RESOLUTION AND FIRST ORDER LOGIC

Introduction

e Last week we talked about logic.
e In particular we talked about why logic would be useful.
® We covered propositional logic — the simplest kind of logic.
¢ We talked about proof using the rules of natural deduction.
e This week we will look at some other aspects of proof.

- Different proof methods.

® We will also look at a more expressive kind of logic.

sc74010-fall2011-parsons-lect03

More on proof‘

® One of the good things about natural deduction is that it is easy
to understand.

— Proofs are often intuitive
e However, there is lots to decide:

— Which sentence to use
— Which rule to apply

® Can be hard to program a system to use it.

® Q: How to make it easier?

¢sc74010-fall2011-parsons-lect03

Horn clauses

® A: Restrict the language
— Horn clauses
e A Horn clause is:
— An atomic proposition; or
— A conjunction of atomic propositions = atomic proposition

¢ For example:
CAD =B

e Given a set of propositions, the associated set of Horn clauses is
a subset of the sentences that can be written in standard
propositional logic.

¢sc74010-fall2011-parsons-lect03

® KB = conjunction of Horn clauses

® For example:
CA(B = AA(CAD = B)

® Same as saying;:

O w O
44
W >

are all true.

csc74010-fall2011-parsons-lect03

® Modus ponens is then:
Qat, ..., Qn, ar N ANap = f3

B

e For Horn clauses, modus ponens is all you need

— Complete
e Can be used with forward chaining or backward chaining.
- Two proofs mechanisms for Horn clause logic.

¢ These algorithms are very natural and run in linear time

csc74010-fall2011-parsons-lect03

‘Forward chaining‘

¢ Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P=0Q ?
LAM = P

BAL = M

AAP = L M
AAB = L L

A

B A B

e How does this work?

¢sc74010-fall2011-parsons-lect03

¢sc74010-fall2011-parsons-lect03

csc74010-fall2011-parsons-lect03

csc74010-fall2011-parsons-lect03

10

¢sc74010-fall2011-parsons-lect03

¢sc74010-fall2011-parsons-lect03

csc74010-fall2011-parsons-lect03

csc74010-fall2011-parsons-lect03 14

¢sc74010-fall2011-parsons-lect03

function PL-FC-ENTAILS? (KB,) returns true or false
inputs: KB, the knowledge base, g the query
local variables: count, a table with no. of premises of each clause
inferred, table of symbols, initially all false
agenda, list of symbols, initially whole KB

while agenda is not empty do
p < POP(agenda)
unless inferred[p] do
inferred[p] < true
for each Horn clause c in whose premise p appears do
decrement count|c]
if count[c] = 0 then do
if HEAD|c] = g then return true
PUSH(HEAD|c], agenda)
return false

¢sc74010-fall2011-parsons-lect03 16

Proof of completeness|

® FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are
derived

2. Consider the final state as a model m, assigning true/false to
symbols
3. Every clause in the original KB is true in m
Proof: Suppose a clause a; A ... A & = bis false in m
Then a; A ... A agis true in mand b is false in m
Therefore the algorithm has not reached a fixed point!
4. Hence mis a model of KB
5. If KB = q, g is true in every model of KB, including m

® General idea: construct any model of KB by sound inference,
check o

csc74010-fall2011-parsons-lect03 17

Backward chaining|

e Idea: work backwards from the query q
- to prove g by BC,
- check if g is known already, or
— prove by BC all premises of some rule concluding g

e Avoid loops: check if new subgoal is already on the goal stack
¢ Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

csc74010-fall2011-parsons-lect03

18

¢sc74010-fall2011-parsons-lect03 19

¢sc74010-fall2011-parsons-lect03

20

csc74010-fall2011-parsons-lect03

22

csc74010-fall2011-parsons-lect03 21
P
ﬁ y
A
. /ﬂ\
23

¢sc74010-fall2011-parsons-lect03

¢sc74010-fall2011-parsons-lect03

24

csc74010-fall2011-parsons-lect03 25

csc74010-fall2011-parsons-lect03

26

[Forward v. backward chaining|

e FC is data-driven, cf. automatic, unconscious processing
- e.g., object recognition, routine decisions
® May do lots of work that is irrelevant to the goal
e BC is goal-driven, appropriate for problem-solving,
—e.g., Where are my keys? How do I get into a PhD program?

e Complexity of BC can be much less than linear in size of KB

¢sc74010-fall2011-parsons-lect03 27

e Resolution is another proof system.
- Sound and complete for propositional logic.
e Just one inference rule:
OV -V m V.-V,

GV VLNV GV VAV MY VM VM Vo

where ¢; and m are complementary literals.
e Eh?

