
REINFORCEMENT LEARNING

Overview

• Last lecture looked at inductive learning

– How to learn rules given examples of decisions.

• Supervised learning = examples of correct behavior.

• Often we don’t have such examples.

• Just know when we succeed or fail.

• This is the domain of reinforcement learning (RL).

csc74010-fall2011-parsons-lect012 2

• First section of the lecture leans heavily on:

R. Sutton and A. Barto, Reinforcement learning, MIT Press.

• A book I thoroughly recommend.

csc74010-fall2011-parsons-lect012 3

Example

•We’ll start by playing a pair of slot-machines:

• Choice is between playing machine A and machine B.

csc74010-fall2011-parsons-lect012 4

•What do you choose?

csc74010-fall2011-parsons-lect012 5

csc74010-fall2011-parsons-lect012 6

n-armed bandits

• How can we formally analyze this kind of situation?

– n-armed bandit

• Classify problems as:

– Evaluatve vs instructive feedback

Evaluative depends totally on the action you take.

Instructive (tells you the right action) does not.

– Associative vs. nonassociative learning

Assocative maps inputs to outputs and learns the best output
for each input

Nonassociative learns the one best output.

• n-armed bandit is nonassociative and has evaluative feedback.

csc74010-fall2011-parsons-lect012 7

• Choose repeatedly from one of n actions

– Each choice is called a play

• After each play at , you get a reward rt , where:

E〈rt|at〉 = Q∗(at)

These are unknown action values.

• Distribution of rt depends only on at.

• Objective is to maximize the reward in the long term

– Say over 1000 plays

• To solve the n-armed bandit problem, you must explore a variety
of actions and then exploit the best of them

csc74010-fall2011-parsons-lect012 8

Exploration vs. exploitation

• Suppose you form action value estimates:

Qt(a) which estimates Q∗(a)

which try to say what each action is worth at each point in time.

• The greedy action at t is

a∗t = argmax
a

Qt(a)

• Picking a∗t is exploitation.

• Picking at 6= a∗t is exploration.

• You can’t exploit all the time; you can’t explore all the time.

• You can never stop exploring; but you should always reduce
exploring.

csc74010-fall2011-parsons-lect012 9

•Who knew The North Face were experts in reinforcement
learning.

csc74010-fall2011-parsons-lect012 10

Action-value methods

•Methods that adapt action-value estimates and nothing else.

• For example suppose by the t-th play, action a had been chosen
ka times, producing rewards.

r1, r2, . . . , rka

then:

Qt(a) =
r1 + r2 + . . . + rka

ka

• This is just the sample average of the reward.

•We have:
lim

ka→∞
Qt(a) = Q∗(a)

csc74010-fall2011-parsons-lect012 11

Aside

•We can compute the average reward incrementally.

• If Qk is the average of the first k rewards and rk+1 is the k + 1th
reward, then

Qk+1 =
1

k + 1

k+1
∑

i=1
ri

=
1

k + 1

rk+1 +
k
∑

i=1

=
1

k + 1
(rk+1 + kQk + Qk − Qk)

=
1

k + 1
(rk+1 + (k + 1)Qk − Qk)

= Qk +
1

k + 1
(rk+1 − Qk)

csc74010-fall2011-parsons-lect012 12

• Given an estimate of a reward for each action, we than have to
decide what to do.

• Greedy action selection:

at = a∗t = argmaxa Qt(a)

• ǫ-greedy action selection:

at =

a∗t with probability 1− ǫ

random action with probability ǫ

• The simplest way to try to balance exploration and exploitation.

csc74010-fall2011-parsons-lect012 13

10-armed bandit

• n = 10 possible actions.

• Each Q∗(a) is chosen randomly from a normal distribution:
η(0, 1).

• Each rt is also normal η(Q∗(at), 1).

• 1000 plays.

• Repeat the whole thing 2000 times and average the results.

csc74010-fall2011-parsons-lect012 14

 = 0 (greedy)

 = 0.01

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Plays

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

 = 0.1

Plays

 = 0.01

 = 0.1

csc74010-fall2011-parsons-lect012 15

• ǫ-greedy makes a random choice among the non-optimal actions.

• Sometimes, it is good not to pick actions with really poor
outcomes.

• Softmax picks non-optimal actions based on their reward.

csc74010-fall2011-parsons-lect012 16

• Common to use the Gibbs distribution to pick the action.

• Chooses action a on the rth play with probability:

e
Qt(a)
τ

∑n
b=1 e

Qt(b)
τ

where τ is the temperature.

