
LOGICAL AGENTS

Introduction

• The first section of the course will look at reasoning techniques,
based around the use of logic.

•We’ll start by looking at an example of what we mean by
“reasoning”.

•We’ll follow that by looking at how we use logic to achieve it.

• And we’ll finish up by looking at one approach to proof.
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Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system)

– TELL it what it needs to know

• Then it can ASK itself what to do—answers should follow from
the KB
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• Agents can be viewed at the knowledge level

– what they know, regardless of how implemented

• Or at the implementation level

– data structures in KB and algorithms that manipulate them
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function KB-AGENT( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB,MAKE-PERCEPT-SENTENCE( percept, t))
action←ASK(KB,MAKE-ACTION-QUERY(t))
TELL(KB,MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action
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• An agent has to be able to:

– Represent states, actions, etc.

– Incorporate new percepts

– Update internal representations of the world

– Deduce hidden properties of the world

– Deduce appropriate actions
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Wumpus world
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– Actuators: Left turn,
Right turn Forward,
Grab, Release, Shoot

– Sensors: Breeze, Glitter,
Smell
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Environment

• Squares adjacent to wumpus are smelly

• Squares adjacent to pit are breezy

• Glitter iff gold is in the same square

• Shooting kills wumpus if you are facing it

• Shooting uses up the only arrow

• Grabbing picks up gold if in same square

• Releasing drops the gold in same square
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Performance measure

• Gold

– Score: +1000

• Death

– Score: -1000

• Taking a step

– Score: -1

• Use of arrow

– Score: -10
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Characterization of WW

• Observable/Accessible?
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Characterization of WW

• Observable/Accessible? No—only local perception
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic?
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic?
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

csc74010-fall2011-parsons-lect02 15

Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static?
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static Yes—Wumpus and Pits do not move
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static Yes—Wumpus and Pits do not move

• Discrete?
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static Yes—Wumpus and Pits do not move

• Discrete Yes
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static Yes—Wumpus and Pits do not move

• Discrete Yes

• Single-agent?
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Characterization of WW

• Observable/Accessible? No—only local perception

• Deterministic Yes—outcomes exactly specified

• Episodic No—sequential at the level of actions

• Static Yes—Wumpus and Pits do not move

• Discrete Yes

• Single-agent Yes—Wumpus is essentially a natural feature
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Exploring the WW
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Other tight spots

A

B OK
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– Breeze in (1,2) and (2,1)
⇒ no safe actions

– Assuming pits uniformly
distributed, (2,2) has pit
w/ prob 0.86, vs. 0.31
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A

S

– Smell in (1,1) ⇒ cannot move

– Can use a strategy of coercion:

∗ Shoot straight ahead

∗Wumpus was there ⇒ dead ⇒
safe

∗Wumpus wasn’t there ⇒ safe
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Logic
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Logic really

• Logics are formal languages for representing information such
that conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the “meaning” of sentences

– Define truth of a sentence in a world

• For example, the language of arithmetic

x + 2 ≥ y is a sentence;

x2 + y > is not a sentence

x + 2 ≥ y is true iff the number x + 2 is no less than the number
y

x + 2 ≥ y is true in a world where x=7, y=1

x + 2 ≥ y is false in a world where x=0, y=6
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Entailment

• Entailment means that one thing follows from another:

KB |= α

• Knowledge base KB entails sentence α if and only if α is true in all
worlds where KB is true.

• The KB containing “the Giants won” and “the Jets won” entails
“The Giants won or the Jets won”

• x + y=4 entails 4= x + y

• Entailment is a relationship between sentences, syntax, that is
based on semantics
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Model

• Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

•We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB |= α if and only if M(KB) ⊆ M(α)

KB = Giants won and Jets won

α = Jets won
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Entailment in WW

AA

B

?
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?

– Situation after detecting
nothing in [1,1], moving
right, breeze in [2,1]

– Consider possible models,
assuming only pits

– 3 Boolean choices ⇒ 8
possible models
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KB = wumpus-world rules + observations
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KB = wumpus-world rules + observations

α1 = “[1,2] is safe”, KB |= α1, proved by model checking
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KB = wumpus-world rules + observations

α2 = “[2,2] is safe”, KB 6|= α2
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Inference

•When:
KB |= α

We say that α is a logical consequence of KB.

• Consequences of KB are a haystack

α is a needle.

• KB ⊢i α says sentence α can be derived from KB by some
inference procedure i.

