
INTELLIGENT AGENTS

Intelligent Agents

•We are going to take a very agent-based perspective on artificial
intelligence.

• One of the main ways that AI is viewed at the moment.

csc74010-fall2011-parsons-lect01 2

Intelligent Agents

• An agent is a system that:

– is situated in an environment,

– is capable of perceiving its environment, and

– is capable of acting in its environment

with the goal of satisfying its design objectives.

csc74010-fall2011-parsons-lect01 3

• Pictorially:

sensors

effectors

percepts

actions

Environment

• The task is to program the agent to convert percepts to actions.

csc74010-fall2011-parsons-lect01 4

• Human “agent”:

– environment: physical world;

– sensors: eyes, ears, . . .

– effectors: hands, legs, . . .

• Software agent:

– environment: (e.g.) UNIX operating system;

– sensors: ls, ps, . . .

– effectors: rm, chmod, . . .

• Robot:

– environment: physical world;

– sensors: sonar, camera;

– effectors: wheels.

csc74010-fall2011-parsons-lect01 5 csc74010-fall2011-parsons-lect01 6

What to do?

Those who do not reason
Perish in the act.

Those who do not act
perish for that reason

(W H Auden)

• The key problem we have is knowing the right thing to do.

• Knowing what to do can in principle be easy: consider all the
alternatives, and choose the “best”.

• But any time-constrained domain, we have to make a decision in
time for that decision to be useful!

• A tradeoff.

csc74010-fall2011-parsons-lect01 7

• Ideal rational agent:

For each percept sequence, an ideal rational agent will act to
maximise its expected performance measure, on the basis of
information provided by percept sequence plus any information
built in to agent.

• Note that this does not preclude performing actions to find things
out.

•More precisely, we can view an agent as a function:

f : P∗ → A

from sequences of percepts P to actions A.

csc74010-fall2011-parsons-lect01 8

csc74010-fall2011-parsons-lect01 9

Simple reflex agent

• A simple agent maps percepts directly to actions:

Agent

E
n

viro
n

m
en

t

Sensors

What the world
is like now

What action I
should do nowCondition−action rules

Actuators

csc74010-fall2011-parsons-lect01 10

• In the “vacuum world”:

A B

• A simple agent may suffice:

csc74010-fall2011-parsons-lect01 11

function REFLEX-VACUUM-AGENT([location,status]) returns an
action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

csc74010-fall2011-parsons-lect01 12

• A more general version of this program, which works for the
agent architecture given above, is on the next slide.

csc74010-fall2011-parsons-lect01 13

function SIMPLE-REFLEX-AGENT(percept) returns an action

static: rules, a set of condition-action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action← rule.action
return action

csc74010-fall2011-parsons-lect01 14

Fully observable versus partially observable

• A fully observable environment is one in which the agent can
obtain complete, accurate, up-to-date information about the
environment’s state.

• Such an environment is also called accessible.

•Most moderately complex environments (including, for
example, the everyday physical world and the Internet) are only
partially observable.

• Such environments are also known as non-accessible

• The more observable an environment is, the simpler it is to build
agents to operate in it.

csc74010-fall2011-parsons-lect01 15

Deterministic versus non-deterministic

• A deterministic environment is one in which any action has a
single guaranteed effect — there is no uncertainty about the state
that will result from performing an action.

• The physical world can to all intents and purposes be regarded
as non-deterministic.

• The textbook calls non-deterministic environments stochastic if
we quantify the non-determinism using probability theory.

• Non-deterministic environments present greater problems for
the agent designer.

csc74010-fall2011-parsons-lect01 16

Episodic versus sequential .

• In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios.

• An example of an episodic environment would be an assembly
line where an agent had to spot defective parts.

• Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to perform
based only on the current episode — it need not reason about the
interactions between this and future episodes.

• Environments that are not episodic are called either non-episodic
or sequential. Here the current decision affects future decisions.

