
BAYESIAN NETWORKS

Introduction

• Last week we talked about using probability theory to represent
uncertainty in an agent’s knowledge of the world.

•With a full joint probability distribution over all the state
variables

– which we can either measure directly

P(toothache, cavity,¬catch)

or we can compute from conditionals

P(catch|toothache, cavity)

we can compute any specific values we want.

• Computationally this is awkward.

• Bayesian networks are how we make the computation tractable.
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Bayesian networks

• A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

• Syntax:

– a set of nodes, one per variable

– a directed, acyclic graph (link ≈ “directly influences”) a
conditional distribution for each node given its parents

P(Xi|Parents(Xi))

• In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over Xi

for each combination of parent values
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• Topology of network encodes conditional independence
assertions:

Weather Cavity

Toothache Catch

• Weather is independent of the other variables

• Toothache and Catch are conditionally independent given Cavity
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• An example (from California):

I’m at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary doesn’t call. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects “causal” knowledge:

– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call
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Compactness
• A CPT for Boolean Xi with k Boolean
parents has 2krows for the combinations of
parent values

• Each row requires one number p for
Xi = true (the number for Xi = false is just
1− p)

• If each variable has no more than k parents,
the complete network requires O(n · 2k)
numbers

– grows linearly with n, vs. O(2n) for the
full joint distribution

• For burglary net, 1+1+4+2+2= 10 numbers
(vs. 25 − 1 = 31)

B E

J

A

M

csc74010-fall2011-parsons-lect06 7

Global semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x1, . . . , xn) =
n
∏

i=1
P(xi|parents(Xi))

• P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

=
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Global semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x1, . . . , xn) =
n
∏

i=1
P(xi|parents(Xi))

• P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P(j|a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

• Local semantics: each node is conditionally independent of its
nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

• Theorem: Local semantics ⇔ global semantics
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Markov blanket

• Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

. . .
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Y1

Z1j

Andrey Markov
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Compact conditional distributions

• CPT grows exponentially with number of parents

– Use canonical distributions that are defined compactly

• Deterministic nodes are the simplest case.

• X = f (Parents(X)) for some function f

– Boolean functions:

NorthAmerican ⇔ Canadian ∨ US ∨Mexican

– Numerical relationships among continuous variables

∂Level
∂t

= inflow + precipitation - outflow - evaporation
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• Noisy-OR distributions model multiple noninteracting causes

1. Parents U1 . . .Uk include all causes (can add leak node)

2. Independent failure probability qi for each cause alone

⇒ P(X|U1 . . .Uj,¬Uj+1 . . .¬Uk) = 1− prodj
i=1qi

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

• Number of parameters linear in number of parents
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Inference tasks

• Simple queries: compute posterior marginal P(Xi|E= e)

P(NoGas|Gauge= empty, Lights= on, Starts= false)

• Conjunctive queries

P(Xi,Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

• Optimal decisions: decision networks include utility information;
probabilistic inference required for

P(outcome|action, evidence)

• Value of information: which evidence to seek next?

• Sensitivity analysis: which probability values are most critical?

• Explanation: why do I need a new starter motor?
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Inference by enumeration

• Simplest approach to evaluating the network is to do just as we
did for the dentist example.

• Difference is that we use the structure of the network to tell us
which sets of joint probabilities to use.

– Thanks Professor Markov

• Gives us a slightly intelligent way to sum out variables from the
joint without actually constructing its explicit representation
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• Simple query on the burglary network.

P(B|j,m)

P(B, j,m)/P(j,m)

= αP(B, j,m)

= α ∑

e
∑

a P(B, e, a, j,m)

• Rewrite full joint entries using product of
CPT entries:

P(B|j,m)

= α ∑

e
∑

a P(B)P(e)P(a|B, e)P(j|a)P(m|a)

= αP(B) ∑

e P(e) ∑

a P(a|B, e)P(j|a)P(m|a)
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•We evaluate this expression

P(B|j,m) = αP(B)
∑

e
P(e)

∑

a
P(a|B, e)P(j|a)P(m|a)

by going through the variables in order, multiplying CPT entries
along the way.

• At each point, we need to loop through the possible values of the
variable.

• Involves a lot of repeated calculations.
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• Enumeration is inefficient: repeated computation

– Computes P(j|a)P(m|a) for each value of e
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Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over
X

inputs: X, the query variable
e, observed values for variables ∃
bn, a Bayesian network with variables {X} ∪ ∃ ∪ Y

Q(X)← a distribution over X, initially empty
for each value xi of X do

extend ewith value xi for X
Q(xi)← ENUMERATE-ALL(VARS[bn], e)

return NORMALIZE(Q(X))
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function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y← FIRST(vars)
if Y has value y in e

then return P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars), e)
else return ∑

y P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars),
ey)

where ey is e extended with Y = y
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Other exact approaches

•We can improve on enumeration.

