
PROBABILISTIC REASONING OVER TIME

Introduction

• The last couple of lectures looked at techniques to handle
uncertainty

– Bayesian networks

• The formalism is static, and so has limited ability to handle
changing information.

• Lots of reasoning tasks involve a dynamic world

– Monitoring a patient

– Tracking an airplane

– Identifying the location of a robot

• This week we’ll look at models that can handle such dynamic
situations.

– Based on Bayesian networks
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States and observations

• The approach we’ll look at considers the world to be a series of
time slices.

• Each slice contains some variables:

– The set Xt which we can’t observe; and

– The set Et which we can observe.

• At a given point in time we have an observation Et = et.

• What would be an example?
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• Consider you live and work in some location without a window

– Not so hard to imagine when you know the GC

• You want to know whether it is raining.

• Your only information is looking at whether somebody who
comes into your location each morning is carrying an umbrella.
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• Each day is one value of t.

• Et contains the single variable Ut (or Umbrellat).

– Is the person carrying an umbrella?

• Xt contains the single variable Rt (or Raint)

– Is it raining?
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• State sequence starts at t = 0, and the interval between slices in
general depends on the problem.

– Here it is one day

– In robot localization it is pretty arbitrary

• First piece of evidence arrives at t = 1

• So, the umbrella world is:

R0,R1,R2, . . .

U1,U2,U3, . . .

• a : b means the sequence of integers from a to b, so that U2:4 is the
sequence:

U2,U3,U4
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Transition and sensor models

• We need to add two components to this backbone:

– How the world evolves

Transition model

– What the evidence tells us

Sensor model

• The transition model tells us:

P(Xt|X0:t−1)

what the probability is that it is raining today given the weather
every previous day for as long as records have existed.

• What is the problem with this model?
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• Luckily Professor Markov helps us out again.

• Make aMarkov assumption that the value of the current state
depends only on a finite fixed number of previous states.

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

• We commonly assume a first orderMarkov process, where the
current state depends only on the previous state:

P(Xt|X0:t−1) = P(Xt|Xt−1)
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• What would the model look like for a second order Markov
process?
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• What would the model look like for a second order Markov
process?

P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)
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• Even with the Markov assumption we have a potentially infinite
set of conditional probabilities.

P(X1|X0),P(X2|X1),P(X3|X2) . . .

• Usually circumvent this by assuming a stationary process

– The model doesn’t change

– But the state itself can

• Thus we only have one, general P(Xt|Xt−1)
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An aside

• First-order Markov assumption not exactly true in real world!

• Possible fixes:

1. Increase order of Markov process

2. Augment state, e.g., add Tempt, Pressuret

• Example: robot motion.

– Augment position and velocity with Batteryt

• Example: umbrella world.

– Augment state with Seasont and/or Pressuret
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Sensor model

• The evidence variables Et could depend on lots of previous
variables.

• But we will assume the state is constructed in such a way that
evidence only depends on the current state.

• AMarkov assumption for the sensor model:

P(Et|X0:t−1,E0:t−1) = P(Et|Xt)
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• Here are the sensor and observation models for the umbrella
world:

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

• As for previous Bayesian networks, arrows run from causes to
effects.
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• Also need to say how things get started:

P(X0)

The prior probability over the state
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• With this, we can then compute the complete joint probability
over all the time slices:

P(X0:t,E1:t) = P(X0)
t
∏

i=1

P(Xi|Xi−1)P(Ei|Xi)

• As we know from before, this is sufficient to compute anything
we want.
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Inference tasks

• What kinds of thing can we do with the model?

• Filtering: P(Xt|e1:t)

– determine belief state—input to the decision process of a
rational agent

• Prediction: P(Xt+k|e1:t) for k > 0

– Evaluation of possible action sequences, like filtering without
the evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t

– Better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:t P(x1:t|e1:t)

– Speech recognition, decoding with a noisy channel
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Filtering

• A good algorithm for filtering will maintain a current state
estimate and update it at each point.

P(Xt+1|e1:t+1) = f (P(Xt|e1:t), et+1)

• Saves recomputation.

• It turns out that this is easy enough to come up with.
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• We rearrange the formula for:

P(Xt+1|e1:t+1)

• First, we divide up the evidence:

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

• Then we apply Bayes rule, remembering the use of the
normalization factor α.

P(Xt+1|e1:t+1) = αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

• And after that we use the Markov assumption on the sensor
model:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

• The result of this assumption is to make that first term on the
right hand side ignore all the evidence — the probability of the
observation at t + 1 only depends on the value of Xt+1.
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• Let’s look at that expression some more:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

• The first term on the right updates with the new evidence and
the second term on the right is a one step prediction from the
evidence up to t to the state at t + 1.

