RESOLUTION AND FIRST ORDER LOGIC

More on proof

- One of the good things about natural deduction is that it is easy to understand.
 - Proofs are often intuitive
- However, there is lots to decide:
 - Which sentence to use
 - Which rule to apply
- Can be hard to program a system to use it.
- Q: How to make it easier?

Introduction

- Last week we talked about logic.
- In particular we talked about why logic would be useful.
- We covered propositional logic the simplest kind of logic.
- We talked about proof using the rules of natural deduction.
- This week we will look at some other aspects of proof.
 - Different proof methods.
- We will also look at a more expressive kind of logic.

csc74010-fall2011-parsons-lect03

Horn clauses

- A: Restrict the language
 - Horn clauses
- A Horn clause is:
 - An atomic proposition; or
 - A conjunction of atomic propositions ⇒ atomic proposition
- For example:

$$C \wedge D \Rightarrow B$$

• Given a set of propositions, the associated set of Horn clauses is a subset of the sentences that can be written in standard propositional logic.

csc74010-fall2011-parsons-lect03 3

csc74010-fall2011-parsons-lect03

• KB = *conjunction* of *Horn clauses*

• For example:

$$C \wedge (B \Rightarrow A) \wedge (C \wedge D \Rightarrow B)$$

• Same as saying:

$$\begin{array}{ccc}
C & & \\
B & \Rightarrow & A \\
C \land D & \Rightarrow & B
\end{array}$$

are all true.

csc74010-fall2011-parsons-lect03

Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

• How does this work?

• Modus ponens is then:

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

• For Horn clauses, modus ponens is all you need

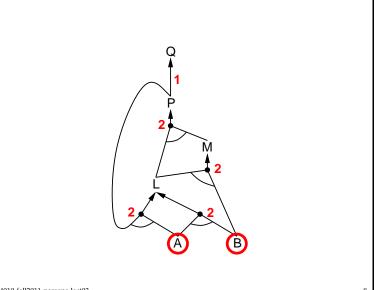
- Complete

• Can be used with forward chaining or backward chaining.

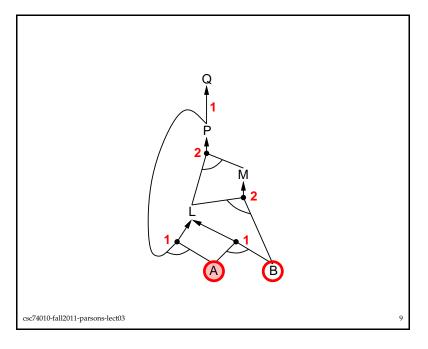
- Two proofs mechanisms for Horn clause logic.

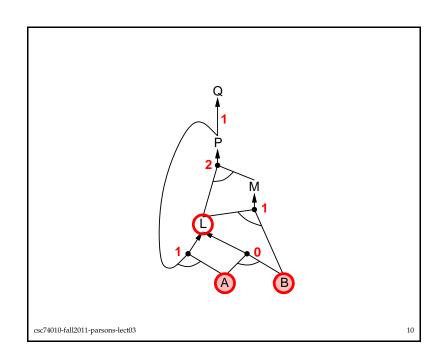
• These algorithms are very natural and run in *linear* time

