
UNCERTAINTY

Introduction

• So far we have considered mainly accessible/observable
environments.

– Or pretended that environments were accessible/observable.

• Clearly not true of the real world:

– Is is raining in Manhattan?

• Partial observability can arise for many reasons.

– World structure vs. sensor ability.

– Sensor noise.

– Computational complexity.
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Types of problem

• Who is outside in the corridor?

– Uncertainty

• The radio says it is raining in Manhattan, but when I phone my
wife she says it isn’t raining.

– Ambiguity

– Contradiction.

• Is it true that “Simon is tall”

– Vagueness

• Who will be in next year’s World Series?

– Ignorance
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Uncertainty

• Let action At = leave for airport t minutes before flight

– Will At get me there on time?

• Problems:

1. partial observability (road state, other drivers’ plans, etc.)

2. noisy sensors (1010 WINS traffic reports)

3. uncertainty in action outcomes (flat tire, etc.)

4. immense complexity of modelling and predicting traffic
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• Hence a purely logical approach either:

1. risks falsehood: “A90 will get me there on time”

2. leads to conclusions that are too weak for decision making:

“A90 will get me there on time if there’s no accident on the
Williamsburg bridge, and it doesn’t rain and my tires remain
intact etc etc.”

• (A1440 might reasonably be said to get me there on time but I’d
have to stay overnight in the airport . . .)
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• How could an agent cope with this?
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Methods for handling uncertainty
• Nonmonotonic logic

– Assume my car does not have a flat tire

– Assume A25 works unless contradicted by evidence

• Issues: What assumptions are reasonable? How to handle
contradiction?
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• Rules with fudge factors:

– A25 7→0.3 AtAirportOnTime

– Sprinkler 7→0.99 WetGrass

– WetGrass 7→0.7 Rain

• Issues: Problems with combination, e.g.,

Sprinkler causes Rain??

• Semantics?
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• Probability

– Given the available evidence,

A25 will get me there on time with probability 0.04

• Issues: Computational complexity, obtaining values, semantics.

– We will consider the computational issues in some detail.
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Aside

• Fuzzy logic handles degree of truth NOT uncertainty

– WetGrass is true to degree 0.2
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Probability

• Probabilistic assertions summarize effects of

– laziness: failure to enumerate exceptions, qualifications, etc.

– ignorance: lack of relevant facts, initial conditions, etc.

• Subjective or Bayesian probability:

– Probabilities relate propositions to one’s own state of
knowledge

P(A25|no reported accidents) = 0.06

• Probabilities of propositions change with new evidence:

P(A25|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB |= α, not truth.)

csc74010-fall2011-parsons-lect05 12



Making decisions under uncertainty

• Suppose I believe the following:

P(A25 gets me there on time| . . .) = 0.04

P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95

P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?
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• Depends on my preferences for missing flight vs. airport cuisine,
sleeping on a bench, and so on.

• Utility theory is used to represent and infer preferences

• Decision theory = utility theory + probability theory

• We will come back to decision theory with a vengence next time.
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Probability basics

• Begin with a set Ω—the sample space.

• This is all the possible things that could happen.

– 6 possible rolls of a die.

• ω ∈ Ω is a sample point, possible world, atomic event.
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• A probability space or probability model is a sample space with an
assignment P(ω) for every ω ∈ Ω such that:

0 ≤ P(ω) ≤ 1
∑

ω
P(ω) = 1

P(1) =P(2) =P(3) =P(4) =P(5) =P(6) = 1/6.
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• An event A is any subset of Ω

P(A) =
∑

{ω∈A}
P(ω)

P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

• A random variable is a function from sample points to some range.

– raining(Brooklyn) = true.

– temperature(234NE) = 73

• P induces a probability distribution for any r.v. X:

P(X = xi) =
∑

{ω:X(ω) = xi}
P(ω)

P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions

• Think of a proposition as the event (set of sample points) where
the proposition is true

• Given Boolean random variables A and B:

event a = set of sample points where A(ω) = true

event ¬a = set of sample points where A(ω) = false

event a ∧ b = points where A(ω) = true and B(ω) = true

• Often in AI applications, the sample points are defined by the
values of a set of random variables.

• A state can be defined by a set of Boolean variables.

a ∧ b ∧ ¬c A= true,B= true,C= false

This is then just a sample point.
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• Thus, with Boolean variables, sample point = propositional logic
model

A= true, B= false a ∧ ¬b

• Proposition = disjunction of atomic events in which it is true

(a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)

⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Why use probability?

