an arrow
points from node X to node Y, we say that X is a parent of Y. This means
(informally) that X influences Y.

Given its parents, each node X; has an associated conditional probability
distribution: P(X;|Parents(X;)). This specifies the effect that Parents(X;)
have on X;. (Note that, by definition, a DAG has no directed cycles.)

Alarm example

We went over the burglar alarm example (slide 6). An alarm may go off due
to a burglary or an earthquake. If the alarm goes off, two neighbors, John and
Mary will call the owner. However, John confuses a phone ring with the alarm,
while Mary often doesn't hear the alarm at all.

We represent this network with nodes B (Burglary), E (Earthquake), A (Alarm),
J (JohnCalls), and M (MaryCalls). B, E are parents of A.

A is a parent of J, M. Each variable has a conditional probability distribu-
tion specified in a conditonal probability table (CPT): P(B), P(E), P(A), P(J)
and P(M). Each row specifies the node's value given the parents' conditition-
ing values. For Boolean variables, we usually don't specify the second value
since P(—a) = 1 — P(a).

Through this representation we can cut down the number of probabilities
we deal with. Rather than 2* rows of calculation for a node with k parents (with
Boolean values). In the real word, we often find that connections between nodes
are sparse, and this makes our calculations relatively easier.

Meaning of Bayesian networks



The network allows us to calculate probability distributions as a product of
the the conditional probabilities. This factorization allows us to simply read off
the joint probability distribution: P(z1, ..., x,) = [[ P(z;|parents(X;)). These
are the global semantics of the Bayesian network(slide 8).

Each node is conditionally independent of its non-descendants given the
parents. These are the local semantics of the network. Once we fix u¢, ty,,
knowing z has no effect on z (slide 9). Judea Pearl showed that these two se-
mantics are equivalent. A Markov blanket for a node (slide 10) consists of the
node's parents, children and children's parents. Given the Markov blanket, the
node is conditionally independent of all other nodes.

Inference

Given an observed event (), we want to find the posterior probability dis-
tribution for the variables of interest (X), P(X |e). The remaining variables we
don't observe (y) are called hidden variables. We can find this by computing
the sum of the factored products of conditional probabilities in the network:
P(Xle) = aP(X,e) =a) P(X,ey).

However, the resulting algorithm has a high coplexity. With n boolean vari-
ables, the complexity is O(n2"). This can be improved with some optimiza-
tions. Constant terms can be removed from the summation, then using depth
first recursion to evaluate the expressions at each node. There are other tech-
niques that can be employed such as caching and clustering (slide 21, and sec-
tion 14.4 in the book for details).

Approximate Inference

Since exact inference can be computationally intractable, we can resort to
approximation methods using stochastic simulation. Directly sampling from
the distribution at the nodes, we can traverse the network and obtain probabil-
ity distributions for our variables of interest (slide 31).

Rejection sampling simulates values from prior distributions and rejects
outcomes that do no correspond to what was observed. The final estimate is
obtained by counting the values for the variable of interest. A complete algo-
rithm is presented in figure 14.13.

Importance sampling fixes the values for the observed variables and simu-
lates the relevant variables. The final counts are weighted by likelihood of the
event, which is the product of conditional probabilities for the evidence vari-
ables. The algorithm is presented in figure 14.14 and an example on slides 36-38.



