MULTIAGENT DECISION MAKING

Introduction

e Last time we looked at how an agent can make sequential
decisions

— Where outcome/ utility depends on a sequence of
decisions/actions.

¢ All under the control of one agent.
— Static world
e What if we have more than one agent?
— Utility depends on what all the agents do.

e This is the domain of game theory
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‘What is game theory?|

® Game theory is a framework for analysing interactions between

a set of agents.
e Abstract specification of interactions.
® Describes each agent’s preferences in terms of their ufility.
— Assume agents want to maximise utility.

® Give us a range of solution strategies with which we can make
some predictions about how agents will/should interact.

® Game theory is not about being selfish.
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¢ Textbook doesn’t say much about game theory.

e Instead:

of Game Theory
di

didisciplinary Putroduction

ISBN 978-159-829-5931

¢sc74010-fall2011-parsons-lect09




‘Congestion Game| ‘Congestion Game|

e Agents using TCP to communicate. * Capture this as:

— If packets collide, should back-off. |

defect correct
® Works if everyone does this. defect -3 -4 ‘
® But what if agents could choose a defective implementation that j 3 0
doesn’t back-off? correct| 0 -1 ‘
-4 -1
— In a collision, their message would get sent quicker.
® But what if everyone did this? e Agent i is the column player.
— Outcome depends on what other agents do. * Agent j is the row player.
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® Two obvious questions we can ask in this scenario: * What should an individual agent do?

— What should an individual agent do? — Depends on what the other agent does.

— How does the game get played — how do both agents

together act? ® How does the game get played — how do both agents together

act?
® Game theory offers some ideas about how to answer these

gestions. - Equilibrium.
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® As with all good games, the congestion game captures some
underlying truths about the world at an abstract level:

¢ (Though you might want to alter the payoffs somewhat.)
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‘Normal form games‘

e An n-person, finite, normal form game is a tuple (N, A, u), where
- N is a finite set of players.

- A=A x...x A,where A is a finite set of actions available to
i. Eacha= (a,...,an) € Ais an action profile.

— U= (Uy,...,Uy) where u; : A R is a real-valued utility

function for i.

¢ Naturally represented by an n-dimensional matrix

¢sc74010-fall2011-parsons-lect09 10

'The Prisoner’s Dilemma)

(Okay, so if you know the movie, this isn’t a prisoner’s dilemma.)
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Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.

They are told that:

e if one confesses and the other does not, the confessor will
be freed, and the other will be jailed for three years;

e if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will
each be jailed for one year.
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® Payoff matrix for prisoner’s dilemma:
e Payoff matrix for prisoner’s dilemma:
[

defect coop i

defect| 2 1 defect coop

j 2 4 defect| 2 1 ‘

coop | 4 3 i 2 4

1 3 coop 4 3
1 3
® What should each agent do?
e Well?
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'Common payoff games|

o In fact:
delfect coop e Coordination game
defect d b left right
] d € left 1/ 0
coop C a 1 o
b a right| 0] 1
0 1

® any game with ¢ > a > d > bis a prisoner’s dilemma.
* Any game with ui(a) = yj(a) for all a € A; x A is a common
payoff game.
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® The misanthropes’ (un)coordination game:

left right
left o 1
0 |1
right| 1| 0
1 |0
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¢ In between is the El Farol bar problem:

e If everyone goes to the bar it is no fun, but if only some people
go then everyone who goes has a good time.

Should you go or not?
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‘Constant sum games|

® Matching pennies

heads tails
heads -1 1
1 -1
tails 1 -1

® Any game with uj(a) + uj(a) = cfor alla € A x A is a constant
sum game.
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® Rock, paper, scissors:

is another constant sum game.

e Game in two senses.
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© Rules for “rock, paper, scissors”.

Rock Paper Scissors

Rock breaks scissors Paper covers rock Scissors cut paper

csc74010-fall2011-parsons-lect09 21

¢ As a normal form game:

rock paper scissors
rock 0 1 -1

0 -1 1
paper -1 0 1

1 0 -1
scissors 1 -1 0

-1 1 0

e This game is “zero-sum” since the utilities sum to zero.
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® Zero sum games are pure competition:
— If one player wins, the other loses.

® Few real situations other than games in the recreational sense are
really zero sum.
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‘General sum games|

e Battle of the Sexes
this that
this 1/ 0
2 |0

that| 0| 2
0 |1

e Game contains elements of cooperation and competition.