• Next we condition on the current state P(X):

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt
P(Xt+1|xt, e1:t)P(xt|e1:t)

• Finally, we apply the Markov assumption again:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt)P(xt|e1:t)

• We’ll call the bit on the right f1:t
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• f1:t gives us the required recursive update.

– The probability distribution over the state variables at t + 1 is
a function of the transition model, the sensor model, and what
we know about the state at time t.

• Space and time constant, independent of t.

• This allows a limited agent to compute the current distribution
for any length of sequence.

csc74010-fall2011-parsons-lect07 21

Filtering the umbrella example

• The prior is 〈0.5, 0.5〉.

• We can first predict whether it will rain on day 1 given what we
already know:

P(R1) =
∑

r0
P(R1|r0)P(r0)

= 〈0.7, 0.3〉 × 0.5 + 〈0.3, 0.7〉 × 0.5

= 〈0.5, 0.5〉

• As we should expect, this just gives us the prior — that is the
probability of rain when we don’t have any evidence.
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• However, we have observed the umbrella, so that U1 = true, and
we can update using the sensor model:

P(R1|U1) = αP(u1|R1)P(R1)

= α〈0.9, 0.2〉〈0.5, 0.5〉

= α〈0.45, 0.1〉

≈ 〈0.818, 0.182〉

• So, since umbrella is strong evidence for rain, the probability of
rain is much higher once we take the observation into account.
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• We can then carry out the same computation for Day 2, first
predicting whether it will rain on day 1 given what we already
know:

P(R2|u1) =
∑

r1
P(R2|r1)P(r1|u1)

= 〈0.7, 0.3〉 × 0.818 + 〈0.3, 0.7〉 × 0.182

≈ 〈0.627, 0.373〉

• So even without evidence of rain on the second day there is a
higher probability of rain than the prior because rain tends to
follow rain.

(In this model rain tends to persist.)
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• Then we can repeat the evidence update, u2 (U2 = true), so:

P(R2|u1, u2) = αP(u2|R2)P(R2|u1)

= α〈0.9, 0.2〉〈0.627, 0.373〉

= α〈0.565, 0.075〉

≈ 〈0.883, 0.117〉

• So, the probability of rain increases again, and is higher than on
day 1.
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• Put more succinctly:

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500

• We can think of the calculation as messages passed along the
chain.
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Prediction

• Prediction is filtering without new evidence.

P(Xt+1|e1:t+1) =
∑

xt
P(Xt+1|xt, e1:t)P(xt|e1:t)

• Given the current state, what does the future bring?

• Just need the first part of the calculation we did above (in each
step we first predicted and then updated with evidence).
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Smoothing

• Smoothing is computing the distribution over past states given
evidence up to the present.

X 0 X 1

1E tE

tXX k

Ek

• Want the probability over all states k, 0 ≤ k < t.
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• Break the computation into two pieces, evidence from 0 to k and
evidence from k + 1 to t.

• Proceeding just as before:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

• f is a “forward” message, computed just as we did for the
filtering case.

• b is a backward message.
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• To compute the backwards message we condition on Xk+1:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1:t|Xk, xk+1)P(xk+1|Xk)

• Then apply conditional independence:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1:t|xk+1)P(xk+1|Xk)

• Condition again:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1|xk+1)P(ek+2:t|xk+1)P(xk+1|Xk)

• The first and third terms here come from the model, the second
term is the bit we compute recursively.
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• So in:
f1:kbk+1:t

there are two recursive components.

• We have a forward component from 1 to k, and a backward
component from t to k.

– The backward component is initialized with:

P(et+1:t|Xt) = P( |Xt) = 1

(the probability of observing the set of no observations is
always 1).
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• Consider the umbrella world on day 1. This time we update with
information about umbrellas on day 1 and day 2:

P(R1|u1, u2) = αP(R1|u1)P(u2|R1)

We know that the first of these terms is 〈0.818, 0.182〉 from before.

• The second term we can compute:

P(u2|R1) =
∑

r2
P(u2|r2)P( |r2)P(r2|R1)

= (0.9× 1× 〈0.70.3〉) + (0.2× 1× 〈0.3, 0.7〉)

= 〈0.69, 0.41〉
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• Plugging this back into the expression we started with gives:

P(R1|u1, u2) = α〈0.818, 0.182〉 × 〈0.69, 0.41〉

= α〈0.56, 0.075〉

≈ 〈0.882, 0.118〉

• Again we can think of this as message passing (next slide)
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Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117
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• The smoothed probability of rain on day 1 is higher than the
filtered estimate because the umbrella on day 2 makes it more
likely to have rained on day 1.

