
LEARNING FROM EXAMPLES



Overview

• This last section of the course will be on learning.

– Machine learning

• Lots of different views of what learning is.

– Already saw some ideas in the guest lecture.

• Today we’ll look at another kind of learning

– Different technique(s), similar scope

• Next week will look at something rather different.
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• Key point is that the agent looks at how it performs and modifies
this.
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• Design of learning element is dictated by

– what type of performance element is used

– which functional component is to be learned

– how that functional component is represented

– what kind of feedback is available

• Changing components gives different kinds of learning.
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• Examples of representations/performance element

– Lookup table, genetic algorithm, genetic program, neural
network.

• Examples of adjustment methods/learning element

– Evolutionary learning, reinforcement learning, statistical
learning

•Methods for evaluating the candidate/feedback/critic

– Supervised learning, unsupervised learning
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What we will look at

• Supervised learning

– Correct answers for each instance.

– Modify the performance element to give correct answers

• In particular we will look at an approach to classification.

• Reinforcement learning

– Occasional rewards

– Need to associate actions with the rewardsthey bring.

•We will look at learning in the framework of MDPs.
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Inductive learning

• Simplest form: learn a function from examples (tabula rasa)

• f is the target function

• An example is a pair x, f (x):

O O X
X

X
, +1

• Problem: find a hypothesis h such that

h ≈ f

given a training set of examples

csc74010-fall2011-parsons-lect011 8



Inductive learning method

• Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

csc74010-fall2011-parsons-lect011 9



• Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

csc74010-fall2011-parsons-lect011 10



• Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

csc74010-fall2011-parsons-lect011 11



• Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

csc74010-fall2011-parsons-lect011 12



• Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)
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• Ockham’s razor: maximize a combination of consistency and
simplicity

William of Ockham
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Attribute-based representations

•When will I wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T
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• Examples described by attribute values (Boolean, discrete,
continuous, etc.)

• Classification of examples is positive (T) or negative (F)
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Decision trees

• Here is the “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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• Decision trees can express any function of the input attributes.

• For Boolean functions, truth table row→ path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

(XOR because is hard to capture for some classifiers)
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• Trivially, ∃ a consistent decision tree for any training set with one
path to leaf for each example.

– unless f nondeterministic in x

• This trivial tree probably won’t generalize to new examples

• Prefer to find more compact decision trees
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Hypothesis spaces

• How many distinct decision trees with n Boolean attributes?
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22
n
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22
n

6 Boolean attributes means 18,446,744,073,709,551,616 trees
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22
n

6 Boolean attributes means 18,446,744,073,709,551,616 trees

• How many purely conjunctive hypotheses (Hungry ∧ ¬Rain)?
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• How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22
n

6 Boolean attributes means 18,446,744,073,709,551,616 trees

• How many purely conjunctive hypotheses (Hungry ∧ ¬Rain)?

• Each attribute can be in (positive), in (negative), or out⇒ 3n

distinct conjunctive hypotheses

•More expressive hypothesis space

– increases chance that target function can be expressed

– increases number of hypotheses consistent with training set
⇒may get worse predictions
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Decision tree learning

• Aim: find a small tree consistent with the training examples.

• Idea: (recursively) choose “most significant” attribute as root of
(sub)tree.
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Decision tree learning

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the

classification
else if attributes is empty then return MODE(examples)
else

best←CHOOSE-ATTRIBUTE(attributes, examples)
tree← a new decision tree with root test best
for each value vi of best do

examplesi←{elements of exampleswith best = vi}
subtree←DTL(examplesi, attributes− best,MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree
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Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”.

None Some Full

Patrons?

French Italian Thai Burger

Type?

• Patrons? is a better choice—gives information about the
classification
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Information

• Information answers questions.

• The more clueless I am about the answer initially, the more
information is contained in the answer.

• Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉

• Information in an answer when prior is 〈P1, . . . ,Pn〉 is

H(〈P1, . . . ,Pn〉) =
n
∑

i=1

−Pi log2 Pi

(also called entropy of the prior)
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• Suppose we have p positive and n negative examples at the root:

H(〈p/(p + n), n/(p + n)〉)

bits needed to classify a new example.

• For 12 restaurant examples, p = n = 6 so we need 1 bit

• An attribute splits the examples E into subsets Ei, each of which
(we hope) needs less information to complete the classification
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• Let Ei have pi positive and ni negative examples.

