PROBABILISTIC REASONING OVER TIME

Introduction

e The last couple of lectures looked at techniques to handle
uncertainty

- Bayesian networks

e The formalism is static, and so has limited ability to handle
changing information.

® Lots of reasoning tasks involve a dynamic world
— Monitoring a patient
— Tracking an airplane
— Identifying the location of a robot

e This week we’ll look at models that can handle such dynamic
situations.

- Based on Bayesian networks

csc74010-fall2011-parsons-lect07

'States and observations|

® The approach we’ll look at considers the world to be a series of
time slices.

e Each slice contains some variables:

— The set X; which we can’t observe; and
— The set E; which we can observe.

e At a given point in time we have an observation E; = e;.

® What would be an example?

¢sc74010-fall2011-parsons-lect07

¢ Consider you live and work in some location without a window

— Not so hard to imagine when you know the GC

iy

¢ You want to know whether it is raining.

¢ Your only information is looking at whether somebody who
comes into your location each morning is carrying an umbrella.

¢sc74010-fall2011-parsons-lect07

® Each day is one value of t.

¢ E; contains the single variable U; (or Umbrella).
- Is the person carrying an umbrella?

® X; contains the single variable R; (or Rain)

—Is it raining?

csc74010-fall2011-parsons-lect07

e State sequence starts at t = 0, and the interval between slices in
general depends on the problem.

— Here it is one day
— In robot localization it is pretty arbitrary

e First piece of evidence arrives att = 1

® So, the umbrella world is:

R07 Rl‘, R27 s
U, U, Us, .
¢ a: b means the sequence of integers from ato b, so that U, is the
sequence:
U23 U33 U~l
csc74010-fall2011-parsons-lect07 6

Transition and sensor models|

® We need to add two components to this backbone:

— How the world evolves
Transition model

— What the evidence tells us
Sensor model

® The transition model tells us:
P(Xi/Xo:t-1)

what the probability is that it is raining today given the weather
every previous day for as long as records have existed.

® What is the problem with this model?

¢sc74010-fall2011-parsons-lect07

e Luckily Professor Markov helps us out again.

® Make a Markov assumption that the value of the current state
depends only on a finite fixed number of previous states.

First-order @ @ ° @ @
Second-order @'@'@'@'@

® We commonly assume a first order Markov process, where the
current state depends only on the previous state:

P(X{|Xo1-1) = P(X¢/Xt-1)

¢sc74010-fall2011-parsons-lect07 8

o What would the model look like for a second order Markov
process?

csc74010-fall2011-parsons-lect07 9

e What would the model look like for a second order Markov
process?

P<X1‘X0:t71) = P(Xt|xt72> thl)

csc74010-fall2011-parsons-lect07 10

e Even with the Markov assumption we have a potentially infinite
set of conditional probabilities.

P(X1|Xp), P(X2|X1), P(X5]Xs) . ..
® Usually circumvent this by assuming a stationary process

— The model doesn’t change
— But the state itself can

e Thus we only have one, general P(X;|X;_;)

¢sc74010-fall2011-parsons-lect07 11

e First-order Markov assumption not exactly true in real world!
e Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempy, Pressure

e Example: robot motion.
- Augment position and velocity with Battery,
e Example: umbrella world.

— Augment state with Season; and/or Pressure

¢sc74010-fall2011-parsons-lect07 12

Sensor model

® The evidence variables E; could depend on lots of previous
variables.

® But we will assume the state is constructed in such a way that
evidence only depends on the current state.

® A Markov assumption for the sensor model:

P(E|Xo:t—1, Eot—1) = P(Ey|Xy)

csc74010-fall2011-parsons-lect07 13

® Here are the sensor and observation models for the umbrella
world:

Ri_1| P(Ry)

e As for previous Bayesian networks, arrows run from causes to
effects.

csc74010-fall2011-parsons-lect07 14

e Also need to say how things get started:
P(Xq)
The prior probability over the state

¢sc74010-fall2011-parsons-lect07 15

e With this, we can then compute the complete joint probability
over all the time slices:

P(Xox, Evo) = P(Xo) 1 P(X[X; 1 P(EX)

¢ As we know from before, this is sufficient to compute anything
we want.

