
RESOLUTION AND FIRST ORDER LOGIC

Introduction

• Last week we talked about logic.

• In particular we talked about why logic would be useful.

•We covered propositional logic — the simplest kind of logic.

•We talked about proof using the rules of natural deduction.

• This week we will look at some other aspects of proof.

– Different proof methods.

•We will also look at a more expressive kind of logic.

csc74010-fall2011-parsons-lect03 2

More on proof

• One of the good things about natural deduction is that it is easy
to understand.

– Proofs are often intuitive

• However, there is lots to decide:

– Which sentence to use

– Which rule to apply

• Can be hard to program a system to use it.

• Q: How to make it easier?

csc74010-fall2011-parsons-lect03 3

Horn clauses

• A: Restrict the language

– Horn clauses

• A Horn clause is:

– An atomic proposition; or

– A conjunction of atomic propositions⇒ atomic proposition

• For example:
C ∧ D ⇒ B

• Given a set of propositions, the associated set of Horn clauses is
a subset of the sentences that can be written in standard
propositional logic.

csc74010-fall2011-parsons-lect03 4

• KB = conjunction of Horn clauses

• For example:
C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

• Same as saying:

C
B ⇒ A

C ∧ D ⇒ B

are all true.

csc74010-fall2011-parsons-lect03 5

•Modus ponens is then:

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

• For Horn clauses, modus ponens is all you need

– Complete

• Can be used with forward chaining or backward chaining.

– Two proofs mechanisms for Horn clause logic.

• These algorithms are very natural and run in linear time

csc74010-fall2011-parsons-lect03 6

Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B

Q

P

M

L

BA

• How does this work?

csc74010-fall2011-parsons-lect03 7

Q

P

M

L

BA

2 2

2

2

1

csc74010-fall2011-parsons-lect03 8

Q

P

M

L

B

2

1

A

1 1

2

csc74010-fall2011-parsons-lect03 9

Q

P

M

2

1

A

1

B

0

1
L

csc74010-fall2011-parsons-lect03 10

Q

P

M

1

A

1

B

0

L
0

1

csc74010-fall2011-parsons-lect03 11

Q

1

A

1

B

0

L
0

M

0

P

csc74010-fall2011-parsons-lect03 12

Q

A B

0

L
0

M

0

P

0

0

csc74010-fall2011-parsons-lect03 13

Q

A B

0

L
0

M

0

P

0

0

csc74010-fall2011-parsons-lect03 14

A B

0

L
0

M

0

P

0

0

Q

csc74010-fall2011-parsons-lect03 15

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, q the query
local variables: count, a table with no. of premises of each clause

inferred, table of symbols, initially all false
agenda, list of symbols, initially whole KB

while agenda is not empty do
p← POP(agenda)
unless inferred[p] do

inferred[p]← true
for each Horn clause c in whose premise p appears do

decrement count[c]
if count[c] = 0 then do

if HEAD[c] = q then return true
PUSH(HEAD[c], agenda)

return false

csc74010-fall2011-parsons-lect03 16

Proof of completeness

• FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are
derived

2. Consider the final state as a model m, assigning true/false to
symbols

3. Every clause in the original KB is true in m
Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m
Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in everymodel of KB, including m

• General idea: construct any model of KB by sound inference,
check α

csc74010-fall2011-parsons-lect03 17

Backward chaining

• Idea: work backwards from the query q

– to prove q by BC,

– check if q is known already, or

– prove by BC all premises of some rule concluding q

• Avoid loops: check if new subgoal is already on the goal stack

• Avoid repeated work: check if new subgoal

1. has already been proved true, or

2. has already failed

csc74010-fall2011-parsons-lect03 18

Q

P

M

L

A B

csc74010-fall2011-parsons-lect03 19

P

M

L

A

Q

B

csc74010-fall2011-parsons-lect03 20

M

L

A

Q

P

B

csc74010-fall2011-parsons-lect03 21

M

A

Q

P

L

B

csc74010-fall2011-parsons-lect03 22

M

A

Q

P

L

B

csc74010-fall2011-parsons-lect03 23

M

A

Q

P

L

B

csc74010-fall2011-parsons-lect03 24

A

Q

P

L

B

M

csc74010-fall2011-parsons-lect03 25

A

Q

P

L

B

M

csc74010-fall2011-parsons-lect03 26

Forward v. backward chaining

• FC is data-driven, cf. automatic, unconscious processing

– e.g., object recognition, routine decisions

•May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,

– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in size of KB

csc74010-fall2011-parsons-lect03 27

Resolution

• Resolution is another proof system.