¢ The interplay between these is what makes general sum games
interesting.
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Strategies

® We analyze games in terms of strategies, that is what they decide
to do.

— Combined with what the other agent(s) do(es) this jointly
determines the payoff.

® An agent’s strategy set is its set of available choices.

e Can just be the set of actions — pure strategies.

e In the Prisoner’s Dilemma (PD), the set of pure strategies is:
cooperate defect

® We need more than just pure strategies in many cases.
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® Mixed strategies are probability distributions over pure strategies.
¢ In the PD, one mixed strategy is:

pick cooperate with probability 0.7, pick defect with
probability 0.3

¢ Clearly there are many possible pure strategies.

— Strategy set S is set of all probability distributions over A;.
(Actions may vary between agents).

e For the PD, a strategy set of an agent is all possible probability
distributions over cooperate and defect.

e A profile is a selection of strategies, one for each agent.

e A set of of mixed strategy profiles is S; X ... x S,.
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® The support for a mixed strategy § is the set of pure strategies
{als@) > 0}
— All the actions that might be picked by a particular mixed
strategy.

© The payoff of a mixed strategy is the expected utility of the
strategy:
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Solution concepts|

e For an agent acting alone we can compute the optimal strategy
— maximises the expected utility.

¢ In a multiagent setting this isn’t very meaningful.

¢ Best strategy depends on what others are doing.

e Solution concepts identify sets of outcomes (subsets of the whole)
that are interesting in some way.

e External view — Pareto optimality.

¢ Internal view — Nash equilibrium.
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Pareto optimality|

¢ In multiagent settings it is hard to define “best solution”.
- Can't easily handle tradeoffs between agents” utilities.

e Which is best outcome in the battle of the sexes?

this that
this 1 0
2 o’
that| 0| 2
0 1]

e If your children were playing, which outcome would you like to
see?

csc74010-fall2011-parsons-lect09 29

e Though we can’t say which outcome is best, we can say that
some outcomes are better than others.

e s Pareto dominates S if for all i, ui(s) > ui(S) and there is some |
such that uj(s) > uj(s).

¢ Defines a partial order over strategies.
e sis Pareto optimal if there is no S such that S’ Pareto dominates s.

e “Pareto optimal” is also described as “strictly Pareto efficient”.
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e Which outcome(s) is/are Pareto dominant in the battle of the
sexes?

this that
this 1 0 ‘

2 0
that| 0] 2 ‘

0 |1
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e How about for the Prisoner’s Dilemma:
i

defect coop
defect| 2 1
] 2 4
coop 4 3
1 3
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e Pareto optimality is a rather weak concept.

® What is the Pareto optimal way to divide a pile of money
between A and B?
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Nash equilibrium|

e Pareto dominance doesn’t tell an individual agent how to play
the game.

¢ Nash equilibrium is more useful from this perspective.

e If I know how you will play the game, I can maximise. I choose
my best response.

® i’s best response to the strategy profile s_j is the mixed strategy
S € Ssuch that Ui<Sk7 S,i) > Ui(Si7 S,i) for all s.
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® Best response is not a solution concept since we don’t, in general,
know what other agents will do.

® But we build the idea of Nash equilibrium (NE) on top of it.

® A strategy profile S= (s, ..., $) is a Nash equilibrium if, for all
agents i, S is a best response to s_j.

® NE is stable, since no agent can do better by switching strategy
while everyone else sticks.

® Every game (within reason) has a (mixed strategy) Nash
equilibrium.
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® What is the Nash equilibrium for the Prisoner’s Dilemma:

defect coop
defect| 2 1
j 2 4 ‘
coop 4 3
st
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e What about for the battle of the sexes?

this that
this 1 0
2 |0
that| 0 2
0 |1
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'Dominated strategies|

e Let § and § are strategies of i. S ; is the set of strategy profiles of

the other players.
e s strictly dominates § if u(s,s_i) > u(s,s_j) foralls_; € S_;.

e s weakly dominates § if U(s,S_i) > u(g,si) forall s_j € S_j and
u(s, s_i) > u(g, s.i) for at least one s_;

e 5 very weakly dominates § if u(s,s_j) > u(g,si) forallsj € S
¢ A dominant strategy is one that dominates all others.