¢sc74010-fall2011-parsons-lect03

vV im,

28

e As an example, here:

B
B OK j%
Py
Tok]s ok
T w
® We might resolve:
P13V Pay, =Py

Pl,'d

e So, if we know P; 3V Py 5 and —Ps 5 then we can conclude P 3

csc74010-fall2011-parsons-lect03 29

¢ Only issue:
— Resolution only works for KB in conjunctive normal form

e conjunction of disjunctions of literals

clauses
e Such as:
(AV =B)A(BV-CV —-D)
e Have to convert sentences to CNFE.

® See next slide for details.

csc74010-fall2011-parsons-lect03 30

Example: By ; < (P12 V Py))
1. Eliminate <, replacing o < § with (o« = 5) A (6 = «).
(Bi1 = (Pi2aVP21)A((Pi2VPa1) = Bia)
2. Eliminate =, replacing o = 3 with —~a v 3.
(=B11 VP12V Pyi) A(=(P12VPai) VB)
3. Move - inwards using de Morgan’s rules and double-negation:
(-B11 VP12V Pyi) A((5P12A=Pyy) VB)
4. Apply distributivity law (V over A) and flatten:
(=B11 VP12V Py) A(=P12 VB 1) A (P21 VB y)

¢sc74010-fall2011-parsons-lect03 31

[Resolution example|

o KB = (Bl.l == (PLZ Vv PQJ)) A _'BL,I
o = _'PLQ
e First we have to convert the KB into conjunctive normal form.
¢ That is what we just did (here’s one I made earlier):
2Py VB
—Bi1VBp VP
—P19V By,
—Bi
e To this we add the negation of the thing we want to prove.

P12

¢sc74010-fall2011-parsons-lect03 32

® Resolution works by repeatedly combining these formulae
together until we get nothing (or the empty set).

e This represents the contradiction.

® When we find this we can conclude the negation of the thing we
added to the KB.

— This is just the thing we want to prove.

o Let’s see how this might work.

csc74010-fall2011-parsons-lect03 33

¢ So we might combine:

=Py V By, -Bi
=Py

e Similarly we might infer:
—P12V By, —Bi,
Pio

® We can then combine:
Pio =Py
L
thus finding the contradiction and concluding the proof.

sc74010-fall2011-parsons-lect03

34

® Many of the possible inferences in this example are summarised
by:

‘ “Pu\/ Bu‘ ‘ - Bm\/ PLZ\/ Pu‘ “‘PLZ\/ Bu‘ ‘ - Bl‘l ‘

P1,2\/ Pz,l\/ ﬁPz,1 ﬁF’z‘l

¢sc74010-fall2011-parsons-lect03 35

function PL-RESOLUTION(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional
logic
«, the query, a sentence in propositional logic
clauses < the set of clauses in the CNF representation of KBA -«
new <+ { }
loop do
for each C;, Cj in clauses do
resolvents <— PL-RESOLVE(C;, C;)
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses <— clauses U new

¢sc74010-fall2011-parsons-lect03

36

‘In favor of propositional logic‘

® Propositional logic is declarative
— Pieces of syntax correspond to facts

® Propositional logic allows partial /disjunctive /negated
information

— Unlike most data structures and databases
® Propositional logic is compositional

— Meaning of B ; A Py 2 is derived from meaning of B, ; and of
Pio

® Meaning in propositional logic is context-independent

— Unlike natural language, where meaning depends on context

csc74010-fall2011-parsons-lect03 37

'Against propositional logic|

e Propositional logic has very limited expressive power
- Unlike natural language
¢ For example, cannot say:
“pits cause breezes in adjacent squares”

except by writing one sentence for each square.

csc74010-fall2011-parsons-lect03 38

First order logic
| gic|

® Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world
contains:

— Objects: people, houses, numbers, theories, Ronald
McDonald, colors, baseball games, wars, centuries . . .