¢sc74010-fall2011-parsons-lect07 16

Inference tasks|

© What kinds of thing can we do with the model?
e Filtering: P(Xi|ei)

— determine belief state—input to the decision process of a
rational agent

e Prediction: P(X k|e1) for kK > 0

— Evaluation of possible action sequences, like filtering without
the evidence

® Smoothing: P(Xg|ei) for 0 <k <'t
— Better estimate of past states, essential for learning
© Most likely explanation: arg maxx, , P(x1:|e1)

- Speech recognition, decoding with a noisy channel

csc74010-fall2011-parsons-lect07 17

Filtering

¢ A good algorithm for filtering will maintain a current state
estimate and update it at each point.

P(Xtr1lerts1) = f(P(Xtler), ex1)
e Saves recomputation.

e It turns out that this is easy enough to come up with.

sc74010-fall2011-parsons-lect07

18

® We rearrange the formula for:
P(Xti1lertin)
e First, we divide up the evidence:
P(Xti1]erts1) = P(Xer1lers, e)

® Then we apply Bayes rule, remembering the use of the
normalization factor a.

P(Xy1lertr1) = aP(eq 1 Xe1, e1) P(Xep1er)

® And after that we use the Markov assumption on the sensor
model:

P(Xi1]erti1) = aP(eq 1 X)) P(Xey1|er)

© The result of this assumption is to make that first term on the
right hand side ignore all the evidence — the probability of the
observation at t + 1 only depends on the value of X;.

¢sc74010-fall2011-parsons-lect07 19

e Let’s look at that expression some more:
P(Xts1]ert1) = oP(er 1| X1)P(Xii|ers)

e The first term on the right updates with the new evidence and
the second term on the right is a one step prediction from the
evidence up to t to the state att + 1.

¢ Next we condition on the current state P(X):

P(Xi1]etr1) = aP(eq 1 Xei1) ;P(Xwﬂxu e1)P(x|ery)
t

e Finally, we apply the Markov assumption again:

P(Xi1]err1) = aP(ew1|Xe) %P(Xtﬂ [xt)P(x¢|er.t)
t

e We'll call the bit on the right f;

¢sc74010-fall2011-parsons-lect07

20

e ;. gives us the required recursive update.

— The probability distribution over the state variables at t + 1 is
a function of the transition model, the sensor model, and what
we know about the state at time t.

® Space and time constant, independent of t.

¢ This allows a limited agent to compute the current distribution
for any length of sequence.

csc74010-fall2011-parsons-lect07 21

Filtering the umbrella example|

e The prior is (0.5,0.5).

e We can first predict whether it will rain on day 1 given what we
already know:

P(R1> = rZUP(R1|r0)P<r0)
= (0.7,0.3) x 0.5+ (0.3,0.7) x 0.5
= (0.5,0.5)

¢ As we should expect, this just gives us the prior — that is the
probability of rain when we don’t have any evidence.

csc74010-fall2011-parsons-lect07 22

e However, we have observed the umbrella, so that U; = true, and
we can update using the sensor model:

P(R,|U;) = aP(u|R)P(R,)
(0.9,0.2)(0.5, 0.5)
(0.45,0.1)
(0.818,0.182)

Q

® So, since umbrella is strong evidence for rain, the probability of
rain is much higher once we take the observation into account.

¢sc74010-fall2011-parsons-lect07 23

® We can then carry out the same computation for Day 2, first
predicting whether it will rain on day 1 given what we already
know:
P(Rojui) = S P(Ry|r1)P(r1uy)
(0.7,0.3) x 0.818 + (0.3,0.7) x 0.182
(0.627,0.373)

%

¢ So even without evidence of rain on the second day there is a
higher probability of rain than the prior because rain tends to
follow rain.

(In this model rain tends to persist.)

¢sc74010-fall2011-parsons-lect07 24

® Then we can repeat the evidence update, u, (Us = true), so:

P(R2|U1,U2> aP<U2|R2>P(R2|U1)

= a(0.9,0.2)(0.627, 0.373)
(0.565, 0.075)
(0.883,0.117)

Q

e So, the probability of rain increases again, and is higher than on
day 1.

csc74010-fall2011-parsons-lect07 25

® Put more succinctly:

0.500 0.627
0.500 0.373
True 0.500 0.!18 0.6!83
False 0.500 0.182 0.117

Cry——Cany—Fan)

e We can think of the calculation as messages passed along the
chain.

sc74010-fall2011-parsons-lect07

26

e Prediction is filtering without new evidence.

P(Xii1lertr1) = §P<xt+] |Xt, e1.1)P(x¢|e11)
t

e Given the current state, what does the future bring?

e Just need the first part of the calculation we did above (in each
step we first predicted and then updated with evidence).

