
MAKING COMPLEX DECISIONS



Introduction

• A couple of weeks back we looked at how an agent might make
a decision under uncertainty.

• Problem structure:

– Set of non-deterministic actions.

– Resulting states have utilities associated with them.

•We use probability + utility theory (= decision theory) to
establish the best choice of action.

csc74010-fall2011-parsons-lect08 2



Simple decisions

• Consider an agent with a set of possible actions A available to it.

• Each a ∈ A has a set of possible outcomes sa:

s1

s

a

a

1

2

s
s s

s

s

2

3 4

5

6

• For the outcomes sa of each action each a, the agent can calculate:

E(u(sa)) =
∑

s′∈sa

u(s′).P(sa = s′)

csc74010-fall2011-parsons-lect08 3



• A rational agent needs to choose a∗ such that:

a∗ = argmax
a∈A

∑

s′∈sa

u(s′).P(sa = s′)

• That is it picks the action that has the greatest expected utility.

• Here “rational” means “rational in the sense of maximising
expected utility”.

csc74010-fall2011-parsons-lect08 4



• There are other criteria for decision-making than maximising
expected utility.

• One approach is to look at the option which has the least-bad
worst outcome.

• This maximin criterion can be formalised in the same framework
as MEU, making the rational (in this sense) action:

a∗ = argmax
a∈A
{min

s′∈sa
u(s′)}

• Its effect is to ignore the probability of outcomes and concentrate
on optimising the worst case outcome.

csc74010-fall2011-parsons-lect08 5



• The opposite attitude, that of optimisitic risk-seeker, is captured
by the maximax criterion:

a∗ = argmax
a∈A
{max

s′∈sa
u(s′)}

• This will ignore possible bad outcomes and just focus on the best
outcome of each action.

csc74010-fall2011-parsons-lect08 6



Sequential decision problems

• These approaches give us a battery of techniques to apply to
individual decisions by agents.

• However, they aren’t really sufficient.

• Agents aren’t usually in the business of taking single decisions

– Life is a series of decisions.

The best overall result is not necessarily obtained by a greedy
approach to a series of decisions.

• Need to think about sequential decision problemswhere the agent’s
utility depends on a sequence of decisions.

csc74010-fall2011-parsons-lect08 7



1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

• The agent has to pick a sequence of actions.

A(s) = {Up,Down, Left,Right}

for all states s.

• The world is fully observable. End states have values +1 or −1.

csc74010-fall2011-parsons-lect08 8



• If the world were deterministic, the choice of actions would be
easy here.

Up,Up,Right,Right,Right

• But actions are stochastic.

• 80% of the time the agent moves as intended, but 20% of the time
the agent moves perpendicular to the intended direction.

Half the time to the left, half the time to the right. The agent
doesn’t move if it hits a wall.

• So Up,Up,Right,Right,Right succeeds with probability:

0.85 = 0.32768

• (Also a small chance of going around the obstacle the other way.)

csc74010-fall2011-parsons-lect08 9



•We can write a transition model to describe these actions.

• Since the actions are stochastic, the model looks like:

P(s′|s, a)

where a is the action that takes the agent from s to s′.

• Transitions are assumed to be Markovian.

• So, we could write a large set of probability tables that would
describe all the possible actions executed in all the possible
states.

This would completely specify the actions.

csc74010-fall2011-parsons-lect08 10



• The full description of the problem also has to include the utility
function.

• This is defined over sequences of states — runs in the
terminology of the first lecture.

•We will assume that in each state s the agent receives a reward
R(s).

• This may be positive or negative.

• The reward for non-terminal states is −0.04.

•We will assume that the utility of a run is the sum of the utilities
of states, so the −0.04 is an incentive to take fewer steps to get to
the terminal state.

(You can also think of it as the cost of an action).

csc74010-fall2011-parsons-lect08 11



Markov decision process

• The overall problem the agent faces here is a Markov decision
process (MDP)

• That is any fully observable non-deterministic environment with
a Markovian transition model and additive rewards.

•Mathematically we have

– a set of states s ∈ S with an initial state s0.

– A set of actions A(s) in each state.

– A transition model P(s′|s, a); and

– A reward function R(s).

csc74010-fall2011-parsons-lect08 12



•What does a solution to an MDP look like?

csc74010-fall2011-parsons-lect08 13



• A solution is a policy, which we write as π.

• This is a choice of action for every state.

– that way if we get off track, we still know what to do.

• In any state s, π(s) identifies what action to take.

csc74010-fall2011-parsons-lect08 14



• Naturally we’d prefer not just any policy but the optimum policy.

– But how to find it?