— Relations: red, round, bogus, prime, multistoried .. ., brother of,
bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

Relations are statements that are true or false.

— Functions: father of, best friend, third inning of, one more
than, end of . ..
Functions return values.

¢sc74010-fall2011-parsons-lect03 39

¢ On the subject of brothers

¢sc74010-fall2011-parsons-lect03 40

Logics in general
Logics in general

Language Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value

csc74010-fall2011-parsons-lect03

41

‘Syntax of FOL: Basic elements‘

Constants KingJohn, 2, UCB, ...
Predicates Brother, >, ...
Functions Sgrt, LeftLegOf, ...
Variables X, Y, ab,...
Connectives A V - = &
Equality =

Quantifiers V3

sc74010-fall2011-parsons-lect03

42

|Atomic sentences|

Atomic sentence = predicate(termy, ..., termy,)
or term; = term,

Term = function(termy,. .., term,)
or constant or variable

E.g., Brother(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))

¢sc74010-fall2011-parsons-lect03

43

® More brothers:

¢sc74010-fall2011-parsons-lect03

44

\Complex sentences

° Complex sentences are made from atomic sentences using
connectives

=S SAS, SVS, S=95 S &5

E.g. Sbling(KingJohn, Richard) = Sbling(Richard, KingJohn)
>(1,2) v <(1,2)
>(1,2) A=>(1,2)

csc74010-fall2011-parsons-lect03

45

Truth in first-order logic|

e Sentences are true with respect to a model and an interpretation

® Model contains > 1 objects (domain elements) and relations
among them

e Interpretation specifies referents for:

— constant symbols — objects
— predicate symbols — relations
— function symbols — functional relations

e An atomic sentence predicate(termy, . .., term,) is true iff the
objects referred to by termy, ..., term, are in the relation referred
to by predicate

csc74010-fall2011-parsons-lect03 46

Models for FOL: Example|

person
person
king

left leg left leg

AN

¢sc74010-fall2011-parsons-lect03

47

Truth example|

¢ Consider the interpretation in which
— Richard — Richard the Lionheart
- John — the evil King John
— Brother — the brotherhood relation

e Under this interpretation, Brother (Richard, John) is true just in
case Richard the Lionheart and the evil King John are in the
brotherhood relation in the model.

¢sc74010-fall2011-parsons-lect03 48

‘Models for FOL: Lots!|

¢ Entailment in propositional logic can be computed by
enumerating models

® We can enumerate the FOL models for a given KB vocabulary:
— For each number of domain elements n from 1 to co
— For each k-ary predicate Py in the vocabulary
— For each possible k-ary relation on n objects
— For each constant symbol C in the vocabulary
— For each choice of referent for C from n objects . . .

e Computing entailment by enumerating FOL models is not easy!

csc74010-fall2011-parsons-lect03 49

Decidability

¢ In fact, it is worse than “not easy”.

e Is there any procedure that we can use, that will be guaranteed
to tell us, in a finite amount of time, whether a FOL formula is,
or is not, valid?

® The answer is no.

e FOL is for this reason said to be undecidable.

csc74010-fall2011-parsons-lect03 50

'Universal quantification|

eV (variables) (sentence)
¢ Everyone at Brooklyn College is smart:
VX At(x,BC) = Smart(x)
e VX Pis true in a model miff P is true with x being each possible
object in the model

® Roughly speaking, equivalent to the conjunction of instantiations
of P
(At(KingJohn, BC) = Smart(KingJohn))
A (At(Richard, BC) = Smart(Richard))
A (At(BC,BC) = Smart(BC))
A\