H(〈pi/(pi + ni), ni/(pi + ni)〉)

bits needed to classify a new example

• Expected number of bits per example over all branches is

∑

i

pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

• For Patrons?, this is 0.459 bits.

• For Type this is (still) 1 bit

• Choose the attribute that minimizes the remaining information
needed
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Back to the example

• Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

• Substantially simpler than “true” tree—a more complex
hypothesis isn’t justified by small amount of data
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Performance measurement

• How do we know that h ≈ f ?

1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples

(use same distribution over example space as training set)

• Learning curve = % correct on test set as a function of training set
size
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• Learning curve for the restaurant example.
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• Learning curve depends on

– realizable (can express target function) vs. non-realizable
non-realizability can be due to missing attributes or restricted
hypothesis class

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

# of examples

1

nonrealizable

redundant

realizable
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Validation
•What we just described is holdout cross-validation.

– Disadvantage that it doesn’t use all the data.

– However we split the data we have as training and test sets
we can bias the results.

Not enough training data or bias because the test data is
small.

• Better is k-fold cross validation.

• Split data into k equal subsets. Learn on all k sets and test each
result on the remainder.

• Average test set score is a better estimate of the error rate than a
single score.

• Common values of k are 5 and 10, both giving error estimates
that are very likely to be accurate.
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• The extreme case is when k = n, the number of data points.

• Leave-one-out cross validation.
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Broadening decision tree approach
•Multivalued attributes

– When attributes have many values, information gain gives an
inappropriate estimation of the usefulness of the attribute.

Tend to split examples into small classes (ie. ExactTime)

– Convert to Boolean tests.

• Continuous/integer input attributes

– Infinite sets of possible values.

– Modify approach to identify split points which give highest
information gain.

Weight > 160

• Continuous output attributes

– When trying to predict continuous output values need to
create a regression tree, which ends with a linear function.
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Linear regression

• Learning a linear function of continuous inputs.

• Equation is of the form:

hw(x) = w1x + w0

where the w subscript indicates the vector [w0,w1].

• Idea is that we want to estimate the values of w0 and w1 from
data.

• Textbook gives the example of predicting house prices by floor
area.
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• Finding the hw that best fits the data is linear regression.

• To fit the line we find the [w0,w1] that minimize the loss/error.

• Traditionally we use the squared loss function:

Loss(hw) =
N
∑

j=1

L2(yj, hw(xj))

=
N
∑

j=1

(yj − hw(xj))
2

=
N
∑

j=1

(yj − (w0xj + w0))
2

where the data we have are pairs (xi, yi).

•We use the squared loss function because Gauss showed that for
normally distributed noise, this gives us the most liklely values
of the weights.
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• For linear models like this, it is easy enough to solve exactly for
w0 and w1.

– See textbook page 719 and any number of statistical packages.

•More interesting is when the model is not linear

Can use the same kind of ideas.

•What we are doing is trying to minimize the loss.

• Descending the gradient of the loss function.
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• For the house price case the loss function looks like:

w0

w1

Loss   
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•More generally, we use a form of hill-climbing.

• Start at any point in the (w0,w1) plane and move to a neighboring
point that is downhill.

• For each wi we update with:

wi ← wi − α
∂

∂wi
Loss(w)

where α is the learning rate and controls how fast we move
downhill.

• Simple calculus gets us:

w0 ← w0 + α(y− hw(x))
w1 ← w1 + α(y− hw(x))x

so if the function is too big, reduce w0, and adjust w1 depending
on the sign of x.
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• This says how to adjust for one example.

• For N examples, we have a choice.

•We can do batch gradient descent:

w0 ← w0 + α
∑

j
(yj − hw(xj))

w1 ← w1 + α
∑

j
(yj − hw(xj))x

which is guaranteed to converge, but can be slow since we need
to compute for all N examples at each step.

•We can also adjust separately for each of the N examples at the
cost of possibly not converging.

Quicker though.

Stochastic gradient descent.
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Multivariate linear regression

• Now we have more variables:

xj,1, . . . , xj,i, . . . xj,n

and are interested in a vector of weights wi.

• Simplify the handling of the weights by creating a dummy
attribute to pair with w0.

xj,o = 1

• Then do gradient descent, as before:

wi ← wi + α
∑

j
(yj − hw(xj))xj,i

where hw(xj) is just the weighted sum of the variable values:

hw(xj) =
i=n
∑

i=0

wixj,i
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• Not really much harder than the univariate case.

