
PROBABILISTIC REASONING OVER TIME

Introduction

• The last couple of lectures looked at techniques to handle
uncertainty

– Bayesian networks

• The formalism is static, and so has limited ability to handle
changing information.

• Lots of reasoning tasks involve a dynamic world

– Monitoring a patient

– Tracking an airplane

– Identifying the location of a robot

• This week we’ll look at models that can handle such dynamic
situations.

– Based on Bayesian networks

csc74010-fall2011-parsons-lect07 2

States and observations

• The approach we’ll look at considers the world to be a series of
time slices.

• Each slice contains some variables:

– The set Xt which we can’t observe; and

– The set Et which we can observe.

• At a given point in time we have an observation Et = et.

• What would be an example?

csc74010-fall2011-parsons-lect07 3

• Consider you live and work in some location without a window

– Not so hard to imagine when you know the GC

• You want to know whether it is raining.

• Your only information is looking at whether somebody who
comes into your location each morning is carrying an umbrella.

csc74010-fall2011-parsons-lect07 4

• Each day is one value of t.

• Et contains the single variable Ut (or Umbrellat).

– Is the person carrying an umbrella?

• Xt contains the single variable Rt (or Raint)

– Is it raining?

csc74010-fall2011-parsons-lect07 5

• State sequence starts at t = 0, and the interval between slices in
general depends on the problem.

– Here it is one day

– In robot localization it is pretty arbitrary

• First piece of evidence arrives at t = 1

• So, the umbrella world is:

R0,R1,R2, . . .

U1,U2,U3, . . .

• a : b means the sequence of integers from a to b, so that U2:4 is the
sequence:

U2,U3,U4

csc74010-fall2011-parsons-lect07 6

Transition and sensor models

• We need to add two components to this backbone:

– How the world evolves

Transition model

– What the evidence tells us

Sensor model

• The transition model tells us:

P(Xt|X0:t−1)

what the probability is that it is raining today given the weather
every previous day for as long as records have existed.

• What is the problem with this model?

csc74010-fall2011-parsons-lect07 7

• Luckily Professor Markov helps us out again.

• Make aMarkov assumption that the value of the current state
depends only on a finite fixed number of previous states.

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

• We commonly assume a first orderMarkov process, where the
current state depends only on the previous state:

P(Xt|X0:t−1) = P(Xt|Xt−1)

csc74010-fall2011-parsons-lect07 8

• What would the model look like for a second order Markov
process?

csc74010-fall2011-parsons-lect07 9

• What would the model look like for a second order Markov
process?

P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

csc74010-fall2011-parsons-lect07 10

• Even with the Markov assumption we have a potentially infinite
set of conditional probabilities.

P(X1|X0),P(X2|X1),P(X3|X2) . . .

• Usually circumvent this by assuming a stationary process

– The model doesn’t change

– But the state itself can

• Thus we only have one, general P(Xt|Xt−1)

csc74010-fall2011-parsons-lect07 11

An aside

• First-order Markov assumption not exactly true in real world!

• Possible fixes:

1. Increase order of Markov process

2. Augment state, e.g., add Tempt, Pressuret

• Example: robot motion.

– Augment position and velocity with Batteryt

• Example: umbrella world.

– Augment state with Seasont and/or Pressuret

csc74010-fall2011-parsons-lect07 12

Sensor model

• The evidence variables Et could depend on lots of previous
variables.

• But we will assume the state is constructed in such a way that
evidence only depends on the current state.

• AMarkov assumption for the sensor model:

P(Et|X0:t−1,E0:t−1) = P(Et|Xt)

csc74010-fall2011-parsons-lect07 13

• Here are the sensor and observation models for the umbrella
world:

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R)

0.3f
0.7t

tR tP(U)

0.9t
0.2f

• As for previous Bayesian networks, arrows run from causes to
effects.

csc74010-fall2011-parsons-lect07 14

• Also need to say how things get started:

P(X0)

The prior probability over the state

csc74010-fall2011-parsons-lect07 15

• With this, we can then compute the complete joint probability
over all the time slices:

P(X0:t,E1:t) = P(X0)
t
∏

i=1

P(Xi|Xi−1)P(Ei|Xi)

• As we know from before, this is sufficient to compute anything
we want.

csc74010-fall2011-parsons-lect07 16

Inference tasks

• What kinds of thing can we do with the model?

