
MULTIAGENT DECISION MAKING

Introduction

• Last time we looked at how an agent can make sequential
decisions

– Where outcome/utility depends on a sequence of
decisions/actions.

• All under the control of one agent.

– Static world

• What if we have more than one agent?

– Utility depends on what all the agents do.

• This is the domain of game theory
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What is game theory?

• Game theory is a framework for analysing interactions between
a set of agents.

• Abstract specification of interactions.

• Describes each agent’s preferences in terms of their utility.

– Assume agents want to maximise utility.

• Give us a range of solution strategies with which we can make
some predictions about how agents will/should interact.

• Game theory is not about being selfish.
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Book?

• Textbook doesn’t say much about game theory.

• Instead:
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Congestion Game

• Agents using TCP to communicate.

– If packets collide, should back-off.

• Works if everyone does this.

• But what if agents could choose a defective implementation that
doesn’t back-off?

– In a collision, their message would get sent quicker.

• But what if everyone did this?

– Outcome depends on what other agents do.
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Congestion Game

• Capture this as:

i

j

defect correct
defect -3 -4

-3 0
correct 0 -1

-4 -1

• Agent i is the column player.

• Agent j is the row player.
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• Two obvious questions we can ask in this scenario:

– What should an individual agent do?

– How does the game get played — how do both agents
together act?

• Game theory offers some ideas about how to answer these
qestions.
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• What should an individual agent do?

– Depends on what the other agent does.

• How does the game get played — how do both agents together
act?

– Equilibrium.
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• As with all good games, the congestion game captures some
underlying truths about the world at an abstract level:

• (Though you might want to alter the payoffs somewhat.)
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Normal form games

• An n-person, finite, normal form game is a tuple (N,A, u), where

– N is a finite set of players.

– A = A1 × . . .× An where Ai is a finite set of actions available to
i. Each a = (a1, . . . , an) ∈ A is an action profile.

– u = (u1, . . . , un)where ui : A 7→ ℜ is a real-valued utility
function for i.

• Naturally represented by an n-dimensional matrix
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The Prisoner’s Dilemma

(Okay, so if you know the movie, this isn’t a prisoner’s dilemma.)
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Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.

They are told that:

• if one confesses and the other does not, the confessor will
be freed, and the other will be jailed for three years;

• if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will
each be jailed for one year.
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• Payoff matrix for prisoner’s dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

• What should each agent do?
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• Payoff matrix for prisoner’s dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

• Well?
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• In fact:

i

j

defect coop
defect d b

d c
coop c a

b a

• any game with c > a > d > b is a prisoner’s dilemma.

csc74010-fall2011-parsons-lect09 15

Common payoff games

• Coordination game

left right
left 1 0

1 0
right 0 1

0 1

• Any game with ui(a) = uj(a) for all a ∈ Ai × Aj is a common
payoff game.
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• The misanthropes’ (un)coordination game:

left right
left 0 1

0 1
right 1 0

1 0
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• In between is the El Farol bar problem:

• If everyone goes to the bar it is no fun, but if only some people
go then everyone who goes has a good time.

Should you go or not?
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Constant sum games

• Matching pennies

heads tails
heads -1 1

1 -1
tails 1 -1

-1 1

• Any game with ui(a) + uj(a) = c for all a ∈ Ai × Aj is a constant
sum game.
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• Rock, paper, scissors:

is another constant sum game.

• Game in two senses.
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• Rules for “rock, paper, scissors”.
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• As a normal form game:

rock paper scissors
rock 0 1 -1

0 -1 1
paper -1 0 1

1 0 -1
scissors 1 -1 0

-1 1 0

• This game is “zero-sum” since the utilities sum to zero.
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• Zero sum games are pure competition:

– If one player wins, the other loses.

• Few real situations other than games in the recreational sense are
really zero sum.
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General sum games

• Battle of the Sexes

this that
this 1 0

2 0
that 0 2

0 1

• Game contains elements of cooperation and competition.

• The interplay between these is what makes general sum games
interesting.
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Strategies

• We analyze games in terms of strategies, that is what they decide
to do.

– Combined with what the other agent(s) do(es) this jointly
determines the payoff.

• An agent’s strategy set is its set of available choices.

• Can just be the set of actions — pure strategies.