• BUT, have to worry about overfitting.

– Take the complexity of the model into account in evaluating it.
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Linear classifiers
• Can turn a linear function into a classifier:

– Function defines the boundary between two classes.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5  5  5.5  6  6.5  7

x 2

x1

• Classify based on where a point lies in relation to the line.
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• A linear boundary will separate two linearly separable classes.

• In the above example (seismic data due to earthquakes and
nuclear explosions)

−4.9 + 1.7x1 − x2 = 0

• Explosions are to the right of the line:

−4.9 + 1.7x1 − x2 > 0

• Thus we classify as follows:

hw(xj) = 1 if
i=n
∑

i=0

wixj,i > 0

and the classifier returns 0 otherwise.
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• Learn the decision boundary just as we learnt the linear function.

• Starting with arbitrary weights

1. Use the decision rule on a test case.

2. If it classifies correctly, do not update weights.

3. Otherwise update weights as above.

•We typically apply one example at a time, i.e. stochastic gradient
descent.
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• The curve is not smooth because the boundary is hard, so can
misclassify a lot of examples even a long way into learning.
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• Using the logistic function as a threshold smooths out the errors.

• Logistic function taxes one’s calculus, but the update rule is
pretty simple.
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Issues with linear separability

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1
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(c) x1 xor x2

?

0 1

1

0

x1

x2
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Neural networks

•We treat a neural network with a single neuron as a simple linear
classifier

– Perceptron

Output

Σ

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

• Train it exactly as above.

•Multilayer networks can be trained in a similar fashion, though
the derivation of the rules is somewhat nastier.
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Nearest neighbor models

• The models we looked at so far are parametric

– We construct them by setting a number of parameters.

– We effectively search for the right parameter set.

•Work nicely when there is relatively little training data.

•When there is a lot of data, can’t the data speak for itself?

– Rather than filtering it through the small set of parameters.

• Non-parametric models.
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• Simplest case — could just classify based on all the data we have.

– If we have the case already, then we know the answer.

– Table lookup

• Clearly this has holes.

• Better is to use nearest neighbor approaches.

– Find the N nearest points.

– Let the neighbors vote on the classification.

• Can also do regression on the set of neighbors.
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• To find “nearest” points we need a notion of distance.

• Common to use the Minkowski distance:

Lp(xj, xq) =






∑

i
(|xj,i − xq,i|

p






1/p

• This is a generalization of Euclidian distance (p = 2) to a
multidimensional space.

• Have to worry about the differences in scale between
dimensions, and correlations between dimensions

(don’t need to use them all).
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• Clearly we can find the N nearest nighbors with a single pass
through the data.

O(N)

• For large N this may be sub-optimal, so use trees or hash tables
to speed the search.

• Naturally you need to build the structures with locality in mind.
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Ensemble learning

• Every classifier has an error rate

– Will always misclassify some examples.

• Using an ensemble is an easy way to improve on this.

• Take N classifiers, use them all on the same example.

• Have them vote on the classification.

• For a binary classification and 5 classifiers, error rate drops from
10% (say) to less than 1%.

Assuming that the classifiers are independent

(i.e. different enough).
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• Boosting extends this idea.

• Builds on the idea of a weighted training set

– Higher weighted examples are counted as more important
during training.

(For example we put more copies into the training set)

• Boosting starts with all examples of equal weight, and learns a
classifier h1.

• Test it.

• Increase the weights of the misclassified examples and learn a
new classifier h2.

• Repeat.

• Final ensemble is the majority combination of all the classifers,
weighted by how well they perform on the training set.
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h

h1 = h2 = h3 = h4 =
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• The ADABOOST algorithm is a commonly used approach to
boosting.

• Given an initial classifier that is slightly better than random,
ADABOOST can generate an ensemble that will perfectly classify
the training set.

csc74010-fall2011-parsons-lect011 63



Summary

• Learning needed for unknown environments, lazy designers

• Learning agent = performance element + learning element

• Learning method depends on type of performance element,
available feedback, type of component to be improved, and its
representation

• For supervised learning, the aim is to find a simple hypothesis
approximately consistent with training examples

• Looked at a number of approaches to this kind of learning.
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