REINFORCEMENT LEARNING

Overview

e Last lecture looked at inductive learning

— How to learn rules given examples of decisions.
e Supervised learning = examples of correct behavior.
¢ Often we don’t have such examples.
e Just know when we succeed or fail.

e This is the domain of reinforcement learning (RL).

¢sc74010-fall2011-parsons-lect012

e First section of the lecture leans heavily on:
R. Sutton and A. Barto, Reinforcement learning, MIT Press.

Reinforcement
Learning

e A book I thoroughly recommend.

csc74010-fall2011-parsons-lect012

e We'll start by playing a pair of slot-machines:

b o

¢ Choice is between playing machine A and machine B.

¢sc74010-fall2011-parsons-lect012

® What do you choose?

type b type a

csc74010-fall2011-parsons-lect012

csc74010-fall2011-parsons-lect012

In-armed bandits

® How can we formally analyze this kind of situation?
— n-armed bandit

e Classify problems as:
— Evaluatve vs instructive feedback

Evaluative depends totally on the action you take.
Instructive (tells you the right action) does not.

— Associative vs. nonassociative learning
Assocative maps inputs to outputs and learns the best output
for each input
Nonassociative learns the one best output.

¢ n-armed bandit is nonassociative and has evaluative feedback.

¢sc74010-fall2011-parsons-lect012

¢ Choose repeatedly from one of n actions
— Each choice is called a play
e After each play &, you get a reward r , where:
E{rla) = Q'(a)
These are unknown action values.
e Distribution of r; depends only on &;.
® Objective is to maximize the reward in the long term
— Say over 1000 plays

e To solve the n-armed bandit problem, you must explore a variety
of actions and then exploit the best of them

¢sc74010-fall2011-parsons-lect012

[Exploration vs. exploitation|

® Suppose you form action value estimates:

Qt(a) which estimates Q*(a)

which try to say what each action is worth at each point in time.

© The greedy action at t is
a = argmax Q(a)
e Picking & is exploitation.
® Picking & # & is exploration.
® You can’t exploit all the time; you can’t explore all the time.
® You can never stop exploring; but you should always reduce

exploring.

csc74010-fall2011-parsons-lect012

® Who knew The North Face were experts in reinforcement
learning.

sc74010-fall2011-parsons-lect012

10

'Action-value methods|

® Methods that adapt action-value estimates and nothing else.

® For example suppose by the t-th play, action a had been chosen
ks times, producing rewards.

r17r27"'7rka
then: L4124t
Qia) = T“a
¢ This is just the sample average of the reward.
® We have:

Jim Q@) = Q'@

¢sc74010-fall2011-parsons-lect012

® We can compute the average reward incrementally.

e If Qx is the average of the first k rewards and fy; is the k+ 1th
reward, then

=
F
—

Qk+1 =

ri

I
-

K

M1 + i;)

Feet + KQi + Qk — Qi)
= (fer + (K+1)Qk — Qi)

k+1
=Q (N1 — Qk)

~ >~ ~
— —_ —
_

k+k+1

¢sc74010-fall2011-parsons-lect012

12

e Given an estimate of a reward for each action, we than have to
decide what to do.

® Greedy action selection:
a = a = argmax Q(a)
e c-greedy action selection:

a with probability 1 — €

&= | randomaction with probability €

® The simplest way to try to balance exploration and exploitation.

csc74010-fall2011-parsons-lect012 13

'10-armed bandit|

® n = 10 possible actions.

e Each Q*(a) is chosen randomly from a normal distribution:
n(0,1).

e Each r¢ is also normal n(Q*(a), 1).
¢ 1000 plays.
¢ Repeat the whole thing 2000 times and average the results.

csc74010-fall2011-parsons-lect012 14

Average
reward

80
% 60%
Optimal

action 0%+

€ =0 (greedy)
20%-|

0 250 500 750 1000
Plays
¢sc74010-fall2011-parsons-lect012 15

¢ -greedy makes a random choice among the non-optimal actions.

® Sometimes, it is good not to pick actions with really poor
outcomes.

e Softmax picks non-optimal actions based on their reward.