• In the Prisoner’s Dilemma (PD), the set of pure strategies is:

cooperate defect

• We need more than just pure strategies in many cases.
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• Mixed strategies are probability distributions over pure strategies.

• In the PD, one mixed strategy is:

pick cooperate with probability 0.7, pick defect with
probability 0.3

• Clearly there are many possible pure strategies.

– Strategy set Si is set of all probability distributions over Ai.

(Actions may vary between agents).

• For the PD, a strategy set of an agent is all possible probability
distributions over cooperate and defect.

• A profile is a selection of strategies, one for each agent.

• A set of of mixed strategy profiles is S1 × . . .× Sn.
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• The support for a mixed strategy si is the set of pure strategies
{ai|s(ai) > 0}

– All the actions that might be picked by a particular mixed
strategy.

• The payoff of a mixed strategy is the expected utility of the
strategy:

ui(s) =
∑

a∈A
ui(a)

n∏

j=1

sj(aj)
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Solution concepts

• For an agent acting alone we can compute the optimal strategy

– maximises the expected utility.

• In a multiagent setting this isn’t very meaningful.

• Best strategy depends on what others are doing.

• Solution concepts identify sets of outcomes (subsets of the whole)
that are interesting in some way.

• External view — Pareto optimality.

• Internal view — Nash equilibrium.
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Pareto optimality

• In multiagent settings it is hard to define “best solution”.

– Can’t easily handle tradeoffs between agents’ utilities.

• Which is best outcome in the battle of the sexes?

this that
this 1 0

2 0
that 0 2

0 1

• If your children were playing, which outcome would you like to
see?
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• Though we can’t say which outcome is best, we can say that
some outcomes are better than others.

• s Pareto dominates s′ if for all i, ui(s) ≥ ui(s′) and there is some j
such that uj(s) > uj(s′).

• Defines a partial order over strategies.

• s is Pareto optimal if there is no s′ such that s′ Pareto dominates s.

• “Pareto optimal” is also described as “strictly Pareto efficient”.
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• Which outcome(s) is/are Pareto dominant in the battle of the
sexes?

this that
this 1 0

2 0
that 0 2

0 1
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• How about for the Prisoner’s Dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3
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• Pareto optimality is a rather weak concept.

• What is the Pareto optimal way to divide a pile of money
between A and B?

csc74010-fall2011-parsons-lect09 33

Nash equilibrium

• Pareto dominance doesn’t tell an individual agent how to play
the game.

• Nash equilibrium is more useful from this perspective.

• If I know how you will play the game, I can maximise. I choose
my best response.

• i’s best response to the strategy profile s−i is the mixed strategy
s∗i ∈ S such that ui(s∗i , s−i) ≥ ui(si, s−i) for all si.
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• Best response is not a solution concept since we don’t, in general,
know what other agents will do.

• But we build the idea of Nash equilibrium (NE) on top of it.

• A strategy profile s = (s1, . . . , sn) is a Nash equilibrium if, for all
agents i, si is a best response to s−i.

• NE is stable, since no agent can do better by switching strategy
while everyone else sticks.

• Every game (within reason) has a (mixed strategy) Nash
equilibrium.
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• What is the Nash equilibrium for the Prisoner’s Dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3
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• What about for the battle of the sexes?

this that
this 1 0

2 0
that 0 2

0 1
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Dominated strategies

• Let si and s′i are strategies of i. S−i is the set of strategy profiles of
the other players.

• si strictly dominates s′i if u(si, s−i) > u(s′i, s−i) for all s−i ∈ S−i.

• si weakly dominates s′i if u(si, s−i) ≥ u(s′i, s−i) for all s−i ∈ S−i and
u(si, s−i) > u(s′i, s−i) for at least one s−i

• si very weakly dominates s′i if u(si, s−i) ≥ u(s′i, s−i) for all s−i ∈ S−i

• A dominant strategy is one that dominates all others.

• A strategy profile in which every si is dominant for i is a Nash
equilibrium

– equilibrium in dominant strategies
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Aside — Prisoner’s Dilemma redux

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

• “defect” is a dominant strategy.
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Dominated strategies II

• Game with dominated strategies

L C R
U 1 1 0

3 0 0
M 1 1 0

1 1 5
L 1 1 0

0 4 0

• Can eliminate the dominated strategies and simplify the game

• Remove R (dominated by L).
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Dominated strategies III

• Game with dominated strategies

L C
U 1 1

3 0
M 1 1

1 1
L 1 1

0 4

• M is now dominated by the mixed strategy that picks U and L
with equal probability.