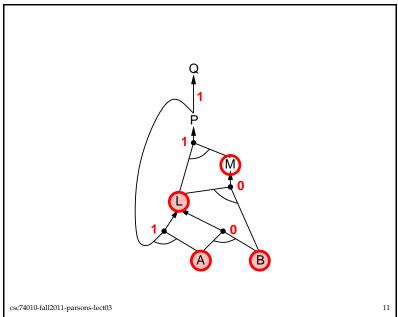
csc74010-fall2011-parsons-lect03

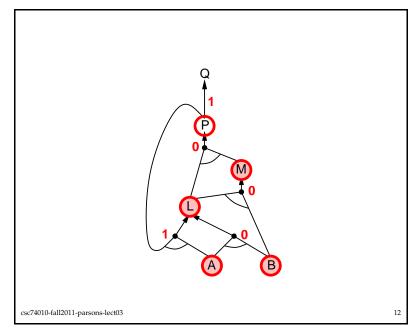


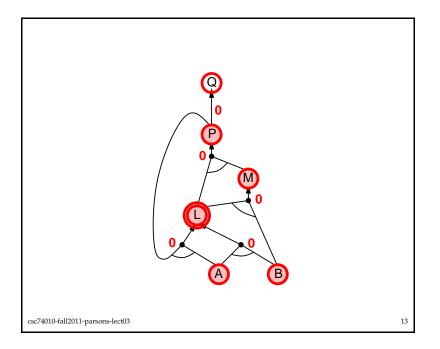
csc74010-fall2011-parsons-lect03

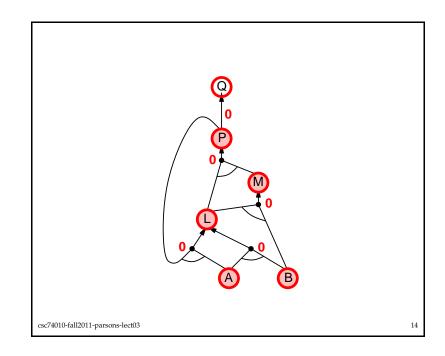


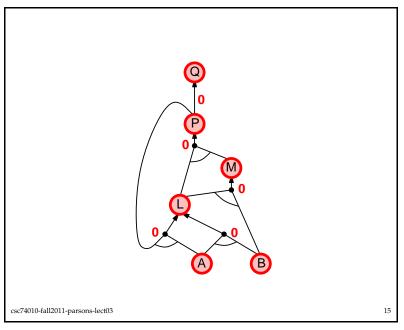










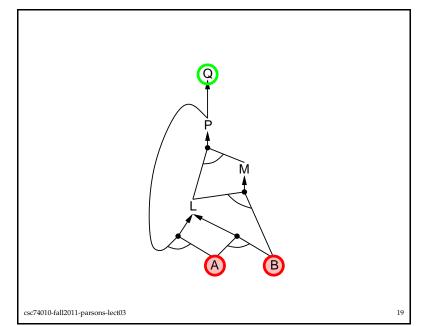


```
function PL-FC-ENTAILS?(KB, q) returns true or false
    inputs: KB, the knowledge base, q the query
    local variables: count, a table with no. of premises of each clause
                     inferred, table of symbols, initially all false
                     agenda, list of symbols, initially whole KB
    while agenda is not empty do
        p \leftarrow POP(agenda)
        unless inferred[p] do
           inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
               decrement count[c]
               if count[c] = 0 then do
                   if HEAD[c] = q then return true
                   PUSH(HEAD[c], agenda)
    return false
csc74010-fall2011-parsons-lect03
```

Proof of completeness

- FC derives every atomic sentence that is entailed by KB
 - 1. FC reaches a *fixed point* where no new atomic sentences are derived
 - 2. Consider the final state as a model m, assigning true/false to symbols
 - 3. Every clause in the original *KB* is true in *m Proof*: Suppose a clause $a_1 \wedge \ldots \wedge a_k \Rightarrow b$ is false in *m* Then $a_1 \wedge \ldots \wedge a_k$ is true in *m* and *b* is false in *m* Therefore the algorithm has not reached a fixed point!
 - 4. Hence *m* is a model of *KB*
 - 5. If $KB \models q$, q is true in *every* model of KB, including m
- *General idea*: construct any model of $\it KB$ by sound inference, check $\it lpha$