e A strategy profile in which every § is dominant for i is a Nash
equilibrium

- equilibrium in dominant strategies
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'Aside — Prisoner’s Dilemma redux

defect coop
defect| 2 1
] 2 4
coop 4 3
1 3

e “defect” is a dominant strategy.
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Dominated strategies IT

¢ Game with dominated strategies

L C R
ujl 1, 1/ 0

M| 1, 1| O

L 1 1] 0

¢ Can eliminate the dominated strategies and simplify the game

® Remove R (dominated by L).
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Dominated strategies III|

® Game with dominated strategies
L C
1

U|
M| 1

—

L 1 1
0 4

® M is now dominated by the mixed strategy that picks U and L
with equal probability.

e [t was not dominated before we removed R.
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Dominated strategies IV‘

¢ Final game

L C
U 1] 1]
3 0 |
L 1 1
0 |4 ‘

® Removing dominated strategies will not remove any Nash
equilibria.

e If we only use strict dominance, the order of elimination doesn’t
matter.
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'Computing equilibria|

e If we can eliminate enough dominated strategies, we can easily
determine the NE.

® Not always possible.

® When no dominant strategy, computationally difficulty to
establish the NE.

— NP hard

— Basically a search through a huge space of possible mixed
strategies

® How else can we decide what strategy to use?
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e We can do it by learning.

e Agent A observes agent B’s choices, and formulates the best
response to them.

e If Bi splaying a mixed strategy, this will correctly identify the
best response.

- However, may be susceptible to manipulation.
e What if both agents are learning?

e Turns out that under some conditions, agents can work their
way to the NE.
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[Evolutionarily Stable Strategies|

e Consider a large population of agents playing a two player
game.

— Equilibrium strategy

e Is the equilibrium strategy stable against some fraction of the
population switching to a different strategy.

e A mixed strategy sis an evolutionarily stable strateqy if for all
other strategies S

—u(s,s) > u(s,s); or
—u(s,s) =u(s,s)and u(s,s) = u(s, s)
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¢ Hawk/Dove game

hawk dove
hawk -2 0
-2 6
dove 6 3
0 3

¢ Unique symmetric Nash equilibrium, (3/5,2/5).
e Also the unique ESS.

¢ But, for example, (dove, dove) is not an ESS, though it is Pareto
optimal.
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e If a mixed strategy Sis an evolutionarily stable strategy, then it is
a Nash equilibrium.

e Any ESS is a best response to itself, and is therefore an NE.
® The reverse does not hold — only strict Nash equilibria are ESS.

¢ In a two-player game, given a mixed strategy s, if (s, ) is strict
Nash equilibrium, then sis an evolutionarily stable strategy.

e Interesting because we can learn ESS and hence NE.
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e There are several sets of replicator dynamics which explain how
agents should change their strategy based on how strategies
payoff in the current mix.

e If agents adjust their strategy this way, the population will
converge to NE.

e Can look at this as either:

— the behavior of a large population; or

— a computational process for establishing the mixed strategy
NE.

e A population of 100 agents where the ESS has 10 agents using
strategy s, 20 using s, and 70 using s; tells us that
((s1,0.1),(s,0.2), (s3,0.7)) is an NE.
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Tterated Games|

e All we did so far assumes that agents only play the game with
each other once.

— One-shot games

® Even when learning, the assumption is that agents are trying to
establish how an opponent plays the one-shot game.

- Either playing an anonymous crowd of opponents; or
— Observing an agent who is doing this.

e Different behavior when you know that you will play the same
agent multiple times.

e Shadow of the future.
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Tterated Prisoner’s dilemma|

e If you know you will be meeting your opponent again, then the
incentive to defect appears to evaporate.

— If you defect, you can be punished (compared to the
co-operation reward.)
- If you get suckered, then what you lose can be amortised over
the rest of the iterations, making it a small loss.
e Cooperation is (provably) the rational choice in the infinititely repeated
prisoner’s dilemma.

¢ But what if there are a finite number of repetitions?
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'Backwards Induction|

® Suppose you both know that you will play the game exactly n
times.

On round n — 1, you have an incentive to defect, to gain that
extra bit of payoff.

But this makes round n — 2 the last “real”, and so you have an
incentive to defect there, too.

This is the backwards induction problem.

¢ Playing the prisoner’s dilemma with a fixed, finite,
pre-determined, commonly known number of rounds, defection
is the best strategy.
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¢ That seems to suggest that you should never cooperate.
® So how does cooperation arise? Why does it make sense?

e After all, there does seem to be such a thing as society, and even
in a big city like New York, people don’t behave so badly.