• Need to compare policies by the reward they generate.

• Since actions are stochastic, policies won’t give the same reward
every time.

– So compare the expected value.

• The optimum policy π∗ is the policy with the highest expected
value.

• At every stage the agent should do π∗(s).

csc74010-fall2011-parsons-lect08 15



1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

(a) Optimal policy for the original problem.

(b) Optimal policies for different values of R(s).

csc74010-fall2011-parsons-lect08 16



• R(s) ≤ −1.6284, life is painful so the agent heads for the exit, even
if is a bad state.

• −0.4278 ≤ R(s) ≤ −0.0850, life is unpleasant so the agent heads
for the +1 state and is prepared to risk falling into the −1 state.

• −0.0221 < R(s) < 0, life isn’t so bad, and the optimal policy
doesn’t take any risks.

• R(s) > 0, the agent doesn’t want to leave.

csc74010-fall2011-parsons-lect08 17



How utilities are calculated

• So far we have assumed that utilities are summed along a run.

– Not the only way.

• In general we need to compute Ur([s0, s1, . . . , sn]).

• Can consider finite and infinite horizons.

– Is it “game over” at some point?

• Turns out that infinite horizons are mostly easier to deal with.

– That is what we will use.

• Also have to consider whether utilities are stationary or
non-stationary.

– Does the same state always have the same value?

csc74010-fall2011-parsons-lect08 18



• Normally if we prefer one state to another

– Passing the mid-term to failing it

when we have the exam, today or next week, is irrelevant.

• So utilities are stationary.

csc74010-fall2011-parsons-lect08 19



•With stationary utilities, there are two ways to establish
Ur([s0, s1, . . . , sn]) from R(s).

• Additive rewards:

Ur([s0, s1, . . . , sn]) = R(s0) + R(s1) + . . . + R(sn)

as above.

• Discounted rewards:

Ur([s0, s1, . . . , sn]) = R(s0) + γR(s1) + . . . + γ
nR(sn)

where the discount factor γ is a number between 0 and 1.

• The discount factor models the preference of the agent for
current over future rewards.

csc74010-fall2011-parsons-lect08 20



• There is an issue with infinite sequences with additive,
undiscounted rewards.

– What will the utility of a policy be?

csc74010-fall2011-parsons-lect08 21



• There is an issue with infinite sequences with additive,
undiscounted rewards.

– What will the utility of a policy be?

• ∞ or −∞.

• This is problematic if we want to compare policies.

csc74010-fall2011-parsons-lect08 22



• Some solutions as follows.

• Proper policies always end up in a terminal state eventually.

Thus they have a finite expected utility.

•We can compute the average reward per time step.

•With discounted rewards the utility of an infinite sequence is
finite:

Ur([s0, s1, . . . , sn]) =
∞
∑

t=0
γ

tR(st)

≤
∞
∑

t=0
γ

tRmax

≤
Rmax

(1− γ)

where 0 ≤ γ < 1 and rewards are bounded by ±Rmax

csc74010-fall2011-parsons-lect08 23



Optimal policies

•With discounted rewards we compare policies by computing
their expected values.

• The expected utility of executing π starting in s is given by:

Uπ(s) = E






∞
∑

t=0
γ

tR(St)






where St is the state the agent gets to at time t.

• St is a random variable and we compute the probability of all its
values by looking at all the runs which end up there after t steps.

• The optimal policy is then:

π
∗ = argmax

π
Uπ(s)

and it turns out that this is independent of the state the agent
starts in.

csc74010-fall2011-parsons-lect08 24



1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

• Here we have the values of states if the agent executes an
optimal policy

Uπ∗(s)

csc74010-fall2011-parsons-lect08 25



• If we have these values, the agent has a simple decision process

• It just picks the action a that maximises the expected utility of
the next state:

π
∗(s) = arg max

a∈A(s)

∑

s′
P(s′|s, a)Uπ∗(s′)

• The big question is how to compute Uπ∗(s).

csc74010-fall2011-parsons-lect08 26



1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

–1

+1

1

2

3

1 2 3 4

csc74010-fall2011-parsons-lect08 27



Value iteration
• The key to computing the utility of a state is the Bellman equation

U(s) = R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)U(s′)

which says the utility of a state is the reward for being in that
state plus the expected discounted reward of being in the next
state, assuming the agent picks the optimal action.

• There will be a set of Bellman
equations, one for each state.

•We need to solve this set of
(non-linear) equations.

– Hard

csc74010-fall2011-parsons-lect08 28



• Luckily an iterative approach works.

• Start with arbitrary values for states and apply the Bellman
update:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

simultaneously to all the states.