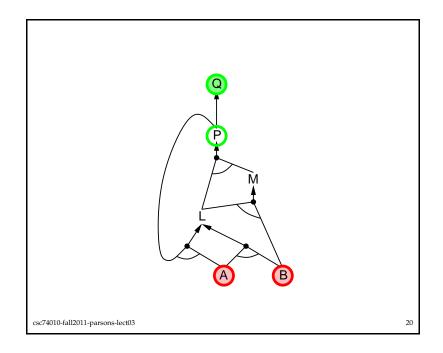
csc74010-fall2011-parsons-lect03

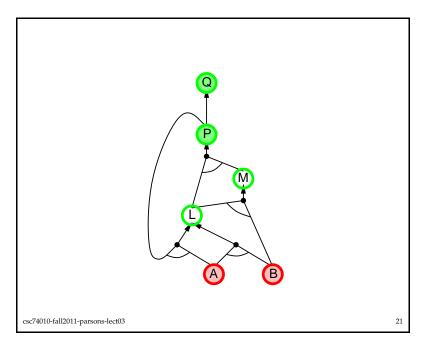


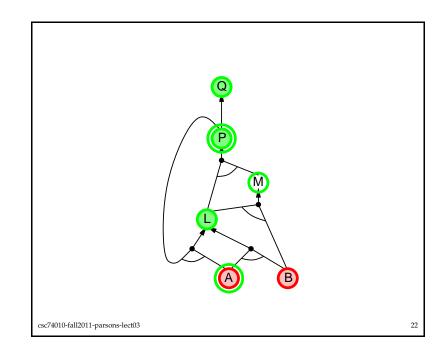
Backward chaining

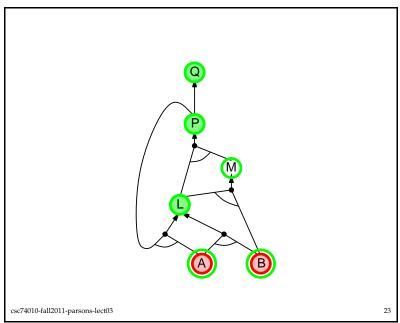
- Idea: work backwards from the query *q*
 - to prove q by BC,
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - 1. has already been proved true, or
 - 2. has already failed

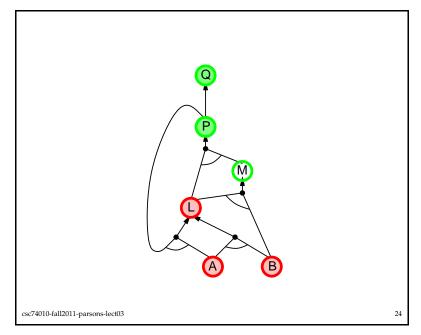
csc74010-fall2011-parsons-lect03

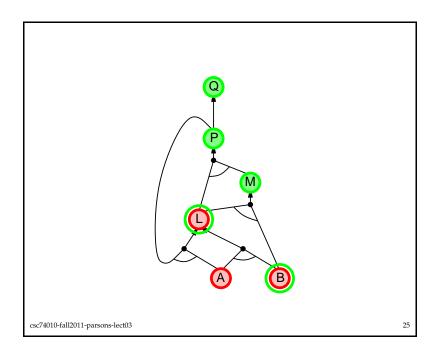


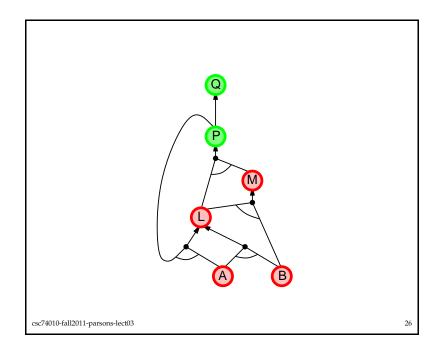












Forward v. backward chaining

- FC is data-driven, cf. automatic, unconscious processing - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is *goal-driven*, appropriate for problem-solving, - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be *much less* than linear in size of KB

Resolution

- Resolution is another proof system.
 - Sound and complete for propositional logic.
- Just one inference rule:

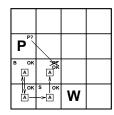
$$\frac{\ell_1 \vee \dots \vee \ell_k, \qquad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$
 where ℓ_i and m_j are complementary literals.

• Eh?

27

csc74010-fall2011-parsons-lect03

• As an example, here:



• We might resolve:

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

• So, if we know $P_{1,3} \vee P_{2,2}$ and $\neg P_{2,2}$ then we can conclude $P_{1,3}$

csc74010-fall2011-parsons-lect03

31

Example: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move ¬ inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\lor over \land) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

• Only issue:

- Resolution only works for KB in *conjunctive normal form*

• conjunction of disjunctions of literals

clauses

• Such as:

$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$

• Have to convert sentences to CNF.