¢sc74010-fall2011-parsons-lect07 27

Smoothing

e Smoothing is computing the distribution over past states given
evidence up to the present.

GO~ -»ﬁ}»
® ® S
e Want the probability over all states k, 0 < k < t.

¢sc74010-fall2011-parsons-lect07

28

¢ Break the computation into two pieces, evidence from 0 to k and
evidence from k+ 1 to t.

® Proceeding just as before:

P(Xk\eht)

P(Xyle1x, exi1x)
aP(Xilerx)Plexs 14Xk, e1x)
aP(Xylerx)P(exr1:/Xk)

af byt

e fis a “forward” message, computed just as we did for the
filtering case.

¢ b is a backward message.

csc74010-fall2011-parsons-lect07 29

¢ To compute the backwards message we condition on Xy1:

P(ex 14/ Xk) = ka P(ex 14Xk, Xier1)P(xir1[Xi)
+1

¢ Then apply conditional independence:

P(ey.14/Xk) = XZ P(ew1:t) X 1) P (X1 Xi)
k+1

¢ Condition again:

P(ek+1:t|xk> = XZ P(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk+1‘Xk>
k+1

® The first and third terms here come from the model, the second
term is the bit we compute recursively.

csc74010-fall2011-parsons-lect07 30

® So in:
fl:kbk+l:t
there are two recursive components.

® We have a forward component from 1 to k, and a backward
component from t to k.

— The backward component is initialized with:
P(et+1:t|xt) = P(‘Xt) =1

(the probability of observing the set of no observations is
always 1).

¢sc74010-fall2011-parsons-lect07 31

¢ Consider the umbrella world on day 1. This time we update with
information about umbrellas on day 1 and day 2:

P(Ry|ug, Ug) = aP(Ry|up)P(ua|Ry)
We know that the first of these terms is (0.818,0.182) from before.
¢ The second term we can compute:
P(W|Ri) = 2 P(uars)P(|ro)P(rs[Ry)

= (0.9 x 1 x (0.70.3)) + (0.2 x 1 x (0.3,0.7))
= (0.69,0.41)

¢sc74010-fall2011-parsons-lect07 32

¢ Plugging this back into the expression we started with gives:
P(R|up, Uy) = a(0.818,0.182) x (0.69,0.41)

«(0.56,0.075)

(0.882,0.118)

Q

e Again we can think of this as message passing (next slide)

csc74010-fall2011-parsons-lect07

33

0.500 0.627

/ 0800 0373
True 0.500 04!18 0.;83
forward

False 0.500 0.182 0.117
0.883 0.883
0.117 0.117 smoothed
0.690 1.000
i —————————
0.410 1.000 backward

@ Rain, Rain,
Umbrella, Umbrella,

csc74010-fall2011-parsons-lect07 34

® The smoothed probability of rain on day 1 is higher than the
filtered estimate because the umbrella on day 2 makes it more
likely to have rained on day 1.

e Again these updates use constant time and space.

¢sc74010-fall2011-parsons-lect07

35

Most likely sequence

® Most likely sequence # sequence of most likely states!!!!

® Most likely path to each x.; is most likely path to some x; plus
one more step

)gl_?_l_ggtp(xh oo X, Xeyrleresn)
= P(ey1[Xer1) max (P<Xt+1\xt) xuax P(xt, ..o X1, Xt|91:t>)
t 1. At—1
¢ Identical to filtering, except f; replaced by:

my = mgx. P(xi, ..., x—1, X|ers),

® m (i) gives the probability of the most likely path to state i.

¢sc74010-fall2011-parsons-lect07 36

e Update has sum replaced by max, giving the Viterbi algorithm:

my. = Plew [Xe) max (P(Xp1|xe)myy)

Andrew Viterbi

csc74010-fall2011-parsons-lect07 37

® Bold state is the most likely state at day 5.

e For each state you can tell its best predecessor (bold arrow).

® So having computed the state values, can easily read off the most
likely sequence.

csc74010-fall2011-parsons-lect07

Raing Rain, Raing Rain, Raing
state true true true true true
space
paths

false false false false false
umbrella true true false true true
.8182 - .5155 - .0361 .0334 .0210
most
likely
paths .1818 .0491 1237 0173 .0024
My My, My My LLET

38

‘Where we are?