• Filtering: P(Xt|e1:t)

– determine belief state—input to the decision process of a
rational agent

• Prediction: P(Xt+k|e1:t) for k > 0

– Evaluation of possible action sequences, like filtering without
the evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t

– Better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:t P(x1:t|e1:t)

– Speech recognition, decoding with a noisy channel

csc74010-fall2011-parsons-lect07 17

Filtering

• A good algorithm for filtering will maintain a current state
estimate and update it at each point.

P(Xt+1|e1:t+1) = f (P(Xt|e1:t), et+1)

• Saves recomputation.

• It turns out that this is easy enough to come up with.

csc74010-fall2011-parsons-lect07 18

• We rearrange the formula for:

P(Xt+1|e1:t+1)

• First, we divide up the evidence:

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

• Then we apply Bayes rule, remembering the use of the
normalization factor α.

P(Xt+1|e1:t+1) = αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

• And after that we use the Markov assumption on the sensor
model:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

• The result of this assumption is to make that first term on the
right hand side ignore all the evidence — the probability of the
observation at t + 1 only depends on the value of Xt+1.

csc74010-fall2011-parsons-lect07 19

• Let’s look at that expression some more:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

• The first term on the right updates with the new evidence and
the second term on the right is a one step prediction from the
evidence up to t to the state at t + 1.

• Next we condition on the current state P(X):

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt
P(Xt+1|xt, e1:t)P(xt|e1:t)

• Finally, we apply the Markov assumption again:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt)P(xt|e1:t)

• We’ll call the bit on the right f1:t

csc74010-fall2011-parsons-lect07 20

• f1:t gives us the required recursive update.

– The probability distribution over the state variables at t + 1 is
a function of the transition model, the sensor model, and what
we know about the state at time t.

• Space and time constant, independent of t.

• This allows a limited agent to compute the current distribution
for any length of sequence.

csc74010-fall2011-parsons-lect07 21

Filtering the umbrella example

• The prior is 〈0.5, 0.5〉.

• We can first predict whether it will rain on day 1 given what we
already know:

P(R1) =
∑

r0
P(R1|r0)P(r0)

= 〈0.7, 0.3〉 × 0.5 + 〈0.3, 0.7〉 × 0.5

= 〈0.5, 0.5〉

• As we should expect, this just gives us the prior — that is the
probability of rain when we don’t have any evidence.

csc74010-fall2011-parsons-lect07 22

• However, we have observed the umbrella, so that U1 = true, and
we can update using the sensor model:

P(R1|U1) = αP(u1|R1)P(R1)

= α〈0.9, 0.2〉〈0.5, 0.5〉

= α〈0.45, 0.1〉

≈ 〈0.818, 0.182〉

• So, since umbrella is strong evidence for rain, the probability of
rain is much higher once we take the observation into account.

csc74010-fall2011-parsons-lect07 23

• We can then carry out the same computation for Day 2, first
predicting whether it will rain on day 1 given what we already
know:

P(R2|u1) =
∑

r1
P(R2|r1)P(r1|u1)

= 〈0.7, 0.3〉 × 0.818 + 〈0.3, 0.7〉 × 0.182

≈ 〈0.627, 0.373〉

• So even without evidence of rain on the second day there is a
higher probability of rain than the prior because rain tends to
follow rain.

(In this model rain tends to persist.)

csc74010-fall2011-parsons-lect07 24

• Then we can repeat the evidence update, u2 (U2 = true), so:

P(R2|u1, u2) = αP(u2|R2)P(R2|u1)

= α〈0.9, 0.2〉〈0.627, 0.373〉

= α〈0.565, 0.075〉

≈ 〈0.883, 0.117〉

• So, the probability of rain increases again, and is higher than on
day 1.

csc74010-fall2011-parsons-lect07 25

• Put more succinctly:

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500

• We can think of the calculation as messages passed along the
chain.

csc74010-fall2011-parsons-lect07 26

Prediction

• Prediction is filtering without new evidence.

