
KNOWLEDGE REPRESENTATION



Introduction

• For the last couple of weeks we talked about logic.

• In particular we talked about propositional logic and first order
logics.

• The claim was that we could have agents use them to reason
about the world.

– Implies representation

(see over)

• This week we’ll look at using logic for representation.

• As we’ll see, it opens up a range of new problems.
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Knowledge Engineering

• Is there a general process for writing down a description of the
world in logic.

– Kind of

• The textbook gives the following steps, which make sense.
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• Identify the task

First you decide what kinds of query the system will have to
answer. You don’t want to miss things out, or waste time
including things that are unecessary.

• Assemble the relevant knowledge.

Obtain an informal understanding of the domain, if you don’t
have one.

• Decide on an ontology.

Translate the domain concepts into logical predicates. How do
you represent movement?

• Encode general knowledge about the domain.

Now you write down the ontology in logic, writing axioms for
all the terms in the vocabulary.

csc74010-fall2011-parsons-lect04 5



• Encode a specific problem instance

If the ontology is correct, domain knowledge is largely simple
statements from the ontology. If not, this is when you start to
find that the ontology is wrong.

• Pose queries

This is the testing step — the inference mechanism should
generate correct answer to your queries, when it doesn’t you go
on to. . .

• Debug the knowledge base

Usually you will find that the ontology has flaws in it
somewhere. Axioms missing, or statements that are too weak
(too few inferences sanctioned) or too strong (too many
inferences sanctioned).
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Ontologies

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Interval Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

• Many aspects of the world are hard to formalise in logic.
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Categories and objects

• To build an ontology we must divide objects into categories

– We interact at the individual objects, but think in categories.

– “I’m going to buy a baseball”, not “I’m going to buy
baseball2367541.885

• Categories are also useful.

– Define properties of categories and then have objects inherit
them.

Greenmottled(x) ⇒ Watermelon(x) ⇒ Good to eat(x)

– Infer category membership and make predictions.
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• Can represent categories as predicates

Basketball(b)

• Can also represent categories as objects, reifying them.

Basketballs

so we can then say:

Member(b,Basketballs) or b ∈ Basketballs

• Also have subset relationships:

Subset(Basketballs,Balls) or Basketballs⊂ Balls

• Here Basketballsis subset, subclass and/or subcategory.
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Subclasses
• We organise categories by subclass relations, and use inheritance
to save on representation.

• b ∈ Basketballswill be round, because Basketballs⊂ Ballsand
balls are round.

(Well, of course they aren’t all round, but there are inheritable
properties).

• Subclasses organise knowledge into a taxonomic hierarchy.
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• Statements about categories are typically easy to make using first
order logic:

bb9 ∈ Basketballs
Basketballs⊂ Balls
(x ∈ Basketballs) ⇒ Spherical(x)

• This last shows one way to restrict the domain of a universal
quantification.

• Can also make statements about members of a category, and
categories as a whole.

Orange(x) ∧ Diameter(x) = 9.5′′ ∧ x ∈ Balls⇒ x ∈ Basketballs
Dogs∈ DomesticatedSpecies

• We also want to be able to state things that are not sub-class
relationships.
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Other properties

• Categories are disjoint they have no members in common.

Disjoint({Animals,Vegetables}).

• An exhaustive decomposition lists all of the possible constituents:

ExhaustiveDecomposition({Americans,Canadians,Mexicans},
NorthAmericans)

• If an exhaustive decomposition is disjoint, it is a partition

Partition({Males,Females},Animals)
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Physical composition

• The PartOf relation is also important.

PartOf(Bucharest,Romania)
PartOf(Romania,Europe)
PartOf(Europe,Earth)

• The relation is transitive and reflexive:

PartOf(x, y) ∧ PartOf(y, z) ⇒ PartOf(x, z)
PartOf(x, x)
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Composite objects

• Composite objects are often categorized by structural
relationships between parts:

Biped(a) ⇒ ∃ l1, l2, l3, b Leg(l1) ∧ Leg(l2) ∧ Body(b) ∧
PartOf(l1,a) ∧ PartOf(l2,a) ∧ PartOf(b, a) ∧
Attached(l1, b) ∧ Attached(l2,b) ∧ l1 6= l2 ∧
[∀l3 Leg(l3) ∧ PartOf(l3, a) ⇒ (l3 = l1) ∨ (l3 = l2)]
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• The characterization of “has exactly two legs” is not very elegant.

• Description logicsmake this easier.
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• May also want composite objects with parts and no structure.

• A bunch
BunchOf({Apple1,Apple2,Apple3}).

• Different from what we have seen before:

• BunchOf(Apples) is the composite object of all apples, distinct
from Apples, the category of all apples.