• Driving a car is sequential.

csc74010-fall2011-parsons-lect01 17

Static vs dynamic .

• A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the agent.

• A dynamic environment is one that has other processes operating
on it, and which hence changes in ways beyond the agent’s
control.

• The physical world is a highly dynamic environment.

• One reason an environment may be dynamic is the presence of
other agents.

csc74010-fall2011-parsons-lect01 18

Discrete vs continuous .

• An environment is discrete if there are a fixed, finite number of
actions and percepts in it.

• The textbook gives a chess game as an example of a discrete
environment, and taxi driving as an example of a continuous
one.

csc74010-fall2011-parsons-lect01 19

Abstract Architectures for Agents

• Assume the environment may be in any of a finite set E of
discrete, instantaneous states:

E = {e, e′, . . .}.

• Agents are assumed to have a repertoire of possible actions
available to them, which transform the state of the environment.

Ac = {α, α′, . . .}

• Actions can be non-deterministic, but only one state ever results
from and action.

• A run, r, of an agent in an environment is a sequence of
interleaved environment states and actions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ · · ·
αu−1−→ eu

csc74010-fall2011-parsons-lect01 20

•When actions are deterministic each state has only one possible
successor.

csc74010-fall2011-parsons-lect01 21

•When actions are non-deterministic a run (or trajectory) is the
same, but the set of possible runs is more complex.

csc74010-fall2011-parsons-lect01 22

• Let:

– R be the set of all such possible finite sequences (over E and
Ac);

– RAc be the subset of these that end with an action; and

– RE be the subset of these that end with an environment state.

•We will use r, r′, . . . to stand for the members ofR

csc74010-fall2011-parsons-lect01 23

Environments

• A state transformer function represents behaviour of the
environment:

τ : RAc → ℘(E)

• Note that environments are. . .

– history dependent.

– non-deterministic.

• If τ (r) = { }, there are no possible successor states to r, so we say
the run has ended. (“Game over.”)

• An environment Env is then a triple Env = 〈E, e0, τ〉 where E is set
of environment states, e0 ∈ E is initial state; and τ is state
transformer function.

csc74010-fall2011-parsons-lect01 24

Agents

•We can think of an agent as being a function which maps runs to
actions:

Ag : RE → Ac

• Thus an agent makes a decision about what action to perform
based on the history of the system that it has witnessed to date.

• Let AG be the set of all agents.

csc74010-fall2011-parsons-lect01 25

Systems

• A system is a pair containing an agent and an environment.

• Any system will have associated with it a set of possible runs;
we denote the set of runs of agent Ag in environment Env by
R(Ag,Env).

• AssumeR(Ag,Env) contains only runs that have ended.

csc74010-fall2011-parsons-lect01 26

• Formally, a sequence

(e0, α0, e1, α1, e2, . . .)

represents a run of an agent Ag in environment Env = 〈E, e0, τ〉 if:

1. e0 is the initial state of Env

2. α0 = Ag(e0); and

3. for u > 0,
eu ∈ τ ((e0, α0, . . . , αu−1)) and
αu = Ag((e0, α0, . . . , eu))

• Two agents are said to be behaviorally equivalentwith respect to
Env iffR(Ag1,Env) = R(Ag2,Env).

csc74010-fall2011-parsons-lect01 27

Simple reflex agents

• Given this notation we can write the simple reflex agents we met
above as having an action function that maps state to action:

action : E → Ac

• A thermostat is a simple reflex agent:

action(e) =

off if e = temperature OK
on otherwise.

csc74010-fall2011-parsons-lect01 28

Agents with State

action

state

percepts

actions

see

next

Environment

csc74010-fall2011-parsons-lect01 29

• The see function is the agent’s ability to observe its environment,
whereas the action function represents the agent’s decision
making process.

• Output of the see function is a percept:

see : E → Per

which maps environment states to percepts.

• The agent has some internal data structure, which is typically
used to record information about the environment state and
history.

