

Introduction

- Last week we talked about logic.
- In particular we talked about why logic would be useful.
- We covered propositional logic the simplest kind of logic.
- We talked about proof using the rules of natural deduction.
- This week we will look at some other aspects of proof.
 - Different proof methods.
- We will also look at a more expressive kind of logic.

More on proof

- One of the good things about natural deduction is that it is easy to understand.
 - Proofs are often intuitive
- However, there is lots to decide:
 - Which sentence to use
 - Which rule to apply
- Can be hard to program a system to use it.
- Q: How to make it easier?

Horn clauses

- A: Restrict the language
 - Horn clauses
- A Horn clause is:
 - An atomic proposition; or
 - A conjunction of atomic propositions ⇒ atomic proposition
- For example:

$$C \wedge D \Rightarrow B$$

• Given a set of propositions, the associated set of Horn clauses is a subset of the sentences that can be written in standard propositional logic.

- KB = *conjunction* of *Horn clauses*
- For example:

$$C \wedge (B \Rightarrow A) \wedge (C \wedge D \Rightarrow B)$$

• Same as saying:

$$\begin{array}{ccc} C & & \\ B & \Rightarrow & A \\ C \wedge D & \Rightarrow & B \end{array}$$

are all true.

• Modus ponens is then:

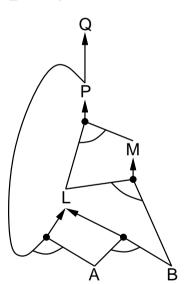
$$\frac{\alpha_1, \ldots, \alpha_n, \qquad \alpha_1 \wedge \cdots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

- For Horn clauses, modus ponens is all you need
 - Complete
- Can be used with forward chaining or backward chaining.
 - Two proofs mechanisms for Horn clause logic.
- These algorithms are very natural and run in *linear* time

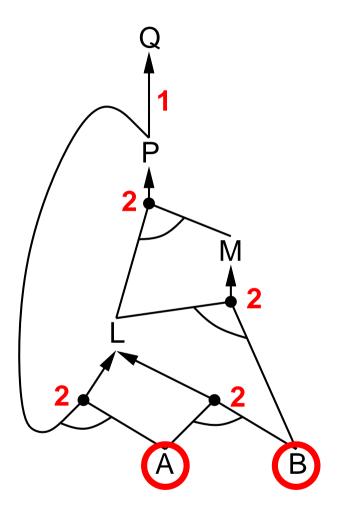
Forward chaining

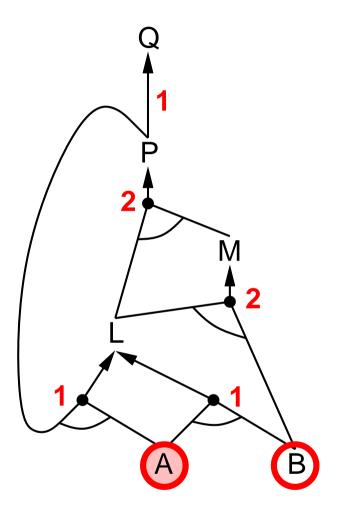
• Idea: fire any rule whose premises are satisfied in the *KB*, add its conclusion to the *KB*, until query is found

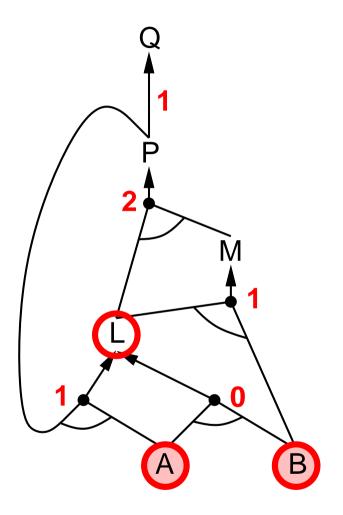
$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