• It was not dominated before we removed R.
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Dominated strategies IV

• Final game

L C
U 1 1

3 0
L 1 1

0 4

• Removing dominated strategies will not remove any Nash
equilibria.

• If we only use strict dominance, the order of elimination doesn’t
matter.
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Computing equilibria

• If we can eliminate enough dominated strategies, we can easily
determine the NE.

• Not always possible.

• When no dominant strategy, computationally difficulty to
establish the NE.

– NP hard

– Basically a search through a huge space of possible mixed
strategies

• How else can we decide what strategy to use?
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• We can do it by learning.

• Agent A observes agent B’s choices, and formulates the best
response to them.

• If B i splaying a mixed strategy, this will correctly identify the
best response.

– However, may be susceptible to manipulation.

• What if both agents are learning?

• Turns out that under some conditions, agents can work their
way to the NE.
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Evolutionarily Stable Strategies

• Consider a large population of agents playing a two player
game.

– Equilibrium strategy

• Is the equilibrium strategy stable against some fraction of the
population switching to a different strategy.

• A mixed strategy s is an evolutionarily stable strategy if for all
other strategies s′:

– u(s, s) > u(s′, s); or

– u(s, s) = u(s′, s) and u(s, s′) = u(s′, s′)

csc74010-fall2011-parsons-lect09 45

• Hawk/Dove game

hawk dove
hawk -2 0

-2 6
dove 6 3

0 3

• Unique symmetric Nash equilibrium, (3/5, 2/5).

• Also the unique ESS.

• But, for example, (dove, dove) is not an ESS, though it is Pareto
optimal.

csc74010-fall2011-parsons-lect09 46

• If a mixed strategy s is an evolutionarily stable strategy, then it is
a Nash equilibrium.

• Any ESS is a best response to itself, and is therefore an NE.

• The reverse does not hold — only strict Nash equilibria are ESS.

• In a two-player game, given a mixed strategy s, if (s, s) is strict
Nash equilibrium, then s is an evolutionarily stable strategy.

• Interesting because we can learn ESS and hence NE.
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• There are several sets of replicator dynamics which explain how
agents should change their strategy based on how strategies
payoff in the current mix.

• If agents adjust their strategy this way, the population will
converge to NE.

• Can look at this as either:

– the behavior of a large population; or

– a computational process for establishing the mixed strategy
NE.

• A population of 100 agents where the ESS has 10 agents using
strategy s1, 20 using s2 and 70 using s3 tells us that
〈(s1, 0.1), (s2, 0.2), (s3, 0.7)〉 is an NE.

csc74010-fall2011-parsons-lect09 48



Iterated Games

• All we did so far assumes that agents only play the game with
each other once.

– One-shot games

• Even when learning, the assumption is that agents are trying to
establish how an opponent plays the one-shot game.

– Either playing an anonymous crowd of opponents; or

– Observing an agent who is doing this.

• Different behavior when you know that you will play the same
agent multiple times.

• Shadow of the future.
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Iterated Prisoner’s dilemma

• If you know you will be meeting your opponent again, then the
incentive to defect appears to evaporate.

– If you defect, you can be punished (compared to the
co-operation reward.)

– If you get suckered, then what you lose can be amortised over
the rest of the iterations, making it a small loss.

• Cooperation is (provably) the rational choice in the infinititely repeated
prisoner’s dilemma.

• But what if there are a finite number of repetitions?
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Backwards Induction

• Suppose you both know that you will play the game exactly n
times.

On round n − 1, you have an incentive to defect, to gain that
extra bit of payoff.

But this makes round n − 2 the last “real”, and so you have an
incentive to defect there, too.

This is the backwards induction problem.

• Playing the prisoner’s dilemma with a fixed, finite,
pre-determined, commonly known number of rounds, defection
is the best strategy.
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• That seems to suggest that you should never cooperate.

• So how does cooperation arise? Why does it make sense?

• After all, there does seem to be such a thing as society, and even
in a big city like New York, people don’t behave so badly.