• Let I be the set of all internal states of the agent.

csc74010-fall2011-parsons-lect01 30

• The action-selection function action is now defined as a mapping

action : I → Ac

from internal states to actions.

• An additional function next is introduced, which maps an
internal state and percept to an internal state:

next : IxPer → I

• This says how the agent updates its view of the world when it
gets a new percept.

csc74010-fall2011-parsons-lect01 31

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept see(e).

3. Internal state of the agent is then updated via next function,
becoming next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).

This action is then performed.

5. Goto (2).

csc74010-fall2011-parsons-lect01 32

Tasks for Agents

•We build agents in order to carry out tasks for us.

• The task must be specified by us. . .

• But we want to tell agents what to do without telling them how
to do it.

csc74010-fall2011-parsons-lect01 33

Utility Functions

• One possibility: associate utilitieswith individual states — the
task of the agent is then to bring about states that maximise
utility.

• A task specification is a function

u : E → IR

which associated a real number with every environment state.

csc74010-fall2011-parsons-lect01 34

• But what is the value of a run. . .

– minimum utility of state on run?

– maximum utility of state on run?

– sum of utilities of states on run?

– average?

• Disadvantage: difficult to specify a long term view when
assigning utilities to individual states.

• One possibility: a discount for states later on. This is what we do
in reinforcement learning.

csc74010-fall2011-parsons-lect01 35

Utilities over Runs

• Another possibility: assigns a utility not to individual states, but
to runs themselves:

u : R → IR

• Such an approach takes an inherently long term view.

• Other variations: incorporate probabilities of different states
emerging.

csc74010-fall2011-parsons-lect01 36

Utility in the Tileworld

• Simulated two dimensional grid environment on which there are
agents, tiles, obstacles, and holes.

• An agent can move in four directions, up, down, left, or right,
and if it is located next to a tile, it can push it.

• Holes have to be filled up with tiles by the agent. An agent
scores points by filling holes with tiles, with the aim being to fill
as many holes as possible.

csc74010-fall2011-parsons-lect01 37

• The agent starts to push a tile towards the hole.

csc74010-fall2011-parsons-lect01 38

• TILEWORLD changes with the random appearance and
disappearance of holes.

• Utility function defined as follows:

u(r) =̂
number of holes filled in r

number of holes that appeared in r

• TILEWORLD captures the need for reactivity and for the
advantages of exploiting opportunities.

csc74010-fall2011-parsons-lect01 39

Expected Utility
•Write P(r | Ag,Env) to denote probability that run r occurs when
agent Ag is placed in environment Env.

• In a non-deterministic environment, for example, this can be
computed from the probability of each step.

• For a run r = (e0, α0, e1, α1, e2, . . .):

Pr(r | Ag,Env) = Pr(e1, | e0, α0) Pr(e2 | e1, α1) . . .

and clearly:

∑

r∈R(Ag,Env)
P(r | Ag,Env) = 1.

• The expected utility of agent Ag in environment Env (given P, u), is
then:

EU(Ag,Env) =
∑

r∈R(Ag,Env)
u(r)P(r | Ag,Env).

csc74010-fall2011-parsons-lect01 40

An Example

Consider the environment Env1 = 〈E, e0, τ〉 defined as follows:

E = {e0, e1, e2, e3, e4, e5}

τ (e0
α0−→) = {e1, e2}

τ (e0
α1−→) = {e3, e4, e5}

There are two agents possible with respect to this environment:

Ag1(e0) = α0

Ag2(e0) = α1

csc74010-fall2011-parsons-lect01 41

The probabilities of the various runs are as follows:

P(e0
α0−→ e1 | Ag1,Env1) = 0.4

P(e0
α0−→ e2 | Ag1,Env1) = 0.6

P(e0
α1−→ e3 | Ag2,Env1) = 0.1

P(e0
α1−→ e4 | Ag2,Env1) = 0.2

P(e0
α1−→ e5 | Ag2,Env1) = 0.7

Assume the utility function u1 is defined as follows:

u1(e0
α0−→ e1) = 8

u1(e0
α0−→ e2) = 11

u1(e0
α1−→ e3) = 70

u1(e0
α1−→ e4) = 9

u1(e0
α1−→ e5) = 10

What are the expected utilities of the agents for this utility
function?