(The first is a concrete object, a big one, while the second is an
abstract idea).
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BunchOf(Apples) Apples
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• We can define BunchOfin terms of PartOf, since each element in
the bunch is a part of it:

∀x x∈ s ⇒ PartOf(x,BunchOf(s))

• We can also say that BunchOf(s) is the smallest object satsifying
this condition:

∀y[∀x x∈ s ⇒ PartOf(x, y)] ⇒ PartOf(BunchOf(s), y)

BunchOf(s) must be part of any object that has all the elements of
sas parts.

• Logical minimization
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States and actions

• How do we describe the world so that we can do planning?

– Need a way to describe states and actions.

Remember runs from the first lecture?

• Situation calculus

• Initial state is a situation.

• s is a situation and a is an action, Result(s, a) is a situation.

A situation is a sequence (history) of actions applied to some
initial state.

• Two situations are the same only if their start state and sequence
of actions is the same:

Result(s, a) = Result(s′,a′) ⇔ (s= s′ ∧ a = a′)
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• A fluent is a function or relation that can vary from one situation
to another.

• By convention the situation s is the last argument to a fluent.

• At(x, l, s) is the relational fluent that is true when object x is at
location l in situation s.

• Locationis a functional fluent such that Location(x, s) = l when
At(x, l, s) is true.
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• The pre-conditions of actions are described with a possibility
axiom.

• This says when an action can be taken.

• For example:

Alive(Agent, s) ∧ Have(Agent,Arrow, s) ⇒ Poss(Shoot, s)

• Possibility axioms always look like:

Φ(s) ⇒ Poss(a, s)
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• For each fluent we need a successor-state axiom that says what
happens to the fluent when an action is taken:

Poss(a, s) ⇒
(Holding(Agent, g,Result(a, s))) ⇔
a = Grab(g) ∨ (Holding(Agent, g, s) ∧ a 6= Release(g))).

• If the action is possible, then if the fluent is true in the result state
it means (⇔) the action made it true, or it was true before and the
action didn’t change it.

• The need to state successor axioms for each fluent/action pair is
known as the frame problem.

• Also need axioms to say that actions with different names are
different.
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• Logical deduction over situation calculus descriptions gives us
plans.

• That is situations (and hence sequences of actions) that satisfy a
given goal.

• Of course, all of this (as written) assumes that actions are
deterministic.

– But see, for example, DTGolog.
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Events

• The situation calculus can describe actions and effects, but
doesn’t consider the duration of actions.

• Also can’t handle simultaneous actions.

• So we have the event calculus, which is based on time points.

• “Event” is a synonym for “action”.

• The event calculus reifies fluents and events.

• At(Simon,Brooklyn) is an object that refers to Simon being in
Brooklyn, but does not say if it is true.

• To assert its truth we say:

T(At(Simon,Brooklyn), this afternoon)
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• Events are taken to be instances of categories of events.

• Thus the event E1 of Simon flying from New York to London
could be written as:

E1 ∈ Flyings∧ Flyer(E1,Simon)∧
Origin(E1,NYC) ∧ Destination(E1,London)

• If that is too long-winded, the use:

E1 ∈ Flyings(Simon,NY,London).
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• To express the fact that this took some time (which it does), then
we can say:

Happens(E1, i)

where i is some time interval.

• Equivalently:
Extent(E1) = i

• We can then identify concrete times with i by defining:

i = (t1, t2)

• A sample set of predicates for the event calculus is as follows.
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• T(f , t)

Fluent f is true at time t.

• Happens(e, i)

Event ehappens over interval i.

• Initiates(e, f , t)

Event e causes f to start at t.

• Terminates(e, f , t)

The reverse of the previous predicate.

• Clipped(f , i)

f ceases to be true during i.

• Restored(f , i)

The reverse of the previous predicate.
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• There is a first event Start, and we say which fluents are
initiated/terminated by Start.

• Then:

Clipped(f , (t1, t2)) ⇔
∃e, t, t3 Happens(e, (t, t3)) ∧ t1 ≤ t ≤ t2 ∧ Terminates(e, f , t).

and

Happens(e, (t1, t2)) ∧ Initiates(e, f , t1) ∧ ¬Clipped(f , (t1, t)) ∧ t1 < t
⇒ T(f , t)

• And conversely for Restoredand ¬T.
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Temporal intervals

• All defined in terms of Begin(i) and End(i).
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Inconsistency

• A major problem with classical logic for knowledge
representation is that it does badly with inconsistency.

• Bad things happen if we have p and ¬p.

1. p∧ ¬p Given
2. p 1,∧-E
3. ¬p 1,∧-E
4. ¬p∨ q 2, ∨-I
5. p ⇒ q 4, defn. of ⇒
6. q 5,⇒-E

for arbitrary (and hence any) q.

