
Artificial Intelligence Ali Raza Syed
Lecture 8: Complex Decisions

Introduction

In this lecture, we're concerned with how agents shouldmake decisions un-
der uncertainty. Uncertainty arises from the non-deterministic environment:
each action has a set of possible outcomes or states. But the resulting states
have utilities which can be calculated. The best action can then be chosen by
employing decision theory which combines probability theory and utility the-
ory.

Suppose an action a can lead to a set of states sa. Then the outcome has an
expected utility, E(u(sa)) =

∑
s
′ ∈ sau(s

′
)P (sa = s

′
). The second term in the

summation is the probability of geĴing to a given state, while the first term is
utility of that state. This gives us a notion of how ''good'' an outcome can be
achieved by taking action a. A rational agent chooses an action a∗ which max-
imises the expected utility. This makes sense since utilities encode preferences
and thus a a rational agent chooses an action to achieve an outcomewhichmax-
imises preferences.

There are other critera for choosing an action rather than maximizing util-
ity. The maximin criterion chooses the least bad worst outcome. The maximax
criterion chooses the best outcome for each criterion to minimize regret.

Sequential Decition Problems

We assume that the environment is fully observable. An agent's utilty de-
pends on a sequence of actions and thus a sequence of states the agent moves
through. One option is to use a greedy technique so that, at any given point,
the agent alwaysmakes the best decision for the next outcome. But this leads to
a myopic viewwhich ignores the longer term utility and the need for planning.

Markovian Decision Problem

We specify a transition model for states, s a−→ s
′ : P (s

′ |s, a), which is Marko-
vian. In addition, the agent is rewarded at each state with the reward function,
R(s) (negative rewards are possible for bad outcomes). Then the utility of a run
is not just related to the final outcome, but sums over all the actions and states.
This leads to aMarkov decision process (MDP) applicable to a fully observable,
non-deterministic environment with additive rewards.

A solution to the MDP must specify the choice of action for every state and
we call this the policy (π(s) : s → a). The optimum policy is defined as the

1



policy with highest expected utility; thus an agent chooses an action based on
the optimum policy π∗(s).

Given a run,wewould like to compute the utility of that run,Urun(s1, · · · , sn).
We need to consider, for our environment, whether the horizon is finite or infi-
nite, that is, does the environment stop at some point or can the agent continue
indefinitely to find the best outcome. An infinite horizon has stationary utili-
ties: the same state always has the same value. So infinite horizons are easier
to deal with when determining the optimal policy.

Given stationarity, we can use additive or discounted rewards. Additive
rewards assign utilities to runs by summing the rewards: Urun(s0, s1, · · · ) =
R(s0)+R(s1)+ · · · , while discounted rewards use a discount factor 0 ≤ γ ≤ 1:
Urun(s0, s1, s2, · · · ) = R(s0) + γR(s1) + γ2R(s2) + · · · . Under an additive re-
wards structure, the infinite horizon can lead to policy utilities of ±∞ and we
are unable to compare policies. Thus we might prefer discounted rewards un-
less we can restrict our runs to some finite sequence.

Bellman Equations

The Bellman equation is U(s) = R(s) + E(best action). So the utility of a
state is the reward for for achieving that state and the expected utility for the
next state based on the optimal action to be taken. The utilities of the states
can be then set up as a system equations (one for each state si). This leads to
an iteration algorithm for finding the solution to our MDP. We start by assign
arbitrary values to the the utilities and update the utility of each state through:
Ui+1(s) = R(s) + γmaxa∈A(s)

∑
s′ P (s

′ |s, a)Ui(s
′
), where i denotes the current

iteration. Bellman proved that these are guaranteed to converge to the solution
of our system of equations.

Given a policy, πi(s), we can determine the utility of each state under that
policy. This allows us to tweak the policy to determine a new one, πi+1(2). The
policy iteration algorithm also converges.

POMDP

The MDP assumes a fully observable environment so that the agent always
knows what state it's in and the optimal policy depends on the current state. In
the real world, we have partially observable environments, where the current
state may be unclear. Instead we have a probability distribution over the set
of possible states. This leads to the Partially Observable MDP. The setup for a
POMDP is similar to the filtering problem, discussed in the context of Bayesian
networks, with both transition and sensor models, and allows us to compute
the current belief based on conditional distributions. A POMDP hinges on be-
lief rather the a notion of a best action given a state.

2