P(Xt+1|e1:t+1) =
∑

xt
P(Xt+1|xt, e1:t)P(xt|e1:t)

• Given the current state, what does the future bring?

• Just need the first part of the calculation we did above (in each
step we first predicted and then updated with evidence).

csc74010-fall2011-parsons-lect07 27

Smoothing

• Smoothing is computing the distribution over past states given
evidence up to the present.

X 0 X 1

1E tE

tXX k

Ek

• Want the probability over all states k, 0 ≤ k < t.

csc74010-fall2011-parsons-lect07 28

• Break the computation into two pieces, evidence from 0 to k and
evidence from k + 1 to t.

• Proceeding just as before:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

• f is a “forward” message, computed just as we did for the
filtering case.

• b is a backward message.

csc74010-fall2011-parsons-lect07 29

• To compute the backwards message we condition on Xk+1:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1:t|Xk, xk+1)P(xk+1|Xk)

• Then apply conditional independence:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1:t|xk+1)P(xk+1|Xk)

• Condition again:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1|xk+1)P(ek+2:t|xk+1)P(xk+1|Xk)

• The first and third terms here come from the model, the second
term is the bit we compute recursively.

csc74010-fall2011-parsons-lect07 30

• So in:
f1:kbk+1:t

there are two recursive components.

• We have a forward component from 1 to k, and a backward
component from t to k.

– The backward component is initialized with:

P(et+1:t|Xt) = P(|Xt) = 1

(the probability of observing the set of no observations is
always 1).

csc74010-fall2011-parsons-lect07 31

• Consider the umbrella world on day 1. This time we update with
information about umbrellas on day 1 and day 2:

P(R1|u1, u2) = αP(R1|u1)P(u2|R1)

We know that the first of these terms is 〈0.818, 0.182〉 from before.

• The second term we can compute:

P(u2|R1) =
∑

r2
P(u2|r2)P(|r2)P(r2|R1)

= (0.9× 1× 〈0.70.3〉) + (0.2× 1× 〈0.3, 0.7〉)

= 〈0.69, 0.41〉

csc74010-fall2011-parsons-lect07 32

• Plugging this back into the expression we started with gives:

P(R1|u1, u2) = α〈0.818, 0.182〉 × 〈0.69, 0.41〉

= α〈0.56, 0.075〉

≈ 〈0.882, 0.118〉

• Again we can think of this as message passing (next slide)

csc74010-fall2011-parsons-lect07 33

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

csc74010-fall2011-parsons-lect07 34

• The smoothed probability of rain on day 1 is higher than the
filtered estimate because the umbrella on day 2 makes it more
likely to have rained on day 1.

• Again these updates use constant time and space.

csc74010-fall2011-parsons-lect07 35

Most likely sequence

• Most likely sequence 6= sequence of most likely states!!!!

• Most likely path to each xt+1 is most likely path to some xt plus
one more step

max
x1...xt

P(x1, . . . , xt,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt





P(Xt+1|xt) max
x1...xt−1

P(x1, . . . , xt−1, xt|e1:t)






• Identical to filtering, except f1:t replaced by:

m1:t = max
x1...xt−1

P(x1, . . . , xt−1,Xt|e1:t),

• m1:t(i) gives the probability of the most likely path to state i.

csc74010-fall2011-parsons-lect07 36

• Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)

Andrew Viterbi

csc74010-fall2011-parsons-lect07 37

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue

csc74010-fall2011-parsons-lect07 38

• Bold state is the most likely state at day 5.

• For each state you can tell its best predecessor (bold arrow).

• So having computed the state values, can easily read off the most
likely sequence.

csc74010-fall2011-parsons-lect07 39

Where we are?

• We have a general approach to all the inference problems
without thinking much about the specific details of the models.