Or, maybe more accurately, they don’t behave badly all the time.
e Turns out that:

— As long as you have some probability of repeating the
interaction co-operation can have a better expected payoff.

— As long as there are enough co-operative folk out there, you
can come out ahead by co-operating.

e But is always co-operating the best approach?
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'Axelrod’s Tournament|

® Suppose you play iterated prisoner’s dilemma (IPD) against a
range of opponents.

® What approach should you choose, so as to maximise your
overall payoff?

e Is it better to defect, and hope to find suckers to rip-off?

e Or is it better to cooperate, and try to find other friendly folk to
cooperate with?
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® Robert Axelrod (1984) investigated this problem, with a
computer tournament for programs playing the iterated
prisoner’s dilemma.

e Axelrod hosted the tournament and various researchers sent in
approaches for playing the game.
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‘Strategies in Axelrod’s Tournament

° ALLD:
“Always defect” — the hawk strategy;
e TIT-FOR-TAT:
1. On round u = 0, cooperate.

2. On round u > 0, do what your opponent did on round u — 1.

o TESTER:

On 1st round, defect. If the opponent retaliated, then play
TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

® JOSS:
As TIT-FOR-TAT, except periodically defect.
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e Surprisingly TIT-FOR-TAT for won.
e But don’t read too much into this.
— Turns out that TIT-FOR-TWO-TATS would have done better.

¢ In scenarios like the IPD tournament, the best approach depends
heavily on what the full set of approaches is.

e TIT-FOR-TAT did well because there were other players it could
co-operate with.

— In scenarios with different strategy mixes it would not win.
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]Recipes for Success in Axelrod’s Tournament

Axelrod suggests the following rules for succeeding in his
tournament:

® Don't be envious:

Don't play as if it were zero sum!
® Be nice:

Start by cooperating, and reciprocate cooperation.
® Retaliate appropriately:

Always punish defection immediately, but use “measured” force
— don’t overdo it.

® Don'’t hold grudges:
Always reciprocate cooperation immediately.
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Sequential Games|

¢ In normal-form games we assume moves are simultaneous.
¢ Another area of game theory studies sequential games.

- Players take it in turns
e We don’t have time to look at this.

¢ Can always map the sequence of moves into a strategy, and
consider this to be a very big normal form game.
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Markov Games|

e Can think of Markov games as a hybrid of MDPs and games.
® In MDPs, choices about action determine the next state an agent
is in.
— Actions can vary with state
e In games, joint choices of actions determine payoffs.

¢ In Markov games, joint choices of action determine the next state
and agent is in.

— The game that defines outcomes can vary with state.

® Markov games are very much at the cutting edge of research.
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Bayesian Games|

e Everything we have done so far assumes agents know what
game they are playing.

e Assume that:

— Number of players
— Set of actions
- Payoffs

are common knowledge across all players.
® Now look at games of incomplete information or Bayesian games.

® Represent the lack of knowledge with a probability distribution
over a set of games

— Agents’ beliefs about which game they are playing.
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e All these games have the same number of players and strategy
space.
— Not a very restrictive assumption.
— Pad games if necessary with dominated strategies.

e Agents’ beliefs are posteriors, based on a common prior
conditioned on private signals.

— Start the same, experience differs.
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® Bayesian game over some familiar games

MP PD
0 2 21 3
2 10 2 10
200 0 1
0 |2 3 |1
p=03 p=0.1
Coord BoS
200 1/ 0
2 10 2 |0
0] 1 0 2
0 |1 0 |1

p=02 p=04
® Row player can only distinguish between (MP, PD) and
(Coord, Bos).
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® To decide what to do, the row player has to look at his possible
choices and use the probability distribution over the possible
outcomes to determine his expected payoff.

® Does the same to establish expected payoffs of the other agent.

® Then apply the usual kinds of analysis, suitably complicated by
the expected value calculations.

® Mixed strategies add another layer of expectation.
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Summary

¢ Today we looked at some game theory.

e In artificial intelligence, game theory is used to help analyze
interactions between agents.

® However, it is (has been) an area of growing interest and
importance in computer science as a whole.

e Lots of work on figuring out incentives to make systems work as
we want them to.

— Mechanism design.
e Lots more we could say about multiagent decision-making also:
- Voting

— Social choice theory
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