¢sc74010-fall2011-parsons-lect03 51

'A common mistake to avoid]

e Typically, = is the main connective with V
e Common mistake: using A as the main connective with V:
Vx At(x,BC) A Smart(x)

means “Everyone is at Brooklyn College and everyone is smart”

¢sc74010-fall2011-parsons-lect03 52

[Existential quantification|

e J(variables) (sentence)
® Someone at City College is smart:
Ix At(x, City) A Smart(x)
e 3x Pis true in a model miff P is true with X being some possible
object in the model

® Roughly speaking, equivalent to the disjunction of instantiations
of P:
(At(KingJohn, City) A Smart(KingJohn))
V (At(Richard, City) A Smart(Richard))
VvV (At(Robin, City) A Smart(Robin))
Voo

csc74010-fall2011-parsons-lect03 53

|A common mistake to avoid (2)|

e Typically, A is the main connective with 3
e Common mistake: using = as the main connective with 3:
Ix At(x, City) = Smart(x)

is true if there is anyone who is not at City College!

csc74010-fall2011-parsons-lect03 54

Properties of quantifiers|
e VX Vy isthesameasVy VX (why?)

e dx Jy isthesameasdy Ix (why?)
e IX Vy isnot the sameasVy X

e 3x Vy Loves(x,y)
“There is a person (x) who loves everyone (y) in the world”

ey Ix Loves(x,y)
“Everyone (y) in the world is loved by at least one person (x)

”

Or, to say the same thing another way:
“For everyone (y), there exists a person (x) who loves them”

® Note that combining different quantifiers is tricky and the
ordering is important.

e Vy Ix Loves(y,X)
“There is some person (x) who is loved by everyone (y)”

¢sc74010-fall2011-parsons-lect03 55

¢ Quantifier duality: each can be expressed using the other

VX Likes(x, lceCream) —3x —Likes(x, IceCream)
3x Likes(x, Broccoli) -V X —Likes(x, Broccoli)

¢sc74010-fall2011-parsons-lect03 56

'Fun with sentences|

e Brothers are siblings

'Fun with sentences

e Brothers are siblings
Vx,y Brother(x,y) = Shling(x,y)

csc74010-fall2011-parsons-lect03

58

csc74010-fall2011-parsons-lect03 57
'Fun with sentences|
e Brothers are siblings
Vx,y Brother(x,y) = Sbling(x,y)
® “Sibling” is symmetric
¢sc74010-fall2011-parsons-lect03 59

Fun with sentences|

e Brothers are siblings

Vx,y Brother(x,y) = Shling(x,y)
e “Sibling” is symmetric

Vx,y Shbling(x,y) < Sbling(y, x)

¢sc74010-fall2011-parsons-lect03

60

'Fun with sentences

e Brothers are siblings

Vx,y Brother(x,y) = Sbling(x,y)
e “Sibling” is symmetric

Vx,y Sbling(x,y) < Shling(y, X)

® One’s mother is one’s female parent

csc74010-fall2011-parsons-lect03

61

Fun with sentences|

e Brothers are siblings

Vx,y Brother(x,y) = Shling(x,y)
e “Sibling” is symmetric

Vx,y Shbling(x,y) < Sbling(y, x)

® One’s mother is one’s female parent
Vx,y Mother(x,y) < (Female(x) A Parent(Xx,y))

csc74010-fall2011-parsons-lect03 62

'Fun with sentences|

® Brothers are siblings

VX,y Brother(x,y) = Shling(x,y)
e “Sibling” is symmetric

vx,y Sbling(x,y) < Shling(y, X)

® One’s mother is one’s female parent
Vx,y Mother(x,y) < (Female(x) A Parent(X,y))

e A first cousin is a child of a parent’s sibling

¢sc74010-fall2011-parsons-lect03

63

'Fun with sentences|

e Brothers are siblings

Vx,y Brother(x,y) = Shling(x,y)
e “Sibling” is symmetric

Vx,y Sbling(x,y) < Sbling(y, x)