• Equally, and perhaps more explicitly, we can derive:

(p∧ ¬p) ⇒ q
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Why is this an issue?

• Well, one reason is that knowledge changes over time.

– “It’s raining”, . . . “It’s not raining”, . . .

• Or we make assumptions

– Tweety is a bird, so she must fly.

• Or we just get told things that are inconsistent:

Susie broke the window
No I didn’t!
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Default logic

• Default logic is a formalism in which rules for generating
assumptions can be made explicit.

Bird(x) : Flies(x)
Flies(x)

• If Bird(x) is true, and Flies(x) is consistent with the knowledge
base, then conclude that Flies(x).
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• The general form of a default is:

α : β1, . . . βn

γ

α is the pre-requisite, β1, . . . βn are the justifications and γ is the
conclusion.

• When β = γ, the default is said to be normal.
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• The classic default logic example,
combines:

Bird(x) : Flies(x)
Flies(x)

with the information that

{Bird(tweety)}

• This allows the conclusion that Flies(Tweety) since there is
nothing to prevent the application of the default.
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• However, pairing

Bird(x) : Flies(x)
Flies(x)

with the information that:

{Penguin(x) ⇒ Bird(x),Penguin(x) ⇒ ¬Flies(x),Penguin(opus)}

prevents the conclusion that Flies(opus) since it is not consistent
with ¬Flies(opus)which can be inferred from the knowledge
base.
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• To understand what a set of default rules means, we have the
notion of an extension

– A maximal set of consequences.

• The above examples have only one extension. This is not always
the case.

• Classic example of more than one extension is the Nixon diamond
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• We have the defaults:














Quaker(x) : Pacifist(x)
Pacifist(x)

,

Republican(x) : ¬Pacifist(x)
¬Pacifist(x)















along with {Republican(nixon),Quaker(nixon)}

• We have two extensions, one including Pacifist(nixon) and one
including ¬Pacifist(nixon).
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Belief revision

• It is natural that many inferences drawn from some
knowledge-base will be defaults.

• What if these turn out to be wrong?

• For example:
Summer(d) : Sunny(d)

Sunny(d)
may be completely reasonable, but can still give us the wrong
answer?

• Need to revise our beliefs.

• If we have added p to our beliefs, and then it turns out that ¬p
what do we do?
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• One solution is just to retract p, remove it from the KB.

• But what if we also have:

p ⇒ q

and by the time we find out that ¬p, we have already inferred q?

• Need to retract all the consequences of p.

• Except that maybe we also have:

r, r ⇒ q

in which case q can stay after all.

• In general, once we have KB ⊢ ⊥, we want to find the minimal S,
such that KB− S 6⊢ ⊥
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Truth maintenance

• Truth maintenance systems (TMS) provide one way to do this.

• In a Justification-based truth maintenance system (JTMS) we
annotate every sentence with the set of sentences from which it
was inferred.

– A sentence can have several justifications

• In our first example qwill have the justification {p, p ⇒ q}.

• When we want to retract pwe also retract every sentence which
has p in its justification.

• To cope with the r, r ⇒ q case, we retract every swhere p is in its
only justification.
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• In fact, we don’t retract sentences in the sense of deleting them.

• What happens if we later find that the day is sunny (again) after
all?

• Instead of retracting, we mark the sentence as being OUT, and
we can swap it back to being IN if/when that is appropriate.
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Argumentation

’Contrariwise,’ continued
Tweedledee, ’if it was so, it
might be; and if it were so,
it would be; but as it isn’t, it
ain’t. That’s logic.’

• Argumentation is another apporach to handling inconsistent
information.

csc74010-fall2011-parsons-lect04 43



Abstract Argumentation

• We’ll start by taking a step back from the details of inconsitency
to an abstract notion of argument.

• Concerned with the overall structure of the set of arguments

– (rather than internals of individual arguments).

• Write x → y

– “argument x attacks argument y”;

– “x is a counterexample of y; or

– “x is an attacker of y”.

where we are not actually concerned as to what x, y are, but the
conflict between them arises from inconsistency.
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• y might be “let’s have a picnic”, and x might be “it is going to
rain”.

• Clearly rain is a reason to not go on a picnic.

• Later we’ll see howthe notion of “attack” can be related to
statements in logic.

• An abstract argument system is a collection or arguments together
with a relation “→” saying what attacks what.
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• Systems like this are called Dung-style after their inventor.

• A set of Dung-style arguments:

〈{p,q, r, s, }, {(r,q), (s,q), (q, p)}〉

meaning that r attacks q, sattacks q and q attacks p.

s

r

q p

• The question is, given this, what should we believe?
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Preferred extensions
• There is no universal agreement about what to believe in a given
situation, rather we have a set of criteria.