• Variable elimination evaluates the enumeration tree bottom up,
remembering intermediate values.

– Simple and efficient for single queries

• Clustering algorithms can be more efficient for multiple queries

• However, all exact inference can be computationally intractable.
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Complexity of exact inference

• Singly connected networks (or polytrees)

– any two nodes are connected by at most one (undirected) path

– time and space cost of variable elimination are O(dkn)
k parents, d values.
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Complexity of exact inference

•Multiply connected networks:

– can reduce 3SAT to exact inference ⇒ NP-hard

– equivalent to counting 3SAT models ⇒ #P-complete
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Inference by stochastic simulation

• Basic idea:

1. Draw N samples from a sampling distribution S

2. Compute an approximate posterior probability P̂

3. Show this converges to the true probability P
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• So, this time we get the event

[true, false, true, true]

• If we repeat the process many times, we can count the number of
times [true, false, true, true] is the result.

• The proportion of this to the total number of runs is:

P(c,¬s, r,w)

• The more runs, the more accurate the probability.
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• This algorithm:

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi))
given the values of Parents(Xi) in x

return x

captures the no evidence case, which is what we just looked at.
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• To get values with evidence, we need conditional probabilities

P(X|e)

• Could just compute the joint probability and sum out the
conditionals but that is inefficient.

• Better is to use rejection sampling

– Sample from the network but reject samples that don’t match
the evidence.

– If we want P(w|c) and our sample picks ¬c, we stop that run
immediately.

– For unlikely events, may have to wait a long time to get
enough matching samples.

• Still inefficient.
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• Likelihood weighting:

– Version of importance sampling.

– Fix evidence variable to true, so just sample relevant events.

– Have to weight them with the likelihood that they fit the
evidence.

– Use the probabilities we know to weight the samples.
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• Consider we have the following network:
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• Say we want to establish P(Rain|Cloudy = true,WetGrass = true)
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•We want P(Rain|Cloudy = true,WetGrass = true)

•We pick a variable ordering, say Cloudy, Sprinkler, Rain, WetGrass.

• Set the weight to 1 and generate an event.

• Cloudy is true, so:

w← w× P(Cloudy = true) = 0.5

• Sprinkler is not an evidence variable, so sample from

P(Sprinkler|Cloudy = true) = 〈0.1, 0.9〉

Let’s assume this returns false.
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• Rain is not an evidence variable, so sample from

P(Rain|Cloudy = true) = 〈0.8, 0.2〉

Let’s assume this returns true.

• WetGrass is an evidence variable with value true, so we set:

w← w× P(WetGrass = true|Sprinkler = false,Rain = true) = 0.45

• So we end with the event [true, false, true, true] and weight 0.45.

• To find a probability we tally up all the relevant events,
weighted with their weights.

• The one we just calculated would tallyup under Rain = true
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From probability to decision making

•What we have covered allows us to compute probabilities of
interesting events.

• But beliefs alone are not so interesting to us.

• In the WW don’t care so much if there is a pit in (2, 2), so much
as we care whether we should go left or right.

• This is complicated because the world is uncertain.

– Don’t know the outcome of actions.

– Non-deterministic as well as partially observable
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DAMAYOR: Mookie.

MOOKIE: Gotta go.

DA MAYOR: C’mere, Doctor.

DAMAYOR: Doctor, this is Da
Mayor talkin’.

MOOKIE: OK. OK.

DA MAYOR: Doctor, always
try to do the right thing.

MOOKIE: That’s it?

DA MAYOR: That’s it.

MOOKIE: I got it.

(Spike Lee, Do the Right Thing)
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.00?
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.50?
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.20?
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.40?
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•We can’t make this choice without thinking about how likely
outcomes are.

• Although the first option is attractive, it isn’t necessarily the best
course of action (especially if the choice is iterated).

• Decision theory gives us a way of analysing this kind of
situation.
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• Consider being offered a bet in which you pay $2 if an odd
number is rolled on a die, and win $3 if an even number appears.

• To analyse this prospect we need a random variable X, as the
function:

X : Ω 7→ ℜ

from the sample space to the values of the outcomes. Thus for
ω ∈ Ω:

X(ω) =















3, if ω = 2, 4, 6
−2, if ω = 1, 3, 5

• The probability that X takes the value 3 is:

Pr({2, 4, 6}) = Pr({2}) + Pr({4}) + Pr({6})

= 0.5

• How do we analyse how much this bet is worth to us?
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• To do this, we need to calculate the expected value of X.

• This is defined by:

E(X) =
∑

k
kPr(X = k)

where the summation is over all values of k for which
Pr(X = k) 6= 0.

• Here the expected value is:

E(X) = 0.5× 3 + 0.5×−2

• Thus the expected value of X is $0.5, and we take this to be the
value of the bet.