• See next slide for details.

csc74010-fall2011-parsons-lect03

Resolution example

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$ $\alpha = \neg P_{1.2}$
- First we have to convert the *KB* into conjunctive normal form.
- That is what we just did (here's one I made earlier):

$$\neg P_{2,1} \lor B_{1,1}
\neg B_{1,1} \lor B_{P_{1},2} \lor P_{2,1}
\neg P_{1,2} \lor B_{1,1}
\neg B_{1,1}$$

• To this we add the negation of the thing we want to prove.

$$P_{1,2}$$

csc74010-fall2011-parsons-lect03

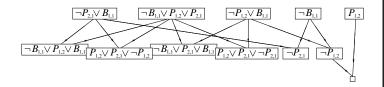
- Resolution works by repeatedly combining these formulae together until we get nothing (or the empty set).
- This represents the contradiction.
- When we find this we can conclude the negation of the thing we added to the *KB*.
 - This is just the thing we want to prove.
- Let's see how this might work.

csc74010-fall2011-parsons-lect03

33

35

• Many of the possible inferences in this example are summarised by:



csc74010-fall2011-parsons-lect03

• So we might combine:

$$\frac{\neg P_{2,1} \lor B_{1,1}, \qquad \neg B_{1,1}}{\neg P_{2,1}}$$

• Similarly we might infer:

$$\frac{\neg P_{1,2} \lor B_{1,1}, \qquad \neg B_{1,1}}{P_{1,2}}$$

• We can then combine:

$$rac{P_{1,2} \qquad
eg P_{1,2}}{\mid}$$

thus finding the contradiction and concluding the proof.

csc74010-fall2011-parsons-lect03

3

inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic α , the set of clauses in the CNF representation of $KB \land \neg \alpha$ $new \leftarrow \{\}$ loop do for each C_i , C_j in clauses do resolvents \leftarrow PL-RESOLVE(C_i , C_j) if resolvents contains the empty clause then return true $new \leftarrow new \cup resolvents$

function PL-RESOLUTION(KB, α) **returns** *true* or *false*

 $clauses \leftarrow clauses \cup new$

if $new \subseteq clauses$ **then return** false

csc74010-fall2011-parsons-lect03

In favor of propositional logic

- Propositional logic is *declarative*
 - Pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
 - Unlike most data structures and databases
- Propositional logic is *compositional*
 - Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is *context-independent*
 - Unlike natural language, where meaning depends on context

csc74010-fall2011-parsons-lect03

First order logic

- Whereas propositional logic assumes world contains *facts*, *first-order logic* (like natural language) assumes the world contains:
 - Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
 - Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...

Relations are statements that are true or false.

 Functions: father of, best friend, third inning of, one more than, end of . . .

Functions return values.

Against propositional logic

- Propositional logic has very limited expressive power
 Unlike natural language
- For example, cannot say:
 "pits cause breezes in adjacent squares"
 except by writing one sentence for each square.

csc74010-fall2011-parsons-lect03

38

• On the subject of brothers

csc74010-fall2011-parsons-lect03 39 csc74010-fall2011-parsons-lect03

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

csc74010-fall2011-parsons-lect03

Atomic sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

> Term = $function(term_1, ..., term_n)$ or constant or variable

$$\begin{split} \text{E.g., } &\textit{Brother}(\textit{KingJohn}, \textit{RichardTheLionheart}) \\ &> (\textit{Length}(\textit{LeftLegOf}(\textit{Richard})), \textit{Length}(\textit{LeftLegOf}(\textit{KingJohn}))) \end{split}$$

Syntax of FOL: Basic elements

Constants *KingJohn*, 2, *UCB*,...

 $Predicates \quad \textit{Brother}, >, \dots$

Functions Sqrt, LeftLegOf,...

Variables x, y, a, b, \dots

Connectives $\land \lor \lnot \Rightarrow \Leftrightarrow$

Equality = Quantifiers $\forall \exists$

csc74010-fall2011-parsons-lect03

• More brothers:

csc74010-fall2011-parsons-lect03

rsons-lect03

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ > $(1,2) \lor \le (1,2)$ > $(1,2) \land \neg > (1,2)$

csc74010-fall2011-parsons-lect03

45

47

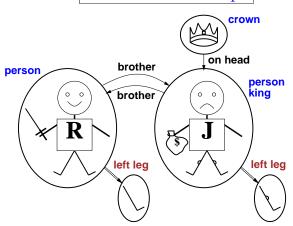
Truth in first-order logic

- Sentences are true with respect to a *model* and an *interpretation*
- Model contains ≥ 1 objects (*domain elements*) and relations among them
- Interpretation specifies referents for:
 - constant symbols \rightarrow objects
 - predicate symbols \rightarrow relations
 - function symbols \rightarrow functional relations
- An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

csc74010-fall2011-parsons-lect03

46

Models for FOL: Example



csc74010-fall2011-parsons-lect03

Truth example

- Consider the interpretation in which
 - *Richard* → Richard the Lionheart
 - $John \rightarrow$ the evil King John
 - *Brother* \rightarrow the brotherhood relation
- Under this interpretation, *Brother*(*Richard*, *John*) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model.

csc74010-fall2011-parsons-lect03

Models for FOL: Lots!