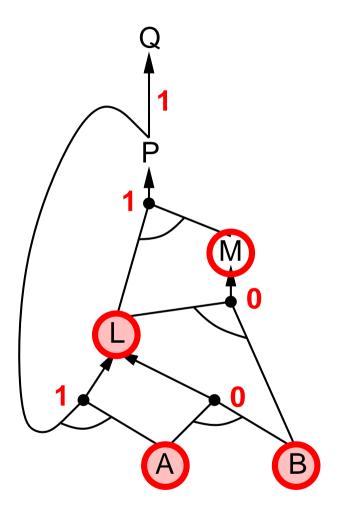


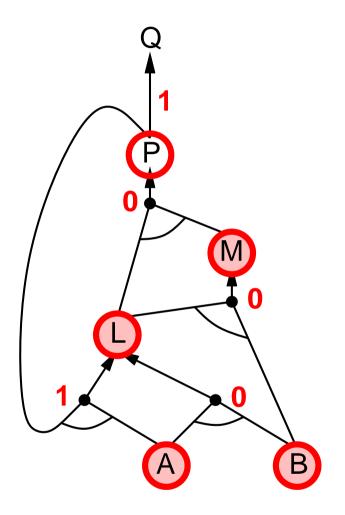
• How does this work?

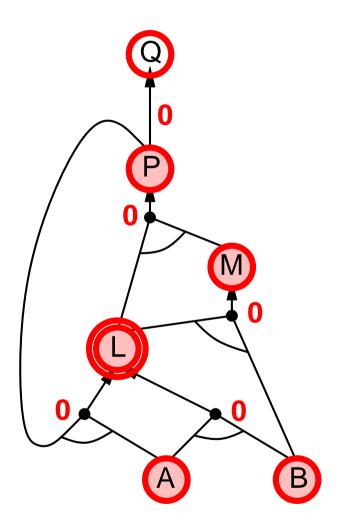


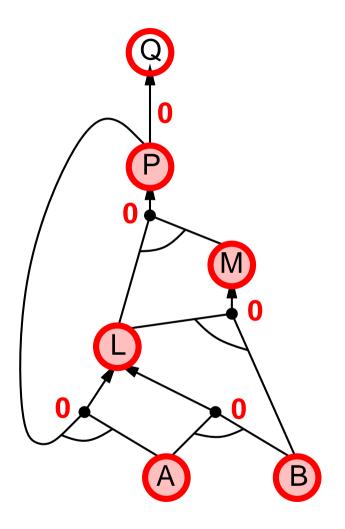


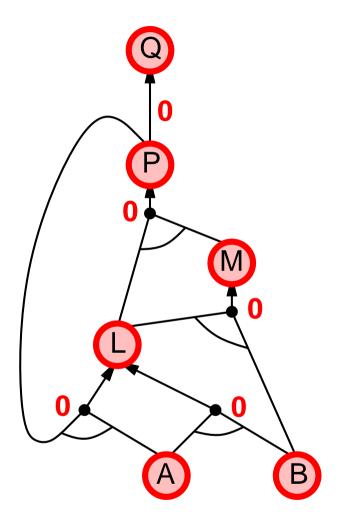












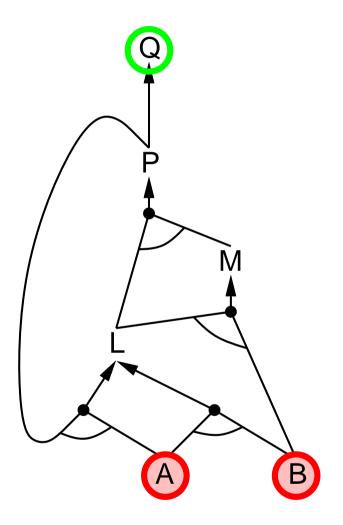
```
function PL-FC-ENTAILS?(KB, q) returns true or false
  inputs: KB, the knowledge base, q the query
 local variables: count, a table with no. of premises of each clause
                   inferred, table of symbols, initially all false
                   agenda, list of symbols, initially whole KB
  while agenda is not empty do
     p \leftarrow POP(agenda)
      unless inferred[p] do
         inferred[p] \leftarrow true
         for each Horn clause c in whose premise p appears do
             decrement count[c]
             if count[c] = 0 then do
                if HEAD[c] = q then return true
                PUSH(HEAD[c], agenda)
  return false
```