– Sound and complete for propositional logic.

• Just one inference rule:

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨ mn

ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn

where ℓi and mj are complementary literals.

• Eh?

csc74010-fall2011-parsons-lect03 28

• As an example, here:

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

•We might resolve:

P1,3 ∨ P2,2, ¬P2,2

P1,3

• So, if we know P1,3 ∨ P2,2 and ¬P2,2 then we can conclude P1,3

csc74010-fall2011-parsons-lect03 29

• Only issue:

– Resolution only works for KB in conjunctive normal form

• conjunction of disjunctions of literals
︸ ︷︷ ︸

clauses

• Such as:

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Have to convert sentences to CNF.

• See next slide for details.

csc74010-fall2011-parsons-lect03 30

Example: B1,1⇔ (P1,2 ∨ P2,1)

1. Eliminate⇔, replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

csc74010-fall2011-parsons-lect03 31

Resolution example

• KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1

α = ¬P1,2

• First we have to convert the KB into conjunctive normal form.

• That is what we just did (here’s one I made earlier):

¬P2,1 ∨ B1,1

¬B1,1 ∨ BP1,2 ∨ P2,1

¬P1,2 ∨ B1,1

¬B1,1

• To this we add the negation of the thing we want to prove.

P1,2

csc74010-fall2011-parsons-lect03 32

• Resolution works by repeatedly combining these formulae
together until we get nothing (or the empty set).

• This represents the contradiction.

•When we find this we can conclude the negation of the thing we
added to the KB.

– This is just the thing we want to prove.

• Let’s see how this might work.

csc74010-fall2011-parsons-lect03 33

• So we might combine:

¬P2,1 ∨ B1,1, ¬B1,1

¬P2,1

• Similarly we might infer:

¬P1,2 ∨ B1,1, ¬B1,1

P1,2

•We can then combine:

P1,2 ¬P1,2

⊥

thus finding the contradiction and concluding the proof.

csc74010-fall2011-parsons-lect03 34

•Many of the possible inferences in this example are summarised
by:

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

csc74010-fall2011-parsons-lect03 35

function PL-RESOLUTION(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional

logic
α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB∧¬α
new←{}
loop do

for each Ci, Cj in clauses do
resolvents← PL-RESOLVE(Ci,Cj)
if resolvents contains the empty clause then return true
new← new ∪ resolvents

if new ⊆ clauses then return false
clauses← clauses ∪ new

csc74010-fall2011-parsons-lect03 36

In favor of propositional logic

• Propositional logic is declarative

– Pieces of syntax correspond to facts

• Propositional logic allows partial/disjunctive/negated
information

– Unlike most data structures and databases

• Propositional logic is compositional

– Meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

•Meaning in propositional logic is context-independent

– Unlike natural language, where meaning depends on context

csc74010-fall2011-parsons-lect03 37

Against propositional logic

• Propositional logic has very limited expressive power

– Unlike natural language

• For example, cannot say:

“pits cause breezes in adjacent squares”

except by writing one sentence for each square.

csc74010-fall2011-parsons-lect03 38

First order logic

•Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world
contains:

– Objects: people, houses, numbers, theories, Ronald
McDonald, colors, baseball games, wars, centuries . . .

– Relations: red, round, bogus, prime, multistoried . . ., brother of,
bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

Relations are statements that are true or false.

– Functions: father of, best friend, third inning of, one more
than, end of . . .

Functions return values.

csc74010-fall2011-parsons-lect03 39

• On the subject of brothers

csc74010-fall2011-parsons-lect03 40

Logics in general

Language Ontological Epistemological

Commitment Commitment

Propositional logic facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, times true/false/unknown

Probability theory facts degree of belief

Fuzzy logic facts + degree of truth known interval value

csc74010-fall2011-parsons-lect03 41

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf , . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃

csc74010-fall2011-parsons-lect03 42

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))

csc74010-fall2011-parsons-lect03 43

•More brothers:

csc74010-fall2011-parsons-lect03 44

Complex sentences

• Complex sentences are made from atomic sentences using
connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)

csc74010-fall2011-parsons-lect03 45

Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

•Model contains ≥ 1 objects (domain elements) and relations
among them

• Interpretation specifies referents for:

– constant symbols→ objects

– predicate symbols→ relations

– function symbols→ functional relations

• An atomic sentence predicate(term1, . . . , termn) is true iff the
objects referred to by term1, . . . , termn are in the relation referred
to by predicate

csc74010-fall2011-parsons-lect03 46

Models for FOL: Example

R J
$

left leg left leg

on head
brother

brother

person
person
king

crown

csc74010-fall2011-parsons-lect03 47

Truth example

• Consider the interpretation in which

– Richard→ Richard the Lionheart

– John→ the evil King John

– Brother→ the brotherhood relation

• Under this interpretation, Brother(Richard, John) is true just in
case Richard the Lionheart and the evil King John are in the
brotherhood relation in the model.

csc74010-fall2011-parsons-lect03 48

Models for FOL: Lots!

• Entailment in propositional logic can be computed by
enumerating models

•We can enumerate the FOL models for a given KB vocabulary:

– For each number of domain elements n from 1 to∞

– For each k-ary predicate Pk in the vocabulary

– For each possible k-ary relation on n objects

– For each constant symbol C in the vocabulary

– For each choice of referent for C from n objects . . .

• Computing entailment by enumerating FOL models is not easy!

csc74010-fall2011-parsons-lect03 49

Decidability

• In fact, it is worse than “not easy”.

• Is there any procedure that we can use, that will be guaranteed
to tell us, in a finite amount of time, whether a FOL formula is,
or is not, valid?

• The answer is no.

• FOL is for this reason said to be undecidable.

csc74010-fall2011-parsons-lect03 50

Universal quantification

• ∀ 〈variables〉 〈sentence〉

• Everyone at Brooklyn College is smart:

∀ x At(x,BC) ⇒ Smart(x)

• ∀ x P is true in a model m iff P is true with x being each possible
object in the model

• Roughly speaking, equivalent to the conjunction of instantiations
of P

(At(KingJohn,BC) ⇒ Smart(KingJohn))
∧ (At(Richard,BC) ⇒ Smart(Richard))
∧ (At(BC,BC) ⇒ Smart(BC))
∧ . . .

csc74010-fall2011-parsons-lect03 51

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective with ∀:

∀ x At(x,BC) ∧ Smart(x)

means “Everyone is at Brooklyn College and everyone is smart”

csc74010-fall2011-parsons-lect03 52

Existential quantification

• ∃ 〈variables〉 〈sentence〉

• Someone at City College is smart:

∃ x At(x,City) ∧ Smart(x)

• ∃ x P is true in a model m iff P is true with x being some possible
object in the model

• Roughly speaking, equivalent to the disjunction of instantiations
of P:

(At(KingJohn,City) ∧ Smart(KingJohn))
∨ (At(Richard,City) ∧ Smart(Richard))
∨ (At(Robin,City) ∧ Smart(Robin))
∨ . . .

csc74010-fall2011-parsons-lect03 53

A common mistake to avoid (2)

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective with ∃:

∃ x At(x,City) ⇒ Smart(x)

is true if there is anyone who is not at City College!

csc74010-fall2011-parsons-lect03 54

Properties of quantifiers
• ∀ x ∀ y is the same as ∀ y ∀ x (why?)

• ∃ x ∃ y is the same as ∃ y ∃ x (why?)

• ∃ x ∀ y is not the same as ∀ y ∃ x

• ∃ x ∀ y Loves(x, y)
“There is a person (x) who loves everyone (y) in the world”

• ∀ y ∃ x Loves(x, y)
“Everyone (y) in the world is loved by at least one person (x)”

Or, to say the same thing another way:

“For everyone (y), there exists a person (x) who loves them”

• Note that combining different quantifiers is tricky and the
ordering is important.