- Entailment in propositional logic can be computed by enumerating models
- We *can* enumerate the FOL models for a given KB vocabulary:
 - For each number of domain elements n from 1 to ∞
 - For each k-ary predicate P_k in the vocabulary
 - For each possible k-ary relation on n objects
 - For each constant symbol *C* in the vocabulary
 - For each choice of referent for *C* from *n* objects . . .
- Computing entailment by enumerating FOL models is not easy!

csc74010-fall2011-parsons-lect03

49

Universal quantification

- ∀ ⟨variables⟩ ⟨sentence⟩
- Everyone at Brooklyn College is smart:

$$\forall x \ At(x, BC) \Rightarrow Smart(x)$$

- $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

```
 \begin{array}{l} (At(KingJohn,BC) \Rightarrow Smart(KingJohn)) \\ \wedge \ (At(Richard,BC) \Rightarrow Smart(Richard)) \\ \wedge \ (At(BC,BC) \Rightarrow Smart(BC)) \\ \wedge \ \dots \end{array}
```

Decidability

- In fact, it is worse than "not easy".
- Is there any procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
- The answer is no.
- FOL is for this reason said to be *undecidable*.

csc74010-fall2011-parsons-lect03

50

52

A common mistake to avoid

- ullet Typically, \Rightarrow is the main connective with \forall
- \bullet Common mistake: using \wedge as the main connective with $\forall :$

$$\forall x \ At(x, BC) \land Smart(x)$$

means "Everyone is at Brooklyn College and everyone is smart"

csc74010-fall2011-parsons-lect03 51 csc74010-fall20

Existential quantification

- ∃⟨*variables*⟩ ⟨*sentence*⟩
- Someone at City College is smart:

```
\exists x \ At(x, City) \land Smart(x)
```

- $\exists x \ P$ is true in a model m iff P is true with x being *some* possible object in the model
- *Roughly* speaking, equivalent to the disjunction of instantiations of *P*:

```
 \begin{array}{l} (At(KingJohn, City) \land Smart(KingJohn)) \\ \lor \ (At(Richard, City) \land Smart(Richard)) \\ \lor \ (At(Robin, City) \land Smart(Robin)) \\ \lor \ \ldots \end{array}
```

csc74010-fall2011-parsons-lect03

53

55

Properties of quantifiers

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \ \forall y \ \text{is } not \text{ the same as } \forall y \ \exists x$
- $\exists x \ \forall y \ Loves(x, y)$

"There is a person (x) who loves everyone (y) in the world"

• $\forall y \exists x \ Loves(x, y)$

"Everyone (y) in the world is loved by at least one person (x)" Or, to say the same thing another way:

"For everyone (y), there exists a person (x) who loves them"

- Note that combining different quantifiers is tricky and the ordering is important.
- $\forall y \exists x \ Loves(y, x)$ "There is some person (x) who is loved by everyone (y)"

A common mistake to avoid (2)

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, City) \Rightarrow Smart(x)$$

is true if there is anyone who is not at City College!

csc74010-fall2011-parsons-lect03

54

• Quantifier duality: each can be expressed using the other

```
\forall x \; Likes(x, IceCream) \neg \exists x \; \neg Likes(x, IceCream)
\exists x \; Likes(x, Broccoli) \neg \forall x \; \neg Likes(x, Broccoli)
```

csc74010-fall2011-parsons-lect03

Fun with sentences

• Brothers are siblings

csc74010-fall2011-parsons-lect03

Fun with sentences

- Brothers are siblings $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
- "Sibling" is symmetric

Fun with sentences

• Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$

csc74010-fall2011-parsons-lect03

Fun with sentences

• Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$

• "Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

csc74010-fall2011-parsons-lect03

Fun with sentences

- Brothers are siblings
- $\forall \, x,y \; \textit{Brother}(x,y) \; \Rightarrow \; \textit{Sibling}(x,y)$
- "Sibling" is symmetric $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$
- One's mother is one's female parent

csc74010-fall2011-parsons-lect03

Fun with sentences

- Brothers are siblings
- $\forall \, x,y \; \textit{Brother}(x,y) \; \Rightarrow \; \textit{Sibling}(x,y)$
- "Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