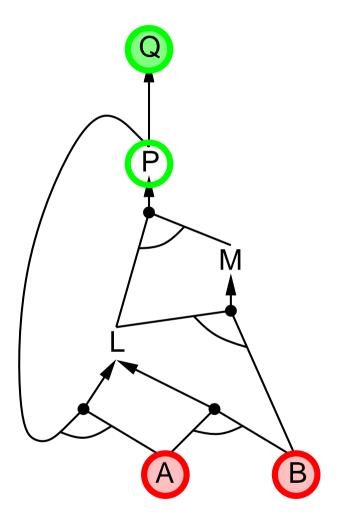
Proof of completeness

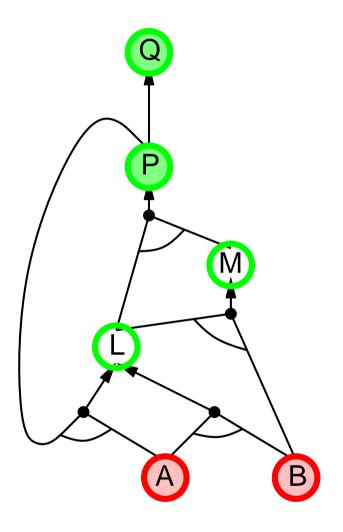
- FC derives every atomic sentence that is entailed by *KB*
 - 1. FC reaches a *fixed point* where no new atomic sentences are derived
 - 2. Consider the final state as a model *m*, assigning true/false to symbols
 - 3. Every clause in the original KB is true in m *Proof*: Suppose a clause $a_1 \wedge \ldots \wedge a_k \Rightarrow b$ is false in m Then $a_1 \wedge \ldots \wedge a_k$ is true in m and b is false in m Therefore the algorithm has not reached a fixed point!
 - 4. Hence *m* is a model of *KB*
 - 5. If $KB \models q, q$ is true in *every* model of KB, including m
- *General idea*: construct any model of *KB* by sound inference, check α

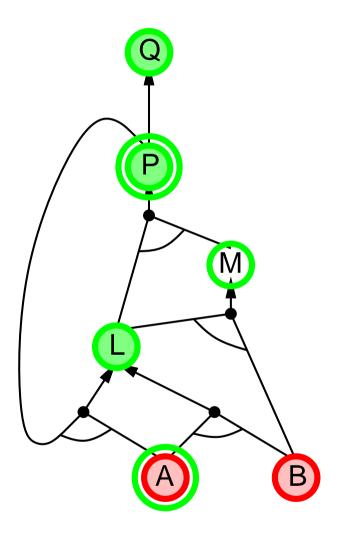
Backward chaining

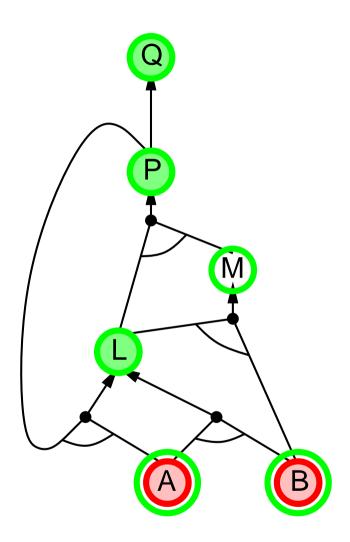
- Idea: work backwards from the query *q*
 - to prove q by BC,
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - 1. has already been proved true, or
 - 2. has already failed