• ∀ y ∃ x Loves(y, x)
“There is some person (x) who is loved by everyone (y)”

csc74010-fall2011-parsons-lect03 55

• Quantifier duality: each can be expressed using the other

∀ x Likes(x, IceCream) ¬∃ x ¬Likes(x, IceCream)

∃ x Likes(x,Broccoli) ¬∀ x ¬Likes(x,Broccoli)

csc74010-fall2011-parsons-lect03 56

Fun with sentences

• Brothers are siblings

csc74010-fall2011-parsons-lect03 57

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

csc74010-fall2011-parsons-lect03 58

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

csc74010-fall2011-parsons-lect03 59

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)

csc74010-fall2011-parsons-lect03 60

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)

• One’s mother is one’s female parent

csc74010-fall2011-parsons-lect03 61

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)

• One’s mother is one’s female parent

∀ x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

csc74010-fall2011-parsons-lect03 62

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)

• One’s mother is one’s female parent

∀ x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

• A first cousin is a child of a parent’s sibling

csc74010-fall2011-parsons-lect03 63

Fun with sentences

• Brothers are siblings

∀ x, y Brother(x, y) ⇒ Sibling(x, y)

• “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)

• One’s mother is one’s female parent

∀ x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

• A first cousin is a child of a parent’s sibling

∀ x, y FirstCousin(x, y) ⇔
∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧ Parent(ps, y)

csc74010-fall2011-parsons-lect03 64

Equality

• term1 = term2 is true under a given interpretation if and only if
term1 and term2 refer to the same object

E.g., 1 = 2 and ∀ x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

• E.g., definition of (full) Sibling in terms of Parent:

∀ x, y Sibling(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧

Parent(m, x) ∧ Parent(f , x) ∧ Parent(m, y) ∧ Parent(f , y)]

csc74010-fall2011-parsons-lect03 65

Interacting with FOL KBs

• Suppose a wumpus-world agent is using an FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:

• Tell(KB,Percept([Smell,Breeze,None], 5))

Ask(KB, ∃ a Action(a, 5))

• Does KB entail any particular actions at t = 5?

• Answer: Yes, {a/Shoot} ← substitution (binding list)

• Given a sentence S and a substitution σ, Sσ denotes the result of
plugging σ into S

csc74010-fall2011-parsons-lect03 66

• For example:

S = Smarter(x, y)

σ = {x/Hillary, y/Bill}

Sσ = Smarter(Hillary,Bill)

• Ask(KB, S) returns some/all σ such that KB |= Sσ

csc74010-fall2011-parsons-lect03 67

Knowledge base for the wumpus world

• “Perception”

∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)

∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

• Reflex

∀ t AtGold(t) ⇒ Action(Grab, t)

• Reflex with internal state: do we have the gold already?

∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

• Holding(Gold, t) cannot be observed⇒ keeping track of change is
essential

csc74010-fall2011-parsons-lect03 68

function KB-AGENT(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB,MAKE-PERCEPT-SENTENCE(percept, t))
action←ASK(KB,MAKE-ACTION-QUERY(t))
TELL(KB,MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

csc74010-fall2011-parsons-lect03 69

Deducing hidden properties
• Properties of locations:

∀ x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀ x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

• Squares are breezy near a pit.

• Diagnostic rule—infer cause from effect

∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

• Causal rule—infer effect from cause

∀ x, y Pit(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

• Neither of these is complete—e.g., the causal rule doesn’t say
whether squares far away from pits can be breezy

• Definition for the Breezy predicate:

∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

csc74010-fall2011-parsons-lect03 70

Proof in FOL

• Proof in FOL is similar to propositional logic; we just need an
extra set of rules, to deal with the quantifiers.

• FOL inherits all the rules of PL.

• To understand FOL proof rules, need to understand substitution.

• The most obvious rule, for ∀-E.

Tells us that if everything in the domain has some property, then
we can infer that any particular individual has the property.

⊢ ∀x · P(x); ∀-E
⊢ P(a)

for any a in the domain

Going from general to specific.

• If all Brooklyn College students are smart, then anyone in the
class is smart.

csc74010-fall2011-parsons-lect03 71

• Example 1.

Let’s use ∀-E to get the Socrates example out of the way.

Person(s); ∀x · Person(x)⇒ Mortal(x) ⊢ Mortal(s)

1. Person(s) Given
2. ∀x · Person(x)⇒ Mortal(x) Given
3. Person(s)⇒ Mortal(s) 2, ∀-E
4. Mortal(s) 1, 3,⇒-E

csc74010-fall2011-parsons-lect03 72

•We can also go from the general to the slightly less specific!

⊢ ∀x · P(x); ∃-I(1)
⊢ ∃x · P(x)

if domain not empty

Note the side condition.

The ∃ quantifier asserts the existence of at least one object.

The ∀ quantifier does not.