• A position is a set of arguments.

– Think of it as a viewpoint

• A position S is conflict free if no member of Sattacks another
member of S.

– Internally consistent

• The conflict-free sets in the previous system are:

{ }, {p}, {q}, {r}, {s}, {r, s}, {p, r}, {p, s}, {r, s, p}

• If an argument a is attacked by another a′, then it is defended by a′′

if a′′ attacks a′.

• Thus p is defended by r and s.
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• A position S is mutually defensive if every element of Sthat is
attacked is defended by some element of S.

– Self-defence is allowed

• These positions are mutually defensive:

{ }, {r}, {s}, {r, s}, {p, r}, {p, s}, {r, s, p}

• A position that is conflict free and mutually defensive is
admissible.

• All the above positions are admissible.

• Admissibility is a minimal notion of a reasonable position — it is
internally consistent and defends itself against all attackers.
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• A preferred extension is a maximal admissible set.

– adding another argument will make it inadmissible.

• In other words S is a preferred extension if S is admissible and no
superset of S is admissible.

• Thus { } is not a preferred extension, because {p} is admissible.

• Similarly, {p, r, s} is admissible because adding qwould make it
inadmissible.

• A set of arguments always has a preferred extension, but it may
be the empty set.
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• With a larger set of arguments it is exponentially harder to find
the preferred extension.

• n arguments have 2n possible positions.

• This set of arguments:

ga

b

c d e f

h

has two preferred extensions:

{a, b, d, f} {c, e, g, h}
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• In contrast:

ga

b

c d e f

h

has only one:
{a, b, d, f}

since c and eare now attacked but undefended, and so can’t be
in an admissible set.
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• Two rather pathological cases are:

a b

with preferred extension {a} and {b}, and:

a

b

c

which has only { } as a preferred extension.
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Credulous and sceptical acceptance

• To improve on preferred extensions we can define

An argument is sceptically accepted if it is a member of
every preferred extension.

and

An argument is credulously accepted if it is a member of at
least one preferred extension.

• Clearly anything that is sceptically accepted is also credulously
accepted.

• On our original example, p, q and r are all sceptically accepted,
and q is neither sceptically or credulously accepted.
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Grounded extensions
• Another approach, perhaps better than preferred extension.

• Arguments are guaranteed to be acceptable if they aren’t
attacked.

– No reason to doubt them

• They are IN

• Once we know which these are, any arguments that they attack
must be unacceptable.

• They are OUT — delete them from the graph.

• Now look again for IN arguments. . .

• And continue until the graph doesn’t change.

• The set of IN arguments — the ones left in the graph —make up
the grounded extension.
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• Consider computing the grounded extension of:

a

b

e

h

f
n

c

d
g

i

j

p

q

m

k l
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• We can say that:

– h is not attacked, so IN.

– h is IN and attacks a, so a is OUT.

– h is IN and attacks p, so p is OUT.

– p is OUT and is the only attacker of q so q is IN.

• There is always a grounded extension, and it is always unique
(though it may be empty)
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Deductive Argumentation

Basic form of deductive arguments is as follows:

∆ ⊢ (s,G)

where:

• ∆ is a (possibly inconsistent) set of logical formulae;

• s is a logical formula known as the conclusion; and

• G is a minimal consistent set of logical formulae such that:

1. G ⊆ ∆; and

2. s can be proved from G.
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Attack and Defeat

• Argumentation takes into account the relationship between
arguments.

• Let (φ1,Γ1) and (φ2,Γ2) be arguments from some database ∆.
Then (φ2,Γ2) can be defeated (attacked) in one of two ways:

1. (φ1,Γ1) rebuts (φ2,Γ2) if φ1 ≡ ¬φ2.

2. (φ1,Γ1) undercuts (φ2,Γ2) if φ1 ≡ ¬ψ for some ψ ∈ Γ2.

• A rebuttal or undercut is known an attack.

• Once we have identified attacks, we can look at preferred
extensions or grounded extensions to determine what arguments
to accept.
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Where are we?

• Well, we’ve covered a lot of ground and learnt to represent a lot
of information in logic.

• But we can’t represent everything (sorry).

• How can we say “It may rain tomorrow”.

• Or, “It is more likely than not to rain tomorrow”.

• Or, “Simon is not so tall”.

• Or rather, how can we say them in a way that captures the
meaning that we usually place on these statements?

• Need to talk about uncertainty to do that.
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Summary

• This lecture completes our treatment of logic.

• We looked in detail at how to represent many aspects of the
world in logic.

• What we found were some solutions and more problems.

– Many of these problems are active research topics

• Next week we’ll go on to look at uncertainty in general and
probability in particular.
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