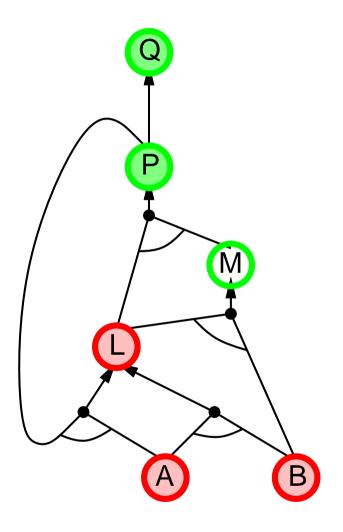


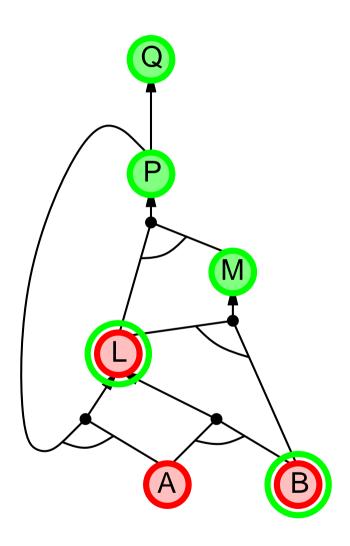


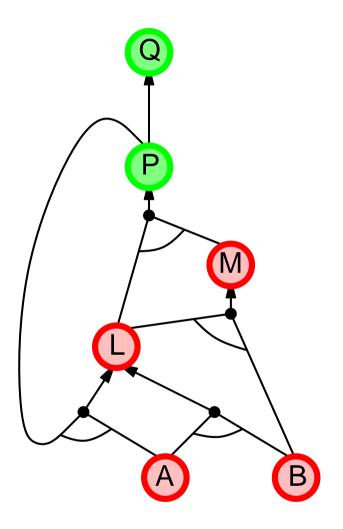












Forward v. backward chaining

- FC is data-driven, cf. automatic, unconscious processing
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is *goal-driven*, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be *much less* than linear in size of KB

Resolution

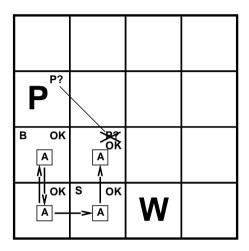
- Resolution is another proof system.
 - Sound and complete for propositional logic.
- Just one inference rule:

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

where ℓ_i and m_j are complementary literals.

• Eh?

• As an example, here:



• We might resolve:

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

• So, if we know $P_{1,3} \vee P_{2,2}$ and $\neg P_{2,2}$ then we can conclude $P_{1,3}$

- Only issue:
 - Resolution only works for KB in *conjunctive normal form*
- conjunction of disjunctions of literals

clauses

• Such as:

$$(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$$

- Have to convert sentences to CNF.
- See next slide for details.

Example: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move ¬ inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\lor over \land) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution example

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$ $\alpha = \neg P_{1,2}$
- First we have to convert the *KB* into conjunctive normal form.
- That is what we just did (here's one I made earlier):

$$\neg P_{2,1} \lor B_{1,1}
\neg B_{1,1} \lor B_{P_{1,2}} \lor P_{2,1}
\neg P_{1,2} \lor B_{1,1}
\neg B_{1,1}$$

• To this we add the negation of the thing we want to prove.

$$P_{1,2}$$

- Resolution works by repeatedly combining these formulae together until we get nothing (or the empty set).
- This represents the contradiction.
- When we find this we can conclude the negation of the thing we added to the *KB*.
 - This is just the thing we want to prove.
- Let's see how this might work.

• So we might combine:

$$\frac{\neg P_{2,1} \lor B_{1,1}, \qquad \neg B_{1,1}}{\neg P_{2,1}}$$

• Similarly we might infer:

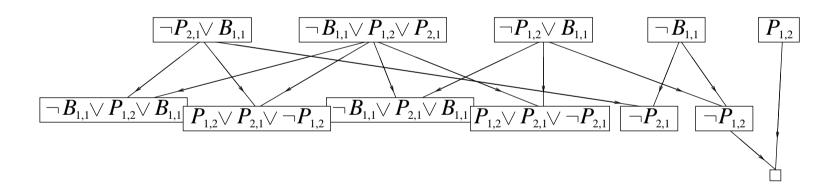
$$\frac{\neg P_{1,2} \lor B_{1,1}, \qquad \neg B_{1,1}}{P_{1,2}}$$

• We can then combine:

$$\frac{P_{1,2} \qquad \neg P_{1,2}}{\mid}$$

thus finding the contradiction and concluding the proof.

• Many of the possible inferences in this example are summarised by:



```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional
                   logic
            \alpha, the query, a sentence in propositional logic
  clauses ← the set of clauses in the CNF representation of KB \land \neg \alpha
  new \leftarrow \{ \}
  loop do
      for each C_i, C_i in clauses do
          resolvents \leftarrow PL-RESOLVE(C_i, C_i)
          if resolvents contains the empty clause then return true
          new \leftarrow new \cup resolvents
      if new \subseteq clauses then return false
      clauses \leftarrow clauses \cup new
```

In favor of propositional logic

- Propositional logic is *declarative*
 - Pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
 - Unlike most data structures and databases
- Propositional logic is compositional
 - Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is *context-independent*
 - Unlike natural language, where meaning depends on context

Against propositional logic

- Propositional logic has very limited expressive power
 - Unlike natural language
- For example, cannot say:

"pits cause breezes in adjacent squares" except by writing one sentence for each square.

First order logic

- Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains:
 - Objects: people, houses, numbers, theories, Ronald
 McDonald, colors, baseball games, wars, centuries . . .
 - *Relations*: red, round, bogus, prime, multistoried . . ., *brother of*, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .

Relations are statements that are true or false.

- *Functions*: father of, best friend, third inning of, one more than, end of . . .

Functions return values.

• On the subject of brothers

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL: Basic elements

```
Constants KingJohn, 2, UCB, ...
```

Predicates $Brother, >, \dots$

Functions Sqrt, LeftLegOf,...

Variables x, y, a, b, \dots

Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$

Equality =

Quantifiers $\forall \exists$

Atomic sentences

```
Atomic sentence = predicate(term_1, ..., term_n)
or term_1 = term_2
```

Term = $function(term_1, ..., term_n)$ or constant or variable

E.g., Brother(KingJohn, RichardTheLionheart)> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

• More brothers:

Complex sentences

 Complex sentences are made from atomic sentences using connectives

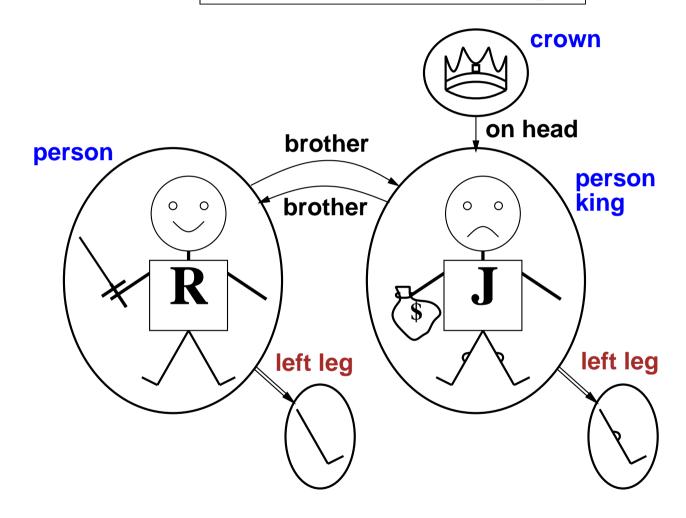
$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1, 2) \lor \leq (1, 2) > (1, 2) \land \neg > (1, 2)$$

Truth in first-order logic

- Sentences are true with respect to a *model* and an *interpretation*
- Model contains ≥ 1 objects (*domain elements*) and relations among them
- Interpretation specifies referents for:
 - constant symbols \rightarrow objects
 - predicate symbols \rightarrow relations
 - function symbols \rightarrow functional relations
- An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

Models for FOL: Example



Truth example

- Consider the interpretation in which
 - *Richard* → Richard the Lionheart
 - *John* → the evil King John
 - $Brother \rightarrow$ the brotherhood relation
- Under this interpretation, *Brother*(*Richard*, *John*) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model.

Models for FOL: Lots!

- Entailment in propositional logic can be computed by enumerating models
- We *can* enumerate the FOL models for a given KB vocabulary:
 - For each number of domain elements n from 1 to ∞
 - For each k-ary predicate P_k in the vocabulary
 - For each possible *k*-ary relation on *n* objects
 - For each constant symbol *C* in the vocabulary
 - For each choice of referent for C from n objects . . .
- Computing entailment by enumerating FOL models is not easy!

Decidability

- In fact, it is worse than "not easy".
- Is there any procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
- The answer is no.
- FOL is for this reason said to be *undecidable*.

Universal quantification

- ∀ ⟨variables⟩ ⟨sentence⟩
- Everyone at Brooklyn College is smart:

$$\forall x \ At(x, BC) \Rightarrow Smart(x)$$

- $\forall x \ P$ is true in a model m iff P is true with x being *each* possible object in the model
- *Roughly* speaking, equivalent to the conjunction of instantiations of *P*

```
(At(KingJohn, BC) \Rightarrow Smart(KingJohn))
 \land (At(Richard, BC) \Rightarrow Smart(Richard))
 \land (At(BC, BC) \Rightarrow Smart(BC))
 \land \dots
```

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \land as the main connective with \forall :

$$\forall x \ At(x, BC) \land Smart(x)$$

means "Everyone is at Brooklyn College and everyone is smart"

Existential quantification

- ∃ ⟨variables⟩ ⟨sentence⟩
- Someone at City College is smart:

$$\exists x \ At(x, City) \land Smart(x)$$

- $\exists x \ P$ is true in a model m iff P is true with x being *some* possible object in the model
- *Roughly* speaking, equivalent to the disjunction of instantiations of *P*:

```
(At(KingJohn, City) \land Smart(KingJohn))
 \lor (At(Richard, City) \land Smart(Richard))
 \lor (At(Robin, City) \land Smart(Robin))
 \lor \dots
```

A common mistake to avoid (2)

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, City) \Rightarrow Smart(x)$$

is true if there is anyone who is not at City College!