• So, while we can say “All unicorns have horns” irrespective of
whether unicorns are real or not, we can only say “There’s a
unicorn living on my street whose name is Fred and he has a
horn” if there is at least one unicorn.

csc74010-fall2011-parsons-lect03 73

•We can also go from the very specific to less specific.

⊢ P(a); ∃-I(2)
⊢ ∃x · P(x)

• In other words once we have a concrete example, we can infer
there exists something with the property of that example.

• If I find a student at City College who is smart, I can say “There
is a smart student at City College”.

csc74010-fall2011-parsons-lect03 74

•We often informally make use of arguments along the lines. . .

1. We know somebody is the murderer.

2. Call this person a.

3. a must have been in the library with the lead pipe.

4. . . .

(Here, a is called a Skolem constant.)

Thoralf Skolem

csc74010-fall2011-parsons-lect03 75

•We have a rule which allows this, but we have to be careful how
we use it!

⊢ ∃x · P(x); ∃-E
⊢ P(a)

a doesn’t occur elsewhere

csc74010-fall2011-parsons-lect03 76

• Here is an invalid use of this rule:

1. ∃x · Boring(x) Given
2. Lecture(AI) Given
3. Boring(AI) 1, ∃-E

• (The conclusion may be true, the argument isn’t sound.)

csc74010-fall2011-parsons-lect03 77

• Another kind of reasoning:

– Let a be arbitrary object.

– . . . (some reasoning) . . .

– Therefore a has property P

– Since a was arbitrary, it must be that every object has property
P.

• Common in mathematics:

Consider a positive integer n . . . so n is either a prime
number or divisible by a smaller prime number . . . thus
every positive integer is either a prime number or divisible
by a smaller prime number.

csc74010-fall2011-parsons-lect03 78

• If we are careful, we can also use this kind of reasoning:

⊢ P(a); ∀-I
⊢ ∀x · P(x)

a is arbitrary

• Here’s an invalid use of this rule:

1. Boring(AI) Given
2. ∀x · Boring(x) 1, ∀-I

csc74010-fall2011-parsons-lect03 79

• An example:

1. Everybody is either happy or rich.

2. Simon is not rich.

3. Therefore, Simon is happy.

Predicates:

– H(x)means x is happy;

– R(x)means x is rich.

• Formalisation:

∀x.H(x) ∨ R(x);¬R(Simon) ⊢ H(Simon)

csc74010-fall2011-parsons-lect03 80

• Proof:

1. ∀x.H(x) ∨ R(x) Given
2. ¬R(Simon) Given
3. H(Simon) ∨ R(Simon) 1, ∀-E
4. ¬H(Simon)⇒ R(Simon) 3, defn⇒
5. ¬H(Simon) As. |
6. R(Simon) 4, 5,⇒-E |
7. R(Simon) ∧ ¬R(Simon) 2, 6, ∧-I |
8. ¬¬H(Simon) 5, 7, ¬-I
9. H(Simon) 8, ¬-E

csc74010-fall2011-parsons-lect03 81

• Alternatively (a different ending with the same conclusions):

1. ∀x.H(x) ∨ R(x) Given
2. ¬R(Simon) Given
3. H(Simon) ∨ R(Simon) 1, ∀-E
4. ¬H(Simon)⇒ R(Simon) 3, defn⇒
5. ¬H(Simon) As. |
6. R(Simon) 4, 5,⇒-E |
7. R(Simon) ∧ ¬R(Simon) 2, 6, ∧-I |
8. ¬¬H(Simon) 5, 7, ¬-I
9. H(Simon)⇔ ¬¬H(Simon) PL axiom
10. (H(Simon)⇒ ¬¬H(Simon))

∧(¬¬H(Simon)⇒ H(Simon)) 9, defn⇔
11. ¬¬H(Simon)⇒ H(Simon) 10,∧-E
12. H(Simon) 8, 11,⇒-E

csc74010-fall2011-parsons-lect03 82

Summary

• This lecture completes our treatment of logic.

•We discussed a new proof techniques for propositional logic:

– Resolution

•We introduced Horn clauses, showed that two proof techniques:

– Forward chaining

– Backward chaining

could be very efficient; and

• Covered the basics of first order logic.

• There is plenty more to logic and we will look at some more next
week.

csc74010-fall2011-parsons-lect03 83