• If the KB entails α there is a needle in the haystack

Inference tells us how to find it.
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Properties of an inference procedure

• Soundness: i is sound if whenever KB ⊢i α, it is also true that
KB |= α.

If we find a needle, it is really in the haystack.

If our inference procedure finds α, then it is a logical
consequence.

• Completeness i is complete if whenever KB |= α, it is also true that
KB ⊢i α

We can find every needle in the haystack.

Our inference procedure will find every logical consequence.
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Preview

•We will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there
exists a sound and complete inference procedure.

• That is, the procedure will answer any question whose answer
follows from what is known by the KB.

• But first we will look at a simpler logic.

• (This is a subset of first order logic, so we will reuse everything
that we do here.)
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Propositional Logic — Syntax

• Propositional logic is the simplest logic—illustrates basic ideas

• Definition: A proposition is a statement that can be either true or
false; it must be one or the other, and it cannot be both.

• The following are propositions:

– the reactor is on;

– the wing-flaps are up;

– Marvin K Mooney is president.

whereas the following are not:

– are you going out somewhere?

– 2+3

• A good test for a proposition is to ask “Is it true that. . . ?”.

• If that makes sense, it is a proposition.
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• Now, rather than write out propositions in full, we will
abbreviate them by using propositional variables.

• It is standard practice to use the lower-case roman letters

p, q, r, . . .

to stand for propositions.

• Just to be confusing, we, like the textbook have been using the
proposition symbols B1,2 to stand for:

It is breezy in [1, 2].

• These propositions, which indicate a single thing in the real
world, are called atomic propositions.

• These propositions are also a simple form of sentence.

•We can also construct more complex sentences in the form of
compound propositions.
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• If S is a sentence, ¬S is a sentence

negation

• If S1 and S2 are sentences, S1 ∧ S2 is a sentence

conjunction

• If S1 and S2 are sentences, S1 ∨ S2 is a sentence

disjunction

• If S1 and S2 are sentences, S1 ⇒ S2 is a sentence

implication

• If S1 and S2 are sentences, S1 ⇔ S2 is a sentence

biconditional

• Given some language (set of propositions), we will writeW to
denote all the sentences that can be constructed using these rules.
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Propositional logic — Semantics

• Each model specifies true/false for each proposition symbol

• Also called an interpretation

• Also called a valuation

• Here’s a model/interpretation/valuation:

P1,2 P2,2 P3,1

true true false

•With these symbols, 8 possible models/interpretations/
valuations, can be enumerated automatically.
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• Rules for evaluating truth with respect to a model m

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true

• Simple recursive process evaluates an arbitrary sentence

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true= true
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Truth tables for connectives

• These rules correspond to the truth tables for the connectives:

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

• Each line in a truth table is a model.
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Validity and satisfiability

• If we consider all possible models, there are different properties
that may hold for a sentence.

• A sentence is valid if it is true in all models.

True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

• Validity is connected to inference via the Deduction Theorem:

KB |= α if and only if (KB ⇒ α) is valid

• A sentence that is valid is said to be a tautology.
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• A sentence is satisfiable if it is true in somemodel

A ∨ B C

• It is satisfiable if it is possible to make it true by picking the right
truth values for its atomic propositions.

• If a sentence is satisfiable we also say that it is consistent.
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• A sentence is unsatisfiable if it is true in nomodels

A ∧ ¬A

• If a sentence is unsatisfiable, then clearly it is not satisfiable
(hence the name).

• It is clearly not consistent either, so we call it inconsistent.

• Satisfiability is connected to inference via:

KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

Thus we can prove α by reductio ad absurdum
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Truth tables for inference

• Recall that KB |= α if and only if M(KB) ⊆ M(α).

We illustrated this graphically for the WW.

• Turns out we can determine if M(KB) ⊆ M(α) using truth tables.

•We write out every possible combination of truth values for the
atomic propositions.

Enumerate all the models.

• If KB is true in row, check that α is too.