¢sc74010-fall2011-parsons-lect012 16

e Common to use the Gibbs distribution to pick the action.

® Chooses action a on the rth play with probability:
(@)

T

Qb

Tp—1 € 7

where 7 is the temperature.

® When temperature is high, all actions are approximately equally
likely.

e A temperature tends to 0, action selection tends to greedy
selection.

csc74010-fall2011-parsons-lect012 17

e Can vary 7 over time — high to start, low as the agent thinks it is
converging.

— Look at received payoff

sc74010-fall2011-parsons-lect012 18

\More complex scenarios

® The bandit model makes a key simplifying assumption
— The agent is always in the same state.
® So we only have to learn about one action.

¢ In general, agents can be in multiple states, and the best action
varies with state.

e In general, the agent faces an MDP.

— But the parameters of the MDP are unknown.

csc74010-fall2011-parsons-lect012 19

‘Passive learning‘

e Remember this world which we solved as an MDP:

3| — | — | — 3 | o812 | o8es | o0.918

2 1 f =] |2 | o7 . 0660 | [=1]
1 t - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4
¢sc74010-fall2011-parsons-lect012 20

e In passive learning the agent’s policy is fixed:
— In state sit always executes 7 (s).
e It has to learn the utility function U"(s).

e Comparing with the MDP case, the agent doesn’t know the
transition model:
P(sls,a)
and it doesn’t know the reward function
R(s)

e How can it learn them?

csc74010-fall2011-parsons-lect012

21

e It learns them by carrying out runs through the environment.

3| — | — | — | 1]

2| f b=

o I [

1 2 3 a4

e As ever, a run is a sequence of states and actions that continues
until the agent reaches the terminal state:

(1, 1) 004 = (1,2)—0.04 = (1,3)—0.04 = (1,2)—0.04 = (1,3)—0.04 —

e Note that we have reward as well.

¢sc74010-fall2011-parsons-lect012 22

® As the agent moves it can calculate a sample estimate of
P(sls,m(s))

— Each time it moves it creates a new sample for one state.

® Each reward is a contribution to the computation of utility.

csc74010-fall2011-parsons-lect012

23

® We could estimate the utility of a state by the rewards generated
along the run from that state.

— Direct utility estimation.

¢ Thus a sample reward for (1, 1) from the run above is the sum of
the rewards all the way to a goal state.

¢ The same run will produce two samples for (1,2) and (1, 3).

® You can do the calculation with or without discount.

¢sc74010-fall2011-parsons-lect012 24

'Adaptive dynamic programming|

® We can improve on the direct estimation by remembering the
Bellman equation for a fixed policy:

U™(s) = R(s) + 7 P(s]s m(8))U7(s)

® The utility of a state is the
reward for being in that state
plus the expected discounted
reward of being in the next
state.

e This is the formula from page
33 of the notes for Lecture 8.

¢sc74010-fall2011-parsons-lect012

25

e Since we are using the fixed policy version of the Bellman
equation we don’t have the max that makes the original so hard
to solve.

e Can just plug results into an LP solver
— As we discussed when talking about policy iteration.
e Can also use value iteration, using:

Uis1(8) ¢ R() + 7 P(s]s 7(9)Ui(s)

to update utilities.

e (We do this in policy iteration also — we just ran out of time to
talk about it).

¢sc74010-fall2011-parsons-lect012 26

® Results:
06
1
N 05
Ky >
0.8 : £
£ g 04
o061 £
B ; 503
2 ; bS]
S04 @
E g 2 02
021 01
0+ 0
0 20 4 6 8 100 0 20 4 60 80

Number of trials Number of trials

¢sc74010-fall2011-parsons-lect012

100

27

e Now, to get the utilities, the agent started with a fixed policy, so
it always knew what action to take.

e It used this to get utilities.
¢ Having gotten the utilities, it could use them to choose actions.

— Just picks the action with the best expected utility in a given
state.

e However, there is a problem with doing this.

e What is it?