• Again these updates use constant time and space.
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Most likely sequence

• Most likely sequence 6= sequence of most likely states!!!!

• Most likely path to each xt+1 is most likely path to some xt plus
one more step

max
x1...xt

P(x1, . . . , xt,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt





P(Xt+1|xt) max
x1...xt−1

P(x1, . . . , xt−1, xt|e1:t)






• Identical to filtering, except f1:t replaced by:

m1:t = max
x1...xt−1

P(x1, . . . , xt−1,Xt|e1:t),

• m1:t(i) gives the probability of the most likely path to state i.
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• Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)

Andrew Viterbi
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Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue
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• Bold state is the most likely state at day 5.

• For each state you can tell its best predecessor (bold arrow).

• So having computed the state values, can easily read off the most
likely sequence.
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Where we are?

• We have a general approach to all the inference problems
without thinking much about the specific details of the models.

• When we get specific, we find we can solve several common
classes of problem.
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Hidden Markov models

• HMMs have Xt as a single, discrete variable

– Usually Et is too)

• Domain of Xt is {1, . . . , S}

• Transition matrix Tij = P(Xt = j|Xt−1= i)

– e.g.,









0.7 0.3
0.3 0.7









• Sensor matrix Ot for each time step, diagonal elements P(et|Xt = i)

– e.g., with U1= true,O1 =









0.9 0
0 0.2








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• Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
⊤
f1:t

bk+1:t = TOk+1bk+2:t

• Forward-backward algorithm needs time O(S2t) and space O(St)

• Matrix description points the way to easy implementation.
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Kalman filters

• Modelling systems described by a set of continuous variables

– Robot tracking —Xt =X,Y, Ẋ, Ẏ

– Airplanes, ecosystems, economies, chemical plants, etc

tZ t+1Z

tX t+1X

tX t+1X

• Z is observation.

• Gaussian prior, linear Gaussian transition model and sensor
model
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8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered
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• Sparse dependencies ⇒ exponentially fewer parameters;

– e.g., 20 state variables, three parents each

• DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012
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DBNs vs Kalman filters

• Every Kalman filter model is a DBN, but few DBNs are KFs;

– Real world requires non-Gaussian posteriors

• What’s the battery charge?

1
BatteryBattery

0

1BMeter

0BMBroken 1BMBroken

f
t
0B 1P(B )

1.000
0.001

-1

0

1

2

3

4

5

15 20 25 30

E
(B

at
te

ry
t)

Time step

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

P(BMBrokent |...5555000000...)

P(BMBrokent |...5555005555...)
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Inference in DBNs

• There are exact algorithms for DBNs:

0.3f
0.7t

P(R  )1R0

0.7

P(R0)

0.2f
0.9t

P(U  )1R1

Umbrella1

Rain0 Rain1

0.7

P(R0)

4

0.2f
0.9t

P(U  )R4

f
t

0.3
0.7

P(R  )4R3

Umbrella4

Rain4

0.2f
0.9t

P(U  )3R3

f
t

R

0.3
0.7

P(R  )32

Umbrella3

Rain3

0.2f
0.9t

P(U  )2R2

f
t

R

0.3
0.7

P(R  )21

Umbrella2

Rain2

0.2f
0.9t

P(U  )1R1

f
t

R

0.3
0.7

P(R  )10

Umbrella1

Rain0 Rain1

– “Unroll” DBN to create a static Bayesian network and use
standard approaches.

– But time and space complexity is exponential.

• However, there are some good approximation algorithms.
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Particle filters

• Technique for approximate solution of a DBN.

• Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

• Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t +1Rain t +1Rain t +1

• Time/space complexity linear in the number of particles.
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• Widely used for tracking nonlinear systems, esp. in vision

• Also used for simultaneous localization and mapping in mobile
robots

– 105-dimensional state space

• Approximation error of particle filtering remains bounded over
time.

• At least empirically—theoretical analysis is difficult.
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A general classification of dynamic probabilistic models
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A general classification of dynamic probabilistic models
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Summary

• This class moved from the static view of the world encorporated
in Bayesian networks to something more dynamic.

• Dynamic Bayesian networks.

• We looked at the general types of inference possible in DBNs and
showed how the necessary computations could be done.

• We also looked at some specific classes of problem that can be
captured by DBNs.
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