Properties of quantifiers

- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x \ \text{(why?)}$
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \ \forall y \ \text{is } not \text{ the same as } \forall y \ \exists x$
- $\exists x \ \forall y \ Loves(x, y)$ "There is a person (x) who loves everyone (y) in the world"
- ∀y ∃x Loves(x, y)
 "Everyone (y) in the world is loved by at least one person (x)"
 Or, to say the same thing another way:
 "For everyone (y), there exists a person (x) who loves them"
- Note that combining different quantifiers is tricky and the ordering is important.
- $\forall y \exists x \ Loves(y, x)$ "There is some person (x) who is loved by everyone (y)"

• Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$

 $\exists x \ Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

• Brothers are siblings

• Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

• Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

• "Sibling" is symmetric

• Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

• "Sibling" is symmetric

$$\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

- "Sibling" is symmetric $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$
- One's mother is one's female parent

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

• "Sibling" is symmetric

$$\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

• One's mother is one's female parent

```
\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))
```

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

• "Sibling" is symmetric

$$\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

• One's mother is one's female parent

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$$

• A first cousin is a child of a parent's sibling

Brothers are siblings

```
\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)
```

• "Sibling" is symmetric

$$\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

• One's mother is one's female parent

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$$

• A first cousin is a child of a parent's sibling

$$\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$$

Equality

• $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1 = 2$$
 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable $2 = 2$ is valid

• E.g., definition of (full) *Sibling* in terms of *Parent*:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \; \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:
- Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$
- Does *KB* entail any particular actions at t = 5?
- Answer: Yes, $\{a/Shoot\}$ \leftarrow *substitution* (binding list)
- Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S

• For example:

```
S = Smarter(x, y)

\sigma = \{x/Hillary, y/Bill\}

S\sigma = Smarter(Hillary, Bill)
```

• Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

$$\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)$$

 $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$

Reflex

$$\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$$

• Reflex with internal state: do we have the gold already?

$$\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$$

• Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

```
function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) t \leftarrow t + 1 return action
```

Deducing hidden properties

Properties of locations:

$$\forall x, t \; At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$$

 $\forall x, t \; At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

- Squares are breezy near a pit.
- *Diagnostic* rule—infer cause from effect

$$\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x, y)$$

• Causal rule—infer effect from cause

$$\forall x, y \ \textit{Pit}(x) \land \textit{Adjacent}(x, y) \Rightarrow \textit{Breezy}(y)$$

- Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy
- *Definition* for the *Breezy* predicate:

$$\forall y \; Breezy(y) \Leftrightarrow [\exists x \; Pit(x) \land Adjacent(x,y)]$$

Proof in FOL

- Proof in FOL is similar to propositional logic; we just need an extra set of rules, to deal with the quantifiers.
- FOL *inherits* all the rules of PL.
- To understand FOL proof rules, need to understand *substitution*.
- The most obvious rule, for \forall -E. Tells us that if everything in the domain has some property, then we can infer that any *particular* individual has the property.

$$\frac{\vdash \forall x \cdot P(x);}{\vdash P(a)}$$
 \forall -E for any a in the domain

Going from general to specific.

• If all Brooklyn College students are smart, then anyone in the class is smart.

• Example 1.

Let's use \forall -E to get the Socrates example out of the way.

$$Person(s); \forall x \cdot Person(x) \Rightarrow Mortal(x) \vdash Mortal(s)$$

1. Person(s)

- Given
- 2. $\forall x \cdot Person(x) \Rightarrow Mortal(x)$ Given
- 3. $Person(s) \Rightarrow Mortal(s)$ 2, \forall -E
- 4. Mortal(s)

$$1, 3, \Rightarrow -E$$

We can also go from the general to the slightly less specific!

$$\frac{\vdash \forall x \cdot P(x);}{\vdash \exists x \cdot P(x)} \stackrel{\exists -I(1)}{=} \text{ if domain not empty}$$

Note the *side condition*.