Or, maybe more accurately, they don’t behave badly all the time.

• Turns out that:

– As long as you have some probability of repeating the
interaction co-operation can have a better expected payoff.

– As long as there are enough co-operative folk out there, you
can come out ahead by co-operating.

• But is always co-operating the best approach?
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Axelrod’s Tournament

• Suppose you play iterated prisoner’s dilemma (IPD) against a
range of opponents.

• What approach should you choose, so as to maximise your
overall payoff?

• Is it better to defect, and hope to find suckers to rip-off?

• Or is it better to cooperate, and try to find other friendly folk to
cooperate with?
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• Robert Axelrod (1984) investigated this problem, with a
computer tournament for programs playing the iterated
prisoner’s dilemma.

• Axelrod hosted the tournament and various researchers sent in
approaches for playing the game.
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Strategies in Axelrod’s Tournament

• ALLD:

“Always defect” — the hawk strategy;

• TIT-FOR-TAT:

1. On round u = 0, cooperate.

2. On round u > 0, do what your opponent did on round u − 1.

• TESTER:

On 1st round, defect. If the opponent retaliated, then play
TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

• JOSS:

As TIT-FOR-TAT, except periodically defect.
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• Surprisingly TIT-FOR-TAT for won.

• But don’t read too much into this.

– Turns out that TIT-FOR-TWO-TATS would have done better.

• In scenarios like the IPD tournament, the best approach depends
heavily on what the full set of approaches is.

• TIT-FOR-TAT did well because there were other players it could
co-operate with.

– In scenarios with different strategy mixes it would not win.
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Recipes for Success in Axelrod’s Tournament

Axelrod suggests the following rules for succeeding in his
tournament:

• Don’t be envious:

Don’t play as if it were zero sum!

• Be nice:

Start by cooperating, and reciprocate cooperation.

• Retaliate appropriately:

Always punish defection immediately, but use “measured” force
— don’t overdo it.

• Don’t hold grudges:

Always reciprocate cooperation immediately.
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Sequential Games

• In normal-form games we assume moves are simultaneous.

• Another area of game theory studies sequential games.

– Players take it in turns

• We don’t have time to look at this.

• Can always map the sequence of moves into a strategy, and
consider this to be a very big normal form game.
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Markov Games

• Can think of Markov games as a hybrid of MDPs and games.

• In MDPs, choices about action determine the next state an agent
is in.

– Actions can vary with state

• In games, joint choices of actions determine payoffs.

• In Markov games, joint choices of action determine the next state
and agent is in.

– The game that defines outcomes can vary with state.

• Markov games are very much at the cutting edge of research.
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Bayesian Games

• Everything we have done so far assumes agents know what
game they are playing.

• Assume that:

– Number of players

– Set of actions

– Payoffs

are common knowledge across all players.

• Now look at games of incomplete information or Bayesian games.

• Represent the lack of knowledge with a probability distribution
over a set of games

– Agents’ beliefs about which game they are playing.
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• All these games have the same number of players and strategy
space.

– Not a very restrictive assumption.

– Pad games if necessary with dominated strategies.

• Agents’ beliefs are posteriors, based on a common prior
conditioned on private signals.

– Start the same, experience differs.
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• Bayesian game over some familiar games

MP PD
0 2

2 0
2 0

0 2

2 3
2 0

0 1
3 1

p = 0.3 p = 0.1
Coord BoS
2 0

2 0
0 1

0 1

1 0
2 0

0 2
0 1

p = 0.2 p = 0.4

• Row player can only distinguish between (MP,PD) and
(Coord,Bos).
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• To decide what to do, the row player has to look at his possible
choices and use the probability distribution over the possible
outcomes to determine his expected payoff.

• Does the same to establish expected payoffs of the other agent.

• Then apply the usual kinds of analysis, suitably complicated by
the expected value calculations.

• Mixed strategies add another layer of expectation.
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Summary

• Today we looked at some game theory.

• In artificial intelligence, game theory is used to help analyze
interactions between agents.

• However, it is (has been) an area of growing interest and
importance in computer science as a whole.

• Lots of work on figuring out incentives to make systems work as
we want them to.

– Mechanism design.

• Lots more we could say about multiagent decision-making also:

– Voting

– Social choice theory
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