- One's mother is one's female parent $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$
- A first cousin is a child of a parent's sibling

Fun with sentences

- Brothers are siblings
- $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
- "Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

• One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$

csc74010-fall2011-parsons-lect03

62

Fun with sentences

- Brothers are siblings
- $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
- "Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

- One's mother is one's female parent $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$
- A first cousin is a child of a parent's sibling

 $\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

csc74010-fall2011-parsons-lect03 63 csc74010-fall2011-parsons-lect03

Equality

• $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1 = 2$$
 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable $2 = 2$ is valid

• E.g., definition of (full) *Sibling* in terms of *Parent*:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \; \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$$

csc74010-fall2011-parsons-lect03

65

• For example:

$$S = Smarter(x, y)$$

$$\sigma = \{x/Hillary, y/Bill\}$$

$$S\sigma = Smarter(Hillary, Bill)$$

• Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:
- Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$
- Does *KB* entail any particular actions at t = 5?
- Answer: Yes, $\{a/Shoot\} \leftarrow substitution$ (binding list)
- Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S

csc74010-fall2011-parsons-lect03

66

Knowledge base for the wumpus world

• "Perception"

```
\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)
\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
```

• Reflex

```
\forall t \ AtGold(t) \Rightarrow Action(Grab, t)
```

• Reflex with internal state: do we have the gold already?

```
\forall \, t \; \textit{AtGold}(t) \land \neg \textit{Holding}(\textit{Gold}, t) \; \Rightarrow \; \textit{Action}(\textit{Grab}, t)
```

 Holding(Gold, t) cannot be observed ⇒ keeping track of change is essential

csc74010-fall2011-parsons-lect03 67 csc74

csc74010-fall2011-parsons-lect03

function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence(percept, t)) action \leftarrow Ask(KB, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ return action

csc74010-fall2011-parsons-lect03

69

Proof in FOL

- Proof in FOL is similar to propositional logic; we just need an extra set of rules, to deal with the quantifiers.
- FOL *inherits* all the rules of PL.
- To understand FOL proof rules, need to understand *substitution*.
- The most obvious rule, for ∀-E.
 Tells us that if everything in the domain has some property, then we can infer that any *particular* individual has the property.

$$\frac{\vdash \forall x \cdot P(x);}{\vdash P(a)}$$
 \forall -E for any a in the domain

Going from *general* to *specific*.

• If all Brooklyn College students are smart, then anyone in the class is smart.

Deducing hidden properties

• Properties of locations:

```
\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)
\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)
```

- Squares are breezy near a pit.
- *Diagnostic* rule—infer cause from effect

$$\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x, y)$$

• Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

- Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy
- *Definition* for the *Breezy* predicate:

$$\forall y \; Breezy(y) \Leftrightarrow [\exists x \; Pit(x) \land Adjacent(x, y)]$$

csc74010-fall2011-parsons-lect03

70

• Example 1.

Let's use \forall -E to get the Socrates example out of the way.

$$Person(s); \forall x \cdot Person(x) \Rightarrow Mortal(x) \vdash Mortal(s)$$

- 1. Person(s)
- Given
- 2. $\forall x \cdot Person(x) \Rightarrow Mortal(x)$ Given 3. $Person(s) \Rightarrow Mortal(s)$ 2, \forall -E
- 4. *Mortal*(*s*)

2, ∀-E 1, 3, ⇒-E

csc74010-fall2011-parsons-lect03 71

csc74010-fall2011-parsons-lect03

• We can also go from the general to the slightly less specific!

$$\frac{ \vdash \forall x \cdot P(x);}{\vdash \exists x \cdot P(x)} \ \exists \text{-I}(1) \text{ if domain not empty}$$

Note the side condition.

The \exists quantifier *asserts the existence* of at least one object. The \forall quantifier does not.

• So, while we can say "All unicorns have horns" irrespective of whether unicorns are real or not, we can only say "There's a unicorn living on my street whose name is Fred and he has a horn" if there is at least one unicorn.

csc74010-fall2011-parsons-lect03

- We often informally make use of arguments along the lines...
 - 1. We know somebody is the murderer.
 - 2. Call this person a.
 - 3. *a* must have been in the library with the lead pipe.
 - 4. ...