If this is the case, then M(KB) ⊆ M(α) and so KB |= α
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Truth tables for inference

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
... ... ... ... ... ... ... ... ... ... ... ... ...

false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
... ... ... ... ... ... ... ... ... ... ... ... ...

true true true true true true true false true true false true false

• Here KB |= B2,1.
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Algorithm for this inference procedure

function TT-ENTAILS?(KB,α) returns true or false
inputs: KB, the knowledge base,

a sentence in propositional logic
α, the query,

a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α

return TT-CHECK-ALL(KB,α, symbols, [ ])
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function TT-CHECK-ALL(KB,α, symbols,model) returns
true or false

if EMPTY?(symbols) then
if PL-TRUE?(KB,model) then return PL-TRUE?(α,model)
else return true

else do
P← FIRST(symbols); rest←REST(symbols)
return TT-CHECK-ALL(KB,α, rest, EXTEND(P, true,model))
and TT-CHECK-ALL(KB,α, rest, EXTEND(P, false,model))
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• TT-CHECK-ALL is first called with an empty model and
recursively expands it.

– Tries to avoid enumerating all the models

• PL-TRUE? returns true if a sentence holds in the model.

• EXTEND(P, true,model)) extends a partial model (only gives
values for some propositions) with one in which P is true.

• This algorithm is sound and complete

• For n symbols this is O(2n).

– co-NP-complete

• So, that is not good, but it does give our logical agent a way to
figure things out about the world.
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• Here is another way to think about what we are doing here.

• Theorem:
{S1, . . . , Sn} |= C

iff
|= (S1 ∧ · · · ∧ Sn)⇒ C

• So we have a method for determining whether C is a logical
consequence of S1, . . . Sn.

•We use a truth table to see whether S1 ∧ · · · ∧ Sn ⇒ C is a
tautology.

• If it is, then C is a logical consequence of S1, . . . , Sn.

•We call this the truth table method.
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• For example, to show that

p ∧ q |= p ∨ q.

To do this, we construct a truth-table for

(p ∧ q)⇒ (p ∨ q).

Here it is:
(1) (2)

p q p ∧ q p ∨ q (1)⇒ (2)
false false false false true
false true false true true
true false false true true
true true true true true

Since
(p ∧ q)⇒ (p ∨ q).

is true in every model, we have that p ∨ q is a logical
consequence of p ∧ q.
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Logical equivalence

• Two sentences are emphlogically equivalent iff they are true in
same models.

• α ≡ β if and only if α |= β and β |= α

• There are some common equivalences on the next slide.

• These are universal tautologies — they will always be true in all
possible models.

• These are handy because they are tautologies, and so we can
bring them into proofs (when we get to that).
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(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) definition of implication
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) definition of biconditional
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

csc74010-fall2011-parsons-lect02 60



Proof methods

• Proof methods divide into (roughly) two kinds.

•Model checking

– truth table enumeration (always exponential in n)

– improved backtracking, e.g.,
Davis–Putnam–Logemann–Loveland

– heuristic search in model space (sound but incomplete)

• Application of inference rules

– Legitimate (sound) generation of new sentences from old

– Proof = a sequence of inference rule applications

– Can use inference rules as operators in a standard search alg.

– May require translation of sentences into a normal form
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‘Syntactic’ Proof

• The idea of syntactic proof is to replace the checking of models to
determine whether a formula is valid by a procedure that
involves purely syntactic manipulation.

• The kinds of techniques that we shall use are similar to those
that we use when solving problems in algebra.

• The basic idea is that to show that C is a logical consequence of
S1, . . . , Sn, we use a set of rules to manipulate formulae.

If we can derive C from S1, . . . , Sn by using these rules, then C is
said to be proved from S1, . . . , Sn, which we indicate by writing

S1, . . . , Sn ⊢ C.
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• The symbol ⊢ is called the syntactic turnstile.

• An expression of the form

S1, . . . , Sn ⊢ C

is called a syntactic sequent.
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• A rule has the general form:

⊢ S1; · · · ;⊢ Sn rule name
⊢ S

Such a rule is read:

If
S1, . . . , Sn are proved

then
S is proved.
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• Here is an example of such a rule:

⊢ S1;⊢ S2 ∧-I
⊢ S1 ∧ S2

• This rule is called and introduction. It says that if we have proved
S1, and we have also proved S2, then we can prove S1 ∧ S2.

• This should remind you a lot of the truth table for ∧.
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• Here is another rule:

⊢ S1 ∧ S2 ∧-E
⊢ S1;⊢ S2

• This rule is called and elimination. It says that if we have proved
S1 ∧ S2, then we can prove both S1 and S2.

• It allows us to eliminate the ∧ symbol from between them.
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• Let us now try to define precisely what we mean by proof.