® One’s mother is one’s female parent
Vx,y Mother(x,y) < (Female(x) A Parent(X,y))

e A first cousin is a child of a parent’s sibling

VX, y FirstCousin(x,y) <
3p, ps Parent(p, x) A Shling(ps, p) A Parent(ps, y)

¢sc74010-fall2011-parsons-lect03 64

e term; = term, is true under a given interpretation if and only if
term; and term, refer to the same object

E.g, 1 =2and VX x(Sgrt(x), Sgrt(x)) = X are satisfiable
2 = 2isvalid
e E.g., definition of (full) Sbling in terms of Parent:
vx,y Sbling(x,y) < [~(x=y)AImf —(m=f)A
Parent(m, X) A Parent(f, X) A Parent(m, y) A Parent(f,y)]

csc74010-fall2011-parsons-lect03

65

Interacting with FOL KBs|

¢ Suppose a wumpus-world agent is using an FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:

e Tell (KB, Percept([Smell, Breeze, Nong|, 5))
Ask(KB,Ja Action(a, 5))
® Does KB entail any particular actions at t = 5?
e Answer: Yes, {a/Shoot} < substitution (binding list)

e Given a sentence Sand a substitution ¢, So denotes the result of
plugging o into S

csc74010-fall2011-parsons-lect03 66

® For example:
S= Smarter(x,y)

o = {x/Hillary, y/Bill}
So = Smarter (Hillary, Bill)

e Ask(KB, S) returns some/all o such that KB = S»

¢sc74010-fall2011-parsons-lect03

67

Knowledge base for the wumpus world|

® “Perception”
Vb,g,t Percept([Smell, b,g],t) = Smelt(t)
Vs b, t Percept([s, b, Glitter],t) = AtGold(t)
e Reflex
vVt AtGold(t) = Action(Grab,t)
e Reflex with internal state: do we have the gold already?
vVt AtGold(t) A ~Holding(Gold,t) = Action(Grab, t)

e Holding(Gold, t) cannot be observed = keeping track of change is
essential

¢sc74010-fall2011-parsons-lect03 68

function KB-AGENT(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action <— ASK(KB, MAKE-ACTION-QUERY (t))
TELL(KB, MAKE-ACTION-SENTENCE (action, t))
t—t+1

return action

csc74010-fall2011-parsons-lect03 69

'Deducing hidden properties|
e Properties of locations:
Vx,t At(Agent, x, t) A Smelt(t) = Smelly(x)
VX, t At(Agent, X, t) A Breeze(t) = Breezy(x)

e Squares are breezy near a pit.
e Diagnostic rule—infer cause from effect

Vy Breezy(y) = Ix Pit(x) A Adjacent(x,y)
e Causal rule—infer effect from cause

X,y Pit(x) A Adjacent(x,y) = Breezy(y)

e Neither of these is complete—e.g., the causal rule doesn’t say
whether squares far away from pits can be breezy

® Definition for the Breezy predicate:
Vy Breezy(y) < [Ix Pit(x) A Adjacent(x, y)]

csc74010-fall2011-parsons-lect03 70

Proof in FOL

® Proof in FOL is similar to propositional logic; we just need an
extra set of rules, to deal with the quantifiers.

® FOL inherits all the rules of PL.
® To understand FOL proof rules, need to understand substitution.

® The most obvious rule, for V-E.

Tells us that if everything in the domain has some property, then
we can infer that any particular individual has the property.

FVvx-P(x); V-E . .
= TV a— for any ain the domain
Going from general to specific.

e If all Brooklyn College students are smart, then anyone in the
class is smart.

¢sc74010-fall2011-parsons-lect03 71

e Example 1.
Let’s use V-E to get the Socrates example out of the way.

Person(s); ¥x - Person(x) = Mortal (x) - Mortal(s)

. Person(s) Given
. VX Person(x) = Mortal(x) Given
. Person(s) = Mortal(s) 2,V-E
. Mortal(s) 1,3,=-E

= 0 DN

¢sc74010-fall2011-parsons-lect03 72

® We can also go from the general to the slightly less specific!