• The definitions imply that certain logically related events must
have related probabilities

P(a ∨ b) = P(a) + P(b)− P(a ∧ b)

>A     B

True

A B
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Dutch book argument

• de Finetti (1931): an agent who bets according to probabilities
that violate these axioms can be forced to bet so as to lose money
regardless of outcome.
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Why Dutch?
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Syntax for propositions

• Propositional or Boolean random variables

– Cavity (do I have a cavity?)

– Cavity= true is a proposition, also written cavity

• Discrete random variables (finite or infinite)

– Weather is one of 〈sunny, rain, cloudy, snow〉

– Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

• Continuous random variables (bounded or unbounded)

– Temp=21.6; also allow, e.g., Temp < 22.0.

• Arbitrary Boolean combinations of basic propositions
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Prior probability

• Prior or unconditional probabilities of propositions

P(Cavity= true) = 0.1 and P(Weather = sunny) = 0.72

correspond to belief before (prior) to arrival of any (new)
evidence.

• Probability distribution gives values for all possible assignments:

P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉

• Distribution is normalized, i.e., sums to 1
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• Joint probability distribution for a set of r.v.s gives the probability
of every atomic event on those r.v.s (i.e., every sample point)

P(Weather,Cavity) = a 4× 2 matrix of values

Weather = sunny rain cloudy snow
Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Conditional probability

• Conditional or posterior probabilities

P(cavity|toothache) = 0.8

given that toothache is all I know NOT “if toothache then 80%
chance of cavity”

• Notation for conditional distributions:

P(Cavity|Toothache)

A 2-element vector of 2-element vectors.
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• If we know more, e.g., cavity is also given, then we have

P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence
arrives, but is not always useful

• New evidence may be irrelevant, allowing simplification

P(cavity|toothache, jetsWin) = P(cavity|toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is
crucial
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• Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

• Product rule gives an alternative formulation:

P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

• A general version holds for whole distributions,

P(Weather,Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix multiplication)
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• Chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1)P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2)

P(Xn|X1, . . . ,Xn−1)

= . . .

=
n∏

i=1
P(Xi|X1, . . . ,Xi−1)

• Or, in terms of a more concrete example:

P(a, b, c) = P(a, b)P(c|b, a)
= P(a)P(b|a)P(c|b, a)
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Inference by enumeration

• Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)

• P(cavity ∨ toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Can also compute conditional probabilities:

P(¬cavity|toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)
= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]
= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]

= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉
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Inference by enumeration

• Let X be all the variables.

• Typically, we want the posterior joint distribution of the query
variables Y given specific values e for the evidence variables E

• Let the hidden variables be H = X− Y− E

• Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e)

= α
∑

h

P(Y,E= e,H=h)

• The terms in the summation are joint entries because Y, E, andH

together exhaust the set of random variables
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• Obvious problems:

1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries???

• This problem effectively stopped the use of probability in AI
until the mid 80s
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Independence

• A and B are independent iff

P(A|B) = P(A), or
P(B|A) = P(B), or
P(A,B) = P(A)P(B)

• Why is this interesting?

– Can help with the size of the problem.
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Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

• P(Toothache,Catch,Cavity,Weather)

= P(Toothache,Catch,Cavity)P(Weather)

• 32 entries reduced to 12; for n independent biased coins, 2n → n

• Absolute independence powerful but rare

• Dentistry is a large field with hundreds of variables, none of
which are independent. What to do?
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Conditional independence

• P(Toothache,Cavity,Catch) has 23 − 1 = 7 independent entries

• If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity) (1)

• The same independence holds if I haven’t got a cavity:

P(catch|toothache,¬cavity) = P(catch|¬cavity) (2)

• Catch is conditionally independent of Toothache given Cavity

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

• Equivalent statements:

P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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• Write out full joint distribution using chain rule:

P(Toothache,Catch,Cavity)

= P(Toothache|Catch,Cavity)P(Catch,Cavity)

= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

• In most cases, the use of conditional independence reduces the
size of the representation of the joint distribution from
exponential in n to linear in n.

• Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

– Can often make conditional independence statements when
little else is known.
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Bayes’ Rule

• Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y|X) =
P(X|Y)P(Y)

P(X)
= αP(X|Y)P(Y)
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• Useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

• Let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)

=
0.8× 0.0001

0.1
= 0.0008

• Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

• So, in our running example

P(Cavity|toothache ∧ catch)
= αP(toothache ∧ catch|Cavity)P(Cavity)
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

• This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏

i
P(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

• Total number of parameters is linear in n
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What we learned so far

• Probability is a rigorous formalism for uncertain knowledge

• Joint probability distribution specifies probability of every atomic
event

• Queries can be answered by summing over atomic events

• For nontrivial domains, we must find a way to reduce the joint
size

• Independence and conditional independence provide the tools

• Next lecture we’ll look at how this is used.
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