• Continue until the values of states do not change.

• After an infinite number of applications, the values will
converge on the optimal values.

csc74010-fall2011-parsons-lect08 29



-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

• How the values of states change as updates occur.

csc74010-fall2011-parsons-lect08 30



Policy iteration

• Rather than compute optimal utility values, policy iteration looks
through the space of possible policies.

• Starting from some initial policy π0 we do:

– Policy evaluation

Given a policy πi, calculate Ui = Uπi.

– Policy improvement

Calculate a new policy πi+1 by applying:

πi+1(s) = arg max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

csc74010-fall2011-parsons-lect08 31



• The iteration will terminate when there is no improvement in
utility from one iteration to the next.

• At this point the utility Ui is a fixed point of the Bellman update
and so πi must be optimal.

csc74010-fall2011-parsons-lect08 32



• How do we calculate the utility of each step given the policy πi?

• Turns out not to be so hard.

• Given a policy, the choice of action in a given state is fixed (that
is what a policy tells us) so:

Ui(s) = R(s) + γ
∑

s′
P(s′|s, πi(s))Ui(s

′)

• Again there are lots of simultaneous equations, but now they are
linear (no max) and so standard linear algebra solutions will
work.

csc74010-fall2011-parsons-lect08 33



Bellman redux

• The Bellman equation(s)/update are widely used.

• D. Romer, It’s Fourth Down and What Does the Bellman
Equation Say? A Dynamic Programming Analysis of Football
Strategy, NBER Working Paper No. 9024, June 2002

csc74010-fall2011-parsons-lect08 34



This paper uses play-by-play accounts of virtually all
regular season National Football League games for
1998-2000 to analyze teams’ choices on fourth down
between trying for a first down and kicking. Dynamic
programming is used to estimate the values of possessing
the ball at different points on the field. These estimates are
combined with data on the results of kicks and
conventional plays to estimate the average payoffs to
kicking and going for it under different circumstances.
Examination of teams’ actual decisions shows systematic,
overwhelmingly statistically significant, and quantitatively
large departures from the decisions the
dynamic-programming analysis implies are preferable.

csc74010-fall2011-parsons-lect08 35



Partially observable MDPs

•MDPs made the assumption that the environment was fully
observable.

– Agent always knows what state it is in.

• The optimal policy only depends on the current state.

• Not the case in the real world.

– We only have a belief about the current state.

• POMDPs extend the model to deal with partial observability.

csc74010-fall2011-parsons-lect08 36



• Basic addition to the MDP model is the sensormodel:

P(e|s)

probability of perceiving e in state s.

• As a result of noise in the sensor model, the agent only has a
belief about which state it is in.

• Probability distribution over the possible states.

csc74010-fall2011-parsons-lect08 37



1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

P(s1,1) = 0.05,P(s1,2) = 0.01, . . .

csc74010-fall2011-parsons-lect08 38



• The agent can compute its current belief as the conditional
probability distribution over the states given the sequence of
actions and percepts so far.

– Sound familiar?

csc74010-fall2011-parsons-lect08 39



• The agent can compute its curent belief as the conditional
probability distribution over the states given the sequence of
actions and percepts so far.

– Sound familiar?

• This is basically the filtering task from the last class.

(albeit with an action).

csc74010-fall2011-parsons-lect08 40



• If (b(s)was the distribution before an action and an observation,
then afterwards the distribution is:

b′(s′) = αP(e|s′)
∑

s
P(s′|s, a)b(s)

• Everything in a POMDP hinges on the belief state b.

– Including the optimal action.

• Indeed, the optimal policy is a mapping π∗(b) from beliefs to
actions.

“If you think you are next to the wall, turn left”

• The agent executes the optimal action given its beliefs, receives a
percept e and then recomputes the belief state.

csc74010-fall2011-parsons-lect08 41



• The big issue in solving POMDPs is that beliefs are continuous.

•When we solved MDPs, we could search through the set of
possible actions in each state to find the best.

• To solve a POMDP, we need to look through the possible actions
for each belief state.

But belief is continuous, so there are a lot of belief states.

• Exact solutions to POMDPs are intractable for even small
problems (like the example we have been using).

• Need (once again) to use approximate techniques.

csc74010-fall2011-parsons-lect08 42



Summary

• Today we looked at practical decision making for agents.

– Practical in the sense that agents will need this kind of
decision making to do the things they need to do.

•We looked in detail at solutions for techniques that work in fully
observable worlds

– MDPs

•We also briefly mentioned the difficulties of extending this work
to partially observable worlds.

csc74010-fall2011-parsons-lect08 43