• Definition: (Proof) If

{S1, . . . , Sn,C} ⊆ W

then there is a proof of C from S1, . . . , Sn iff there exists some
sequence of formulae

T1, . . . , Tm

such that Tm = C, and each formula Tk, for 1 ≤ k < m is either one
of the formula S1, . . . , Sn, or else is the conclusion of a rule whose
antecedents appeared earlier in the sequence.

The sequence of formulae T1, . . . , Tm is the proof.
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• If there is a proof of C from S1, . . . , Sn, then we indicate this by
writing:

S1, . . . , Sn ⊢ C
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• It should be clear that the symbols ⊢ and |= are related. We now
have to state exactly how they are related.

• There are two properties of ⊢ to consider:

– soundness;

– completeness.

• Intuitively, ⊢ is said to be sound if it is correct, in that it does not
let us derive something that is not true.

• Intuitively, completenessmeans that ⊢ will let us prove anything
that is true.
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• Definition: (Soundness) A proof system ⊢ is said to be sound
with respect to semantics |= iff

S1, . . . , Sn ⊢ C

implies
S1, . . . , Sn |= C.

• Definition: (Completeness) A proof system ⊢ is said to be
complete with respect to semantics |= iff

S1, . . . , Sn |= C

implies
S1, . . . , Sn ⊢ C

csc74010-fall2011-parsons-lect02 70

Natural deduction

• There are many proof systems for propositional logic; we shall
look at a simple one.

– Natural deduction.

• First, we have an unusual rule that allows us to introduce any
tautology.

TAUT
⊢ S

if S is a tautology

• Because a tautology is true there is no problem bringing it into
the proof.

• An example tautology is “Either the Mets won, or they lost”.
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• Next, rules for eliminating connectives.

⊢ S1 ∧ S2 ∧-E
⊢ S1;⊢ S2

•We already saw this one:

If we are told “The Jets won and the Giants won”, then we
know “The Jets won” and we know “The Giants won”.
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• Or-elimination
⊢ S1 ∨ · · · ∨ Sn;
S1 ⊢ C;
· · · ;

Sn ⊢ C

∨-E

⊢ C

• This is more complex.

I hear on the radio that “New York won today”, so I know
“The Jets won, or the Giants won, or both”. Now I have bet
on both teams to win, so “If the Jets won, I have won some
money” and “If the Giants won, I won some money”, so,
overall “I won some money”.
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• An alternative version of the ∨ elimination rule is:

⊢ S1 ∨ S2;
⊢ S1⇒ C;
⊢ S2⇒ C

∨-E

⊢ C
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• Next, a rule called modus ponens, which lets us eliminate⇒.

⊢ S1⇒ S2;⊢ S1 ⇒-E
⊢ S2

•We use that here:

If I know “If the Jets won, they qualified for the playoffs”,
and I learn “The Jets won”, the I can conclude “The Jets
qualified for the playoffs”.
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• Next, rules for introducing connectives.

⊢ S1; · · · ;⊢ Sn ∧-I
⊢ S1 ∧ · · · ∧ Sn

• Example:

“The Jets won” and “The Giants won”, so “The Jets and the
Giants won”.
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• Here is Or-introduction:

⊢ S1 ∨-I
⊢ S1 ∨ · · · ∨ Sn

• Example:

“The Jets won” so “The Jets or the Giants won”.
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•We have a rule called the deduction theorem. This rule says that if
we can prove S2 from S1, then we can prove that S1 ⇒ S2.

S1 ⊢ S2 ⇒-I
S1⇒ S2

• So, what is an example?

If somebody tells me “The Jets won”, and then I realise
after thinking about my bets, that “I have won some
money”, then I can conclude that “If the Jets win, I will win
some money”.
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• There are a whole range of other rules, which we shall not list
here.

• I’ll post a handout with them on the course web-page.

• Rather than go through them, let’s look at what a proof is.
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• Recall that a proof is defined as:

S1, . . . , Sn ⊢ C

iff there exists some sequence of formulae

S1, . . . , Sm

such that Sm = C, and each formula Sk, for 1 ≤ k < m is either one
of the formula S1, . . . , Sn, or else is the conclusion of a rule whose
antecedents appeared earlier in the sequence.