– Not the value you will get.
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•What is the expected value of this event:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1?
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• And now we can make a first stab at defining what rational
action is.

• Rational action is the choice of actions with the greatest expected
value for the agent in question.

• The problem is then to decide what “value” is.
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Decision theory

• One obvious way to define “value” is in terms of money.

• This has obvious applications in writing programs to trade
stocks, or programs to play poker.

• The problem is that the value of a given amount of money to an
individual is highly subjective.

• In addition, using monetary values does not take into account an
individual’s attitude to risk.
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• As an example, consider a transaction which offered the
following payoffs:

– $0 one time in one hundred;

– $1 million 89 times in one hundred;

– $5 million 10 times in one hundred.

•Would you prefer this to a guaranteed $1 million?
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• Utilities are a means of solving the problems with monetary
values.

• Utilities are built up from preferences, and preferences are
captured by a preference relation � which satisfies:

a � b or b � a
a � b and b � c⇒ a � c

• You have to be able to state a preference.

• Preferences are transitive.

csc74010-fall2011-parsons-lect06 52



• A function:
u : Ω 7→ ℜ

is a utility function representing a preference relation � if and
only if:

u(a) ≤ u(b) ↔ a � b

•With additional assumptions on the preference relation (to do
with preferences between lotteries) Von Neumann and
Morgenstern identified a sub-class of utility functions.
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• These “Von Neumann and Morgenstern utility functions”are
such that calculating expected utility, and choosing the action
with the maximum expected utility is the “best” choice
according to the preference relation.

• This is “best” in the sense that any other choice would disagree
with the preference order.

• This is why the maximum expected utility decision criterion is said
to be rational.
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• To relate this back to the problem of an agent making a rational
choice, consider an agent with a set of possible actions A
available to it.

• Each a ∈ A has a sample space Ωa associated with it, and a set of
possible outcomes sa where sa ⊆ Sa and Sa = 2Ωa.

• (This is a simplification since each sa will usually be conditional
on the state of the environment the agent is in.)
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• The action a∗ which a rational agent should choose is that which
maximises the agent’s utility.

• In other words the agent should pick:

a∗ = arg max
a∈A

u(sa)

• The problem is that in any realistic situation, we don’t know
which sa will result from a given a, so we don’t know the utility
of a given action.

• Instead we have to calculate the expected utility of each action
and make the choice on the basis of that.
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• In other words, for the set of outcomes sa of each action each a,
the agent should calculate:

E(u(sa)) =
∑

s′∈sa

u(s′).Pr(sa = s′)

and pick the best.
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• Thus to be rational, an agent needs to choose a∗ such that:

a∗ = arg max
a∈A

∑

s′∈sa

u(s′).Pr(sa = s′)
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• As an example, consider an agent which has to choose between
tossing a coin, rolling a die, or receiving a payoff of $ 1.

• If the coin is chosen, then the agent gets $1.50 a head and $0.5 for
a tail.

• If the die is chosen, the agent gets $5 if a six is rolled, $1 if a two
or three is rolled, and nothing otherwise.

•What is the rational choice, assuming that the agent’s
preferences are (for once) modelled by monetary value?
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•Well, we need to calculate the expected outcome of each choice.

• For doing nothing, we have a1 = “receive payoff”, sa1 = {“get
$1”}, u(“get $1) = 1 and Pr(sa1 = “get $1) = 1.

• Thus:
E(u(sa1)) = 1
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• If the coin is chosen, we have a2 = “coin”, sa2 = {head, tail},

u(head) = $1.50

u(tail) = $0.5

and

Pr(sa2 = head) = 0.5

Pr(sa2 = tail) = 0.5

• Thus the expected utility is:

E(u(sa2)) = 0.5× 1.5 + 0.5× 0.5

= 1
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• Action a3, rolling the die, can be analysed in a similar way,
giving:

E(u(sa3)) = 1.17

• Choosing to roll the die is the rational choice.

csc74010-fall2011-parsons-lect06 62

Decisions in the WW
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csc74010-fall2011-parsons-lect06 63

• Actions have a range of outcomes.

• Forward has some probability of moving sideways

– Not so silly with a robot

• Probabilities across action outcomes.

– Given an action, probability of getting to some states

• Utilities for states.
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• Given what we know about Bayesian networks, we can clearly
deal with complex situations as far as probability is concerned.
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• Should I go home given that John calls and Mary doesn’t?
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• But what about more complex decisions?
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•What is the best sequence of actions to carry out to get the gold?

• Next time.
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Summary

• This lecture started with probabilistic inference.

– Inference by enumeration

– Inference by stochastic simulation

• Then we went on to talk about utilities.

•We now know how to make a decision about the best action to
carry out.

– But we can only choose one action at a time.

• Next time we’ll look at sequential decision problems.
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