csc74010-fall2011-parsons-lect01 42

Optimal Agents

• The optimal agent Agopt in an environment Env is the one that
maximizes expected utility:

Agopt = arg max
Ag∈AG

EU(Ag,Env) (1)

• Of course, the fact that an agent is optimal does not mean that it
will be best; only that on average, we can expect it to do best.

• To see the difference between these two ideas, remember the
Patriots 4th down against the Colts the other season.

• Also note that though this characterises an optimal agent, it does
not tell us how to build an optimal agent.

csc74010-fall2011-parsons-lect01 43

Bounded Optimal Agents

• Some agents cannot be implemented on some computers

• A function Ag : RE → Ac may need more than available memory
to implement.

•Write AGm to denote the agents that can be implemented on
machine m:

AGm = {Ag | Ag ∈ AG and Ag can be implemented on m}.

• The bounded optimal agent, Agbopt, with respect to m is then. . .

Agbopt = arg max
Ag∈AGm

EU(Ag,Env) (2)

csc74010-fall2011-parsons-lect01 44

Predicate Task Specifications

• A special case of assigning utilities to histories is to assign 0
(false) or 1 (true) to a run.

• If a run is assigned 1, then the agent succeeds on that run,
otherwise it fails.

• Call these predicate task specifications.

• Denote predicate task specification by Ψ:

Ψ : R → {0, 1}

csc74010-fall2011-parsons-lect01 45

Task Environments

• A task environment is a pair 〈Env,Ψ〉, where Env is an
environment, and

Ψ : R → {0, 1}

is a predicate over runs.

• Let T E be the set of all task environments.

• A task environment specifies:

– the properties of the system the agent will inhabit;

– the criteria by which an agent will be judged to have either
failed or succeeded.

csc74010-fall2011-parsons-lect01 46

•Write RΨ(Ag,Env) to denote set of all runs of the agent Ag in
environment Env that satisfy Ψ:

RΨ(Ag,Env) = {r | r ∈ R(Ag,Env) and Ψ(r) = 1}.

•We then say that an agent Ag succeeds in task environment
〈Env,Ψ〉 if

RΨ(Ag,Env) = R(Ag,Env)

• In other words, an agent succeeds if every run satisfies the
specification of the agent.

csc74010-fall2011-parsons-lect01 47

•We might write this as:

∀r ∈ R(Ag,Env),we haveΨ(r) = 1

• This is a bit pessimistic.

• If the agent fails on a single run, we say it has failed overall.

• A more optimistic idea of success is:

∃r ∈ R(Ag,Env),we haveΨ(r) = 1

which counts an agent as successful as soon as it completes a
single successful run.

csc74010-fall2011-parsons-lect01 48

The Probability of Success

• If the environment is non-deterministic, the τ returns a set of
possible states.

•We can define a probability distribution across the set of states.

• Let P(r | Ag,Env) denote probability that run r occurs if agent Ag
is placed in environment Env.

• Then the probability P(Ψ | Ag,Env) that Ψ is satisfied by Ag in Env
would then simply be:

P(Ψ | Ag,Env) =
∑

r∈RΨ(Ag,Env)
P(r | Ag,Env)

csc74010-fall2011-parsons-lect01 49

Summary .

• This lecture has looked at:

– The notion of intelligent agents

– A classification of agent environments.

– A simple model of agents and environments.

• Broadly speaking, the rest course will cover the some of the more
advanced techniques of AI, with special reference to agents.

• The techniques we’ll look at will start with those applicable to
simple environments and move towards those suitable for more
complex environments.

csc74010-fall2011-parsons-lect01 50