¢sc74010-fall2011-parsons-lect012 28

¢ Textbook uses the example of successfully running a red light.

e Of course, this kind of over-reliance on not-full-explored
state/action spaces is what people do all the time.

csc74010-fall2011-parsons-lect012 29

¢ In addition, as the textbook points out, there are ways to get
around this.

e There is no way to be sure that the action your reinforcement
learner is picking doesn’t have possible bad outcomes.

® But there are ways to try to mitigate the issue.

¢sc74010-fall2011-parsons-lect012

30

Active reinforcement learning|

e The passive reinforcement learning agent is told what to do.

— Fixed policy
® An active reinforcement learning agent must decide what to do.
e We'll think about how to do this by adapting the passive learner.

® We can use exactly the same approach to estimating the
transition function.

— Sample average of the transitions we observe.

® But computing utilities is more complex.

¢sc74010-fall2011-parsons-lect012 31

e When we had a policy, we could use the simple version of the
Bellman equation:

UT(s) = R(s) + 73 P(s]s m(s))U"(s)

e When we have to choose actions, we need to solve the full
Bellman equation:

U(s) = R(s) + 7;23(}5()% P(s|s,a)u(s)

with its pesky max.
e What to do?

¢sc74010-fall2011-parsons-lect012

32

e Well, we know what to do, we use value iteration.
° At any stage, we can run:

Uin(8) R(s) +7 max > P(s]s a)Ui(s)

to stability to compute a new set of utilities.

csc74010-fall2011-parsons-lect012

33

¢ Deciding what to do, what action to take, is the next issue.

¢ Normally after running value iteration we would choose the
action with the highest expected utility.

— Greedy agent

e This turns out not to be so great an idea.

sc74010-fall2011-parsons-lect012

34

¢ Typically a greedy agent will not learn the optimal policy:

2 ” 3 — — —
2 RMS error
215 Policy loss --------
g
= 2| | b=
s
o]
1]
= 05
4
1 — — 1 ‘
0 50 100 150 200 250 300 350 400 450 500
1 2 3 4

Number of trials

¢sc74010-fall2011-parsons-lect012

35

e The issue is that once the agent finds a run that leads to a good
reward, it tends to stick to it.

— It stops exploring.

¢ To do better we can go back to the idea of e-greedy
exploration/exploitation.

— As we saw earlier these can be slow.

e A better approach is to change the estimated utility assigned to
states in value iteration.

¢sc74010-fall2011-parsons-lect012

36

® For example we can use:
Uiia(9) ¢ R(S) +7 g f [PISs a)Ui(). N(s)|

where N(s, @) counts how many times we have done ain s, and
f(u,n) provides an exploration-happy estimate of the utility of a
state.

® For example:
R™ if n < Neg
flun) = { U otherwise
R" is an optimistic reward, and Ne is the number of times we
want the agent to be forced to pick an action in every state.

csc74010-fall2011-parsons-lect012

37

Q-learning

¢ QQ-learning is a model-free approach to reinforcement learning.
— It doesn’t need to learn P(s|s, a).

e Revolves around the notion of Q(s, &), which denotes the value of
doing ainss.
U(s) = max Q(s, a)

e We can write:
Qls.a) = RS + 73 P(s]s amax Q.)

and we could do value-iteration style updates on this.
(Wouldn’t be model-free)

¢sc74010-fall2011-parsons-lect012 38

® However, we can write the update rule as:
Qs a) « Q(s,a) + a(R(s) +ymaxQ(s, &) — Q(s,a))

and recalculate everytime that a is executed in sand takes the
agent to S.

® o is a learning rate, just like the learning rate in linear regression.

— Controls how quickly we update the Q-value when we have
new information.

csc74010-fall2011-parsons-lect012 39

Summary

e This lecture looked at reinforcement learning.

— Learning when the agent receives periodic rewards and has to
use these to figure out what to do.

e We started with bandit problems.

¢ Then we looked at multi-state problems, initially looking at
learning the model when we had a fixed policy.

* We moved on to look at active learning, where the agent has to
decide what to do.

e Finally we considered model-free learning.

¢sc74010-fall2011-parsons-lect012 40