• When we get specific, we find we can solve several common
classes of problem.

csc74010-fall2011-parsons-lect07 40

Hidden Markov models

• HMMs have Xt as a single, discrete variable

– Usually Et is too)

• Domain of Xt is {1, . . . , S}

• Transition matrix Tij = P(Xt = j|Xt−1= i)

– e.g.,









0.7 0.3
0.3 0.7









• Sensor matrix Ot for each time step, diagonal elements P(et|Xt = i)

– e.g., with U1= true,O1 =









0.9 0
0 0.2









csc74010-fall2011-parsons-lect07 41

• Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
⊤
f1:t

bk+1:t = TOk+1bk+2:t

• Forward-backward algorithm needs time O(S2t) and space O(St)

• Matrix description points the way to easy implementation.

csc74010-fall2011-parsons-lect07 42

Kalman filters

• Modelling systems described by a set of continuous variables

– Robot tracking —Xt =X,Y, Ẋ, Ẏ

– Airplanes, ecosystems, economies, chemical plants, etc

tZ t+1Z

tX t+1X

tX t+1X

• Z is observation.

• Gaussian prior, linear Gaussian transition model and sensor
model

csc74010-fall2011-parsons-lect07 43

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered

csc74010-fall2011-parsons-lect07 44

• Sparse dependencies ⇒ exponentially fewer parameters;

– e.g., 20 state variables, three parents each

• DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012

csc74010-fall2011-parsons-lect07 45

DBNs vs Kalman filters

• Every Kalman filter model is a DBN, but few DBNs are KFs;

– Real world requires non-Gaussian posteriors

• What’s the battery charge?

1
BatteryBattery

0

1BMeter

0BMBroken 1BMBroken

f
t
0B 1P(B)

1.000
0.001

-1

0

1

2

3

4

5

15 20 25 30

E
(B

at
te

ry
t)

Time step

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

P(BMBrokent |...5555000000...)

P(BMBrokent |...5555005555...)

csc74010-fall2011-parsons-lect07 46

Inference in DBNs

• There are exact algorithms for DBNs:

0.3f
0.7t

P(R)1R0

0.7

P(R0)

0.2f
0.9t

P(U)1R1

Umbrella1

Rain0 Rain1

0.7

P(R0)

4

0.2f
0.9t

P(U)R4

f
t

0.3
0.7

P(R)4R3

Umbrella4

Rain4

0.2f
0.9t

P(U)3R3

f
t

R

0.3
0.7

P(R)32

Umbrella3

Rain3

0.2f
0.9t

P(U)2R2

f
t

R

0.3
0.7

P(R)21

Umbrella2

Rain2

0.2f
0.9t

P(U)1R1

f
t

R

0.3
0.7

P(R)10

Umbrella1

Rain0 Rain1

– “Unroll” DBN to create a static Bayesian network and use
standard approaches.

– But time and space complexity is exponential.

• However, there are some good approximation algorithms.

csc74010-fall2011-parsons-lect07 47

Particle filters

• Technique for approximate solution of a DBN.

• Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

• Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t +1Rain t +1Rain t +1

• Time/space complexity linear in the number of particles.

csc74010-fall2011-parsons-lect07 48

• Widely used for tracking nonlinear systems, esp. in vision

• Also used for simultaneous localization and mapping in mobile
robots

– 105-dimensional state space

• Approximation error of particle filtering remains bounded over
time.

• At least empirically—theoretical analysis is difficult.

csc74010-fall2011-parsons-lect07 49

A general classification of dynamic probabilistic models

csc74010-fall2011-parsons-lect07 50

A general classification of dynamic probabilistic models

csc74010-fall2011-parsons-lect07 51

Summary

• This class moved from the static view of the world encorporated
in Bayesian networks to something more dynamic.

• Dynamic Bayesian networks.

• We looked at the general types of inference possible in DBNs and
showed how the necessary computations could be done.

• We also looked at some specific classes of problem that can be
captured by DBNs.

csc74010-fall2011-parsons-lect07 52