Fvx-P(x); 3-I(1)

F3xP) if domain not empty

Note the side condition.
The 3 quantifier asserts the existence of at least one object.
The V quantifier does not.
® So, while we can say “All unicorns have horns” irrespective of
whether unicorns are real or not, we can only say “There’s a

unicorn living on my street whose name is Fred and he has a
horn” if there is at least one unicorn.

csc74010-fall2011-parsons-lect03 73

® We can also go from the very specific to less specific.
F P(a); 3-1(2)
F 3x- P(x)

¢ In other words once we have a concrete example, we can infer
there exists something with the property of that example.

e If I find a student at City College who is smart, I can say “There
is a smart student at City College”.

csc74010-fall2011-parsons-lect03 74

® We often informally make use of arguments along the lines. ..

1. We know somebody is the murderer.

2. Call this person a.

3. amust have been in the library with the lead pipe.
4. ...

(Here, ais called a Skolem constant.)

Thoralf Skolem

¢sc74010-fall2011-parsons-lect03 75

e We have a rule which allows this, but we have to be careful how

we use it!
F3Ix-P(x); d-E
PP a doesn’t occur elsewhere
F P(a)
¢sc74010-fall2011-parsons-lect03 76

e Here is an invalid use of this rule:

1. 3x- Boring(x) Given
2. Lecture(Al) Given
3. Boring(Al) 1, 3-E

® (The conclusion may be true, the argument isn’t sound.)

csc74010-fall2011-parsons-lect03 77

¢ Another kind of reasoning;:

— Let abe arbitrary object.
— ... (some reasoning) ...
— Therefore ahas property P

— Since a was arbitrary, it must be that every object has property
P.

e Common in mathematics:

Consider a positive integer n...so nis either a prime
number or divisible by a smaller prime number ... thus
every positive integer is either a prime number or divisible
by a smaller prime number.

csc74010-fall2011-parsons-lect03 78

e If we are careful, we can also use this kind of reasoning:

F P(a); V-1

FVx. P ais arbitrary

e Here’s an invalid use of this rule:

1. Boring(Al) Given
2. V¥x- Boring(x) 1, V-1

¢sc74010-fall2011-parsons-lect03 79

¢ An example:

1. Everybody is either happy or rich.
2. Simon is not rich.
3. Therefore, Simon is happy.

Predicates:

- H(x) means x is happy;
- R(X) means X is rich.

e Formalisation:

Vx.H(x) vV R(x); “R(Smon) F H(Simon)

¢sc74010-fall2011-parsons-lect03 80

e Alternatively (a different ending with the same conclusions):

. YxH(X) vV R(X)

. =R(Smon)

. H(Simon) v R(Simon)

—H(Smon) = R(Smon)

—H(Smon)

R(Simon)

. R(Smon) A =R(Simon)

——H(Smon)

. H(Smon) < ——H(Smon)

. (H(Smon) = =—=H(Smon))
A(==H(Smon) = H(Smon))

. ==H(Smon) = H(Smon)

. H(Simon)

© 00 D T W N

—_
o

—
DO =

csc74010-fall2011-parsons-lect03

Given
Given
1,V-E

3, defn =
As. |
4,5, =-E |
2,6, \-1 |
5,7, =1

PL axiom

9, defn &
10,A-E
8,11, =-E

82

e Proof:
1. Yx.H(X) V R(X) Given
2. =R(Smon) Given
3. H(Smon) vV R(Smon) 1,V-E
4. =H(Smon) = R(Smon) 3, defn =
5. =H(Smon) As. |
6. R(Smon) 4,5, =-E |
7. R(Smon) A =R(Smon) 2,6, A-1 |
8. ==H(Smon) 57, —1
9. H(Smon) 8, +-E
csc74010-fall2011-parsons-lect03 81
Summary

e This lecture completes our treatment of logic.

e We discussed a new proof techniques for propositional logic:

— Resolution

® We introduced Horn clauses, showed that two proof techniques:

— Forward chaining
- Backward chaining

could be very efficient; and

e Covered the basics of first order logic.

e There is plenty more to logic and we will look at some more next

week.

¢sc74010-fall2011-parsons-lect03

83