• The sequence of formulae S1, . . . , Sm is the proof.
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Remind me why this is important?

sensors

effectors

percepts

actions

Environment
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sentence

sentences

entail

effectors

aspects of world

aspect of world

follows

Environment

percepts

actions
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Proof Examples

• Example 1:

p ∧ q ⊢ q ∧ p

1. p ∧ q Given
2. p From 1 using ∧-E
3. q 1,∧-E
4. q ∧ p 2, 3, ∧-I

• If that seems simple, that is because it is. Don’t worry, proofs get
more complex than this.
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• Example 2:

p ∧ q ⊢ p ∨ q

1. p ∧ q Given
2. p 1, ∧-E
3. p ∨ q 2, ∨-I

• Another simple one.
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• Example 3:

p ∧ q, p⇒ r ⊢ r

1. p ∧ q Given
2. p 1, ∧-E
3. p⇒ r Given
4. r 2, 3,⇒-E

• Here we use modus ponens.

csc74010-fall2011-parsons-lect02 85

• Example 4:

p⇒ q, q⇒ r ⊢ p⇒ r

1. p⇒ q Given
2. q⇒ r Given
3. p As. |
4. q 1, 3,⇒-E |
5. r 2, 4,⇒-E |
6. p⇒ r 3, 5,⇒-I

• Here we make an assumption and then discharge it at the end.
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• Example 5:

(p ∧ q)⇒ r ⊢ p⇒ (q⇒ r)

1. (p ∧ q)⇒ r Given
2. p As. |
3. q As. ||
4. p ∧ q 2, 3, ∧-I ||
5. r 1, 4,⇒-E ||
6. q⇒ r 3–5,⇒-I |
7. p⇒ (q⇒ r) 2–6,⇒-I

•We can make more than one assumption, but we need to
discharge them all.
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• Example 6:

p⇒ (q⇒ r) ⊢ (p ∧ q)⇒ r

1. p⇒ (q⇒ r) Given
2. p ∧ q As. |
3. p 2, ∧-E |
4. q 2, ∧-E |
5. q⇒ r 1, 3,⇒-E |
6. r 4, 5,⇒-E |
7. (p ∧ q)⇒ r 2–6,⇒-I
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• Example 7:

p⇒ q,¬q ⊢ ¬p

1. p⇒ q Given
2. ¬q Given
3. p As. |
4. q 1, 3,⇒-E |
5. q ∧ ¬q 2, 4, ∧-I |
6. ¬p 3, 5, ¬-I

• Here discharging the assumption needs a rule we didn’t look at
before.
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• The rule allows us to negate an assumption it it leads us to a
contradiction.

S ⊢ ⊥ ¬-I
⊢ ¬S

• ⊥ stands for any formula which is unsatisifable, for example

S ∧ ¬S

•We call such a formula a contradiction and say that it is
inconsistent.

• The notion behind the rule is that if we assume something, and
that leads us to an impossible conclusion, what we assumed has
to be wrong.
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• Example 8:

p⇒ q ⊢ ¬(p ∧ ¬q)

1. p⇒ q Given
2. p ∧ ¬q As. |
3. p 2, ∧-E |
4. ¬q 2, ∧-E |
5. q 1, 3,⇒-E |
6. q ∧ ¬q 4, 5, ∧-I |
7. ¬(p ∧ ¬q) 6, ¬-I

• This is another ‘proof by contradiction” or (to be fancy) reductio
ad absurdum.
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• Example 9:

Can Jim will party all night and pass AI?

That must be wrong.

If he works hard he won’t have time to party. If he doesn’t
work hard he’s not going to pass AI.

Let:

p Jim will party all night
q Jim will pass AI
r Jim works hard

Formalisation of argument:

r ⇒ ¬p,¬r⇒ ¬q ⊢ ¬(p ∧ q)
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• Can we prove that it is not possible for Jim to party and pass AI
(¬(p ∧ q))?

1. r ⇒ ¬p Given
2. ¬r ⇒ ¬q Given
3. p ∧ q As. |
4. r As. ||
5. ¬p 1, 4,⇒-E ||
6. p 3, ∧-E ||
7. p ∧ ¬p 5, 6, ∧-I ||
8. ¬r 4, 7, ¬-I |
9. ¬q 2, 8,⇒-E |
10. q 3, ∧-E |
11. q ∧ ¬q 9, 10, ∧-I |
12. ¬(p ∧ q) 3, 11, ¬-I
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Summary

• This lecture covered an introduction to using logic to program
agents.

•We started with some motivation — having an agent figure out
some facts in the Wumpus world.

•We showed informally how this might be done using models.

•We then introduced propositional logic, a formal system for
reasoning, and showed how we can automate the model
checking process.

• Finally we looked at approaches to proof based on symbol
manipulation.
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