The \exists quantifier *asserts the existence* of at least one object. The \forall quantifier does not.

• So, while we can say "All unicorns have horns" irrespective of whether unicorns are real or not, we can only say "There's a unicorn living on my street whose name is Fred and he has a horn" if there is at least one unicorn.

• We can also go from the very specific to less specific.

$$\frac{\vdash P(a);}{\vdash \exists x \cdot P(x)} \exists \text{-I(2)}$$

- In other words once we have a concrete example, we can infer there exists something with the property of that example.
- If I find a student at City College who is smart, I can say "There is a smart student at City College".

- We often informally make use of arguments along the lines...
 - 1. We know somebody is the murderer.
 - 2. Call this person *a*.
 - 3. *a* must have been in the library with the lead pipe.
 - 4. ...

(Here, a is called a *Skolem constant*.)

Thoralf Skolem

• We have a rule which allows this, but we have to be careful how we use it!

$$\frac{\vdash \exists x \cdot P(x);}{\vdash P(a)}$$
 \exists -E a doesn't occur elsewhere

• Here is an *invalid* use of this rule:

- 1. $\exists x \cdot Boring(x)$ Given
- 2. Lecture(AI) Given
- 3. Boring(AI) 1, \exists -E

• (The conclusion may be true, the argument isn't sound.)

- Another kind of reasoning:
 - Let *a* be arbitrary object.
 - ... (some reasoning) ...
 - Therefore a has property P
 - Since *a* was arbitrary, it must be that every object has property *P*.
- Common in mathematics:

Consider a positive integer $n \dots$ so n is either a prime number or divisible by a smaller prime number \dots thus every positive integer is either a prime number or divisible by a smaller prime number.

• If we are careful, we can also use this kind of reasoning:

$$\frac{\vdash P(a);}{\vdash \forall x \cdot P(x)}$$
 \forall -I a is arbitrary

• Here's an invalid use of this rule:

- 1. Boring(AI) Given
- 2. $\forall x \cdot Boring(x)$ 1, \forall -I

- An example:
 - 1. Everybody is either happy or rich.
 - 2. Simon is not rich.
 - 3. Therefore, Simon is happy.

Predicates:

- -H(x) means x is happy;
- -R(x) means x is rich.
- Formalisation:

$$\forall x. H(x) \lor R(x); \neg R(Simon) \vdash H(Simon)$$

• Proof:

1.
$$\forall x.H(x) \lor R(x)$$
 Given
2. $\neg R(Simon)$ Given
3. $H(Simon) \lor R(Simon)$ 1, \forall -E
4. $\neg H(Simon) \Rightarrow R(Simon)$ 3, defn \Rightarrow
5. $\neg H(Simon)$ As.
6. $R(Simon)$ As.
6. $R(Simon) \land \neg R(Simon)$ 2, 6, \land -I
8. $\neg \neg H(Simon)$ 5, 7, \neg -I
9. $H(Simon)$ 8, \neg -E

• Alternatively (a different ending with the same conclusions):

1.
$$\forall x.H(x) \lor R(x)$$
 Given
2. $\neg R(Simon)$ Given
3. $H(Simon) \lor R(Simon)$ 1, \forall -E
4. $\neg H(Simon) \Rightarrow R(Simon)$ 3, defn \Rightarrow
5. $\neg H(Simon)$ As.
6. $R(Simon)$ 4, 5, \Rightarrow -E
7. $R(Simon) \land \neg R(Simon)$ 2, 6, \land -I
8. $\neg \neg H(Simon)$ 5, 7, \neg -I
9. $H(Simon) \Leftrightarrow \neg \neg H(Simon)$ PL axiom
10. $(H(Simon) \Rightarrow \neg \neg H(Simon))$ PL axiom
11. $\neg \neg H(Simon) \Rightarrow H(Simon)$ 9, defn \Leftrightarrow
11. $\neg \neg H(Simon) \Rightarrow H(Simon)$ 10, \land -E
12. $H(Simon)$ 8, 11, \Rightarrow -E

Summary

- This lecture completes our treatment of logic.
- We discussed a new proof techniques for propositional logic:
 - Resolution
- We introduced Horn clauses, showed that two proof techniques:
 - Forward chaining
 - Backward chaining
 - could be very efficient; and
- Covered the basics of first order logic.
- There is plenty more to logic and we will look at some more next week.