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Introduction

Previously we studied Bayesian networks as way of reasoning with uncer-
tainty. However, we assumed a static where information doesn't change over
time. Nowwe consider a dynamic system where new information arrives over
time and look at ways to cope with reasoning under uncertainty in such sys-
tems.

At a given time t, we consider two sets of variables: Xt which are not ob-
served (hidden variables) and Et which are observed (evidence variables). We
take a simple example where wewish to determine whether it's raining, but we
can only observe whether people have umbrellas or not. Xt corresponds to Rt,
a boolean hidden variable to indicate rain andEt corresponds toUt, an boolean
observed variable to indicate whether an umbrella was sighted.

Transition and Sensor Models

Our sequence of states starts at time t = 0 and over timewe have a sequence
of variables,X0, X1, X2, . . . and E1, E2, E3, . . . (the evidence variables begin to
arrive at time t = 1). Our model has two components: the transitionmodel and
the sensor model.

The transition model informs us of how the world evolves given our previ-
ous belief of theworld and is spcified asP (Xt|X0:t−1), whereX0:t−1 = {X0, . . . , Xt−1}.
In our example, this corresponds to the probability of rain today given the his-
tory of rain over previous days. However, our history can grow infinitely lead-
ing to a complex specification.

The Markov assumption allows us to simplify this: the current state de-
pends on a finite number of previous states. A first orderMarkov process spec-
ifies that the current state only depends on the previous state: P (Xt|X0:t−1) =
P (Xt|Xt−1). A second order Markov process specifies dependence on the pre-
vious two states: P (Xt|X0:t−1) = P (Xt|Xt−1, Xt−2). We will only make the
former assumption for our examples, but note that this may not always hold
in the real world. To remedy such cases, we can choose to make higher order
assumptions or augment the state by including other variables.

This leaves another issue though; we now have an unbounded set of dis-
tributions: P (X1|X0), P (X2|X1), . . . . We can deal with this by making an as-
sumption of a stationary process, which specifies that although the states can
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change, the model remains the same over time. Thus we always have one gen-
eral distribution: P (Xt|Xt−1).

The sensor model informs us of how evidence is used to update our beliefs.
Again, we require aMarkov assumption for the sensormodel: P (Et|X0:t, E0:t−1) =
P (Et|Xt). The figure in slide 14 depicts the model for our rain/umbrella exam-
ple.

At the outset, we require a prior probability P (X0), and we are then able to
specify the joint distribution over time: P (X0:t, E1:t) = P (X0)

∏t
i=1 P (Xt|Xt−1)P (Et|Xt).

Inference

There are three types of inference tasks that we can obtain from this model.

• Filtering is used to find the belief state: P (Xt|e1:t). An agent would use
this as the basis for decision making.

• Prediction is used to find the next states:P (Xtk |et:t), k > 0. An agent
would use evalauate possible actions when evidence is unavailable.

• Smoothing is used find previous states given the evidence we currently
have available: P (Xk|e1:t), 0 ≤ k < t. An agent might use this to deter-
mine past belief states and thus learn from history.

Computation

In filtering, an algorithm can maintain a current estimate use a recursive
procedure to update beliefs: P (Xt+1|e1:t+1) = f(P (Xt|e1:t, et+1). Slides 18-20
provide an overview of how to arrive at a function f1:t which is the basis for the
recursive procedure. It turns out that our probabilistic specification at a given
time t is a function of the transition and sensor models based on the state at
time t − 1. Slides 22-26 provide an example of applying this procedure to the
rain/umbrella example. Prediction uses just one part of the algoirthm for filter-
ing. We simply update the belief states without using the evidence.

Smoothing is a kind of interpolation between states where we have avail-
able evidence. Thus the computation is split in two parts corresponding to e1:k
and ek+1:t. This works out to the specification P (Xk|e1:t) = αf1:kbk − 1 : t. We
think of this as message passing in our model where f corresponds to mes-
sages passed forward, computed using the filtering method, and b corresponds
to messages passed backwards. Slides 29-34 cover the mathematical mechanics
of this process and provide an example.

Other Models
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We covered the most general class of models for probabilistic reasoning in
a dynamic situation. There are a number of specializations for specific cases.
Hidden Markov Models (HMM) use a single discrete variable to describe the
state of the world. An outcome of this case is that the model computations can
be simplied using matrix algorithms since the probabilities over time can be
specified as transition and sensor matrices. Kalman filters are used to model
continuous variables, for example motion tracking systems. The probabilistic
specification uses a Gaussian prior with linear Gaussian transition and sensor
models. Dynamic Bayesian Networks (DBN) are a kind of superset of Kalman
filters and HMMs, eĴer equipped for real world systems where non-Gaussian
posteriors are required. Slides 50 and 51 provide a taxonomy of the various
models that fall under the general class of Bayesian networks.
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