(Here, a is called a *Skolem constant*.)

Thoralf Skolem

• We can also go from the very specific to less specific.

$$\frac{\vdash P(a);}{\vdash \exists x \cdot P(x)} \exists -I(2)$$

- In other words once we have a concrete example, we can infer there exists something with the property of that example.
- If I find a student at City College who is smart, I can say "There is a smart student at City College".

csc74010-fall2011-parsons-lect03

73

7.

• We have a rule which allows this, but we have to be careful how we use it!

$$\frac{\vdash \exists x \cdot P(x);}{\vdash P(a)}$$
 \exists -E a doesn't occur elsewhere

• Here is an *invalid* use of this rule:

1. $\exists x \cdot Boring(x)$ Given

2. Lecture(AI) Given

3. Boring(AI) 1, \exists -E

• (The conclusion may be true, the argument isn't sound.)

csc74010-fall2011-parsons-lect03

• If we are careful, we can also use this kind of reasoning:

$$\frac{\vdash P(a);}{\vdash \forall x \cdot P(x)} \forall \text{-I } a \text{ is arbitrary}$$

• Here's an invalid use of this rule:

1. Boring(AI) Given

2. $\forall x \cdot Boring(x)$ 1, \forall -I

• Another kind of reasoning:

– Let *a* be arbitrary object.

- ... (some reasoning) ...

– Therefore a has property P

– Since *a* was arbitrary, it must be that every object has property *P*.

• Common in mathematics:

Consider a positive integer $n \dots so n$ is either a prime number or divisible by a smaller prime number \dots thus every positive integer is either a prime number or divisible by a smaller prime number.

csc74010-fall2011-parsons-lect03

78

- An example:
 - 1. Everybody is either happy or rich.
 - 2. Simon is not rich.
 - 3. Therefore, Simon is happy.

Predicates:

- -H(x) means x is happy;
- -R(x) means x is rich.
- Formalisation:

$$\forall x. H(x) \lor R(x); \neg R(Simon) \vdash H(Simon)$$

csc74010-fall2011-parsons-lect03 79 csc74010-fall2011-parsons-lect03

• Proof:

1.	$\forall x. H(x) \lor R(x)$	Given
2.	$\neg R(Simon)$	Given
3.	$H(Simon) \vee R(Simon)$	1, ∀-E
4.	$\neg H(Simon) \Rightarrow R(Simon)$	3, defn \Rightarrow
5.	$\neg H(Simon)$	As.
6.	R(Simon)	4, 5, ⇒-E
7.	$R(Simon) \land \neg R(Simon)$	2, 6, ∧-I
8.	$\neg \neg H(Simon)$	5, 7, ¬-I
9.	H(Simon)	8, ¬-E

csc74010-fall2011-parsons-lect03

- This lecture completes our treatment of logic.
- We discussed a new proof techniques for propositional logic:

Summary

- Resolution
- We introduced Horn clauses, showed that two proof techniques:
 - Forward chaining
 - Backward chaining

could be very efficient; and

- Covered the basics of first order logic.
- There is plenty more to logic and we will look at some more next week.

• Alternatively (a different ending with the same conclusions):

```
1. \forall x. H(x) \lor R(x)
                                                   Given
                                                   Given
 2. \neg R(Simon)
                                                   1, ∀-E
 3. H(Simon) \vee R(Simon)
                                                   3, defn \Rightarrow
 4. \neg H(Simon) \Rightarrow R(Simon)
 5. \neg H(Simon)
                                                   As.
 6. R(Simon)
                                                   4, 5, \Rightarrow -E
 7. R(Simon) \land \neg R(Simon)
                                                   2, 6, \land-I
 8. \neg \neg H(Simon)
                                                   5, 7, ¬-I
 9. H(Simon) \Leftrightarrow \neg \neg H(Simon)
                                                   PL axiom
10. (H(Simon) \Rightarrow \neg \neg H(Simon))
           \land (\neg \neg H(Simon) \Rightarrow H(Simon)) \ 9, defn \Leftrightarrow
11. \neg \neg H(Simon) \Rightarrow H(Simon)
                                                   10,∧-E
                                                   8, 11, ⇒-E
12. H(Simon)
```

csc74010-fall2011-parsons-lect03

82