¢sc74010-fall2011-parsons-lect07

39

® We have a general approach to all the inference problems
without thinking much about the specific details of the models.

e When we get specific, we find we can solve several common
classes of problem.

¢sc74010-fall2011-parsons-lect07

40

'Hidden Markov models|

® HMMs have X; as a single, discrete variable
— Usually E; is too)
® Domain of X is {1,...,S}

e Transition matrix Tij = P(X =][X_1 =1)

Ceg [0703
&7 03 0.7
e Sensor matrix Oy for each time step, diagonal elements P(&|X;=1)
-e.g., with U; =true, O, = (069 002)
csc74010-fall2011-parsons-lect07 41

¢ Forward and backward messages as column vectors:

fie1 = a0 T iy
bri1t = TOky1byi2t

e Forward-backward algorithm needs time O(St) and space O(S)

® Matrix description points the way to easy implementation.

csc74010-fall2011-parsons-lect07 42

'Kalman filters|

® Modelling systems described by a set of continuous variables
- Robot tracking —X; =X, Y, X.Y
— Airplanes, ecosystems, economies, chemical plants, etc

<@<@<
=g

® Gaussian prior, linear Gaussian transition model and sensor
model

¢sc74010-fall2011-parsons-lect07 43

20D filtering
12r

—8— true
* observed
1k x filtered

10

¢sc74010-fall2011-parsons-lect07 44

® Sparse dependencies = exponentially fewer parameters;
- e.g., 20 state variables, three parents each
® DBN has 20 x 2% = 160 parameters, HMM has 2% x 220 ~ 10'?

csc74010-fall2011-parsons-lect07

45

DBNs vs Kalman filters|

e Every Kalman filter model is a DBN, but few DBNs are KFs;
— Real world requires non-Gaussian posteriors

e What's the battery charge?

B, | P(B) 5 E(Battery, |...5555005555...)
7| 1000 T ey
3 X
S | ogot 4 E(Battery, |..5555000000'..)
=
BMBroken % 3
2
firg P(BMBroken, |...5555000000...)
1 B 0080888880
0 O
P(BMBroken, |...5555005555...)
-1
Time step
csc74010-fall2011-parsons-lect07 46

Inference in DBNSs|

® There are exact algorithms for DBNs:

liu I’(()R’;) Ii() P(()I;I) 1"’.1 ”((]l;z) liz l’((;?)

f1 03 f 1 03 f1 03 /1 03

CRaingy—wRainy) @
R, | P(U)) R, [PUD| [R, | P(Wy)| [Ry | P(Us)
109 109 109 109
Sl 02 f] 02 f] 02 f] 02

- “Unroll” DBN to create a static Bayesian network and use

standard approaches.
— But time and space complexity is exponential.

® However, there are some good approximation algorithms.

¢sc74010-fall2011-parsons-lect07

47

Particle filters

e Technique for approximate solution of a DBN.

e Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

® Replicate particles proportional to likelihood for ey
Rain; Raing,; Rain; ., Rain; .1

tr ue o000 00 ‘ ° ‘ L] ‘
o000 o0 eoe)
faJ se o 1) ‘ ‘ o0 ‘ o000 ‘
] oo [5]5] o000
(a) Propagate (b) Weight (c) Resample

¢ Time/space complexity linear in the number of particles.

¢sc74010-fall2011-parsons-lect07 48

e Widely used for tracking nonlinear systems, esp. in vision

e Also used for simultaneous localization and mapping in mobile
robots

- 10°-dimensional state space

e Approximation error of particle filtering remains bounded over
time.

® At least empirically—theoretical analysis is difficult.

csc74010-fall2011-parsons-lect07 49

A general classification of dynamic probabilistic models

Courtesy of Julien Diard

Bayesian
Programs

Bayesian
Networks

Particle
Filters
Kalman
Filters

csc74010-fall2011-parsons-lect07 50

A general classification of dynamic probabilistic models

Bayesian
Programs

Courtesy of Julien Diard

S: State
Bayesian O: Observation
Networks A: Action

continuous))
HMMs_//
/l
Kalman)
Filters

¢sc74010-fall2011-parsons-lect07 51

Summary

e This class moved from the static view of the world encorporated
in Bayesian networks to something more dynamic.

¢ Dynamic Bayesian networks.

® We looked at the general types of inference possible in DBNs and
showed how the necessary computations could be done.

® We also looked at some specific classes of problem that can be
captured by DBNS.

¢sc74010-fall2011-parsons-lect07 52