•When temperature is high, all actions are approximately equally
likely.

• A temperature tends to 0, action selection tends to greedy
selection.

csc74010-fall2011-parsons-lect012 17

• Can vary τ over time — high to start, low as the agent thinks it is
converging.

– Look at received payoff

csc74010-fall2011-parsons-lect012 18

More complex scenarios

• The bandit model makes a key simplifying assumption

– The agent is always in the same state.

• So we only have to learn about one action.

• In general, agents can be in multiple states, and the best action
varies with state.

• In general, the agent faces an MDP.

– But the parameters of the MDP are unknown.

csc74010-fall2011-parsons-lect012 19

Passive learning

• Remember this world which we solved as an MDP:

–1

+1

1

2

3

1 2 3 4 1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

csc74010-fall2011-parsons-lect012 20

• In passive learning the agent’s policy is fixed:

– In state s it always executes π(s).

• It has to learn the utility function Uπ(s).

• Comparing with the MDP case, the agent doesn’t know the
transition model:

P(s′|s, a)

and it doesn’t know the reward function

R(s)

• How can it learn them?

csc74010-fall2011-parsons-lect012 21

• It learns them by carrying out runs through the environment.

–1

+1

1

2

3

1 2 3 4

• As ever, a run is a sequence of states and actions that continues
until the agent reaches the terminal state:

(1, 1)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→

• Note that we have reward as well.

csc74010-fall2011-parsons-lect012 22

• As the agent moves it can calculate a sample estimate of
P(s′|s, π(s))

– Each time it moves it creates a new sample for one state.

• Each reward is a contribution to the computation of utility.

csc74010-fall2011-parsons-lect012 23

•We could estimate the utility of a state by the rewards generated
along the run from that state.

– Direct utility estimation.

• Thus a sample reward for (1, 1) from the run above is the sum of
the rewards all the way to a goal state.

• The same run will produce two samples for (1, 2) and (1, 3).

• You can do the calculation with or without discount.

csc74010-fall2011-parsons-lect012 24

Adaptive dynamic programming

•We can improve on the direct estimation by remembering the
Bellman equation for a fixed policy:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

• The utility of a state is the
reward for being in that state
plus the expected discounted
reward of being in the next
state.

• This is the formula from page
33 of the notes for Lecture 8.

csc74010-fall2011-parsons-lect012 25

• Since we are using the fixed policy version of the Bellman
equation we don’t have the max that makes the original so hard
to solve.

• Can just plug results into an LP solver

– As we discussed when talking about policy iteration.

• Can also use value iteration, using:

Ui+1(s)← R(s) + γ
∑

s′
P(s′|s, π(s))Ui(s

′)

to update utilities.

• (We do this in policy iteration also — we just ran out of time to
talk about it).

csc74010-fall2011-parsons-lect012 26

• Results:

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)

(3,2)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
R

M
S

er
ro

r
in

 u
til

ity
Number of trials

csc74010-fall2011-parsons-lect012 27

• Now, to get the utilities, the agent started with a fixed policy, so
it always knew what action to take.

• It used this to get utilities.

• Having gotten the utilities, it could use them to choose actions.

– Just picks the action with the best expected utility in a given
state.

• However, there is a problem with doing this.

•What is it?

csc74010-fall2011-parsons-lect012 28

•Might not yet have experienced the bad effects of an action:

• Textbook uses the example of successfully running a red light.

• Of course, this kind of over-reliance on not-full-explored
state/action spaces is what people do all the time.

csc74010-fall2011-parsons-lect012 29

• In addition, as the textbook points out, there are ways to get
around this.

• There is no way to be sure that the action your reinforcement
learner is picking doesn’t have possible bad outcomes.

• But there are ways to try to mitigate the issue.

csc74010-fall2011-parsons-lect012 30

Active reinforcement learning

• The passive reinforcement learning agent is told what to do.

– Fixed policy

• An active reinforcement learning agent must decide what to do.

•We’ll think about how to do this by adapting the passive learner.

•We can use exactly the same approach to estimating the
transition function.

– Sample average of the transitions we observe.

• But computing utilities is more complex.

csc74010-fall2011-parsons-lect012 31

•When we had a policy, we could use the simple version of the
Bellman equation:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

•When we have to choose actions, we need to solve the full
Bellman equation:

U(s) = R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)U(s′)

with its pesky max.

•What to do?

csc74010-fall2011-parsons-lect012 32

•Well, we know what to do, we use value iteration.

• At any stage, we can run:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

to stability to compute a new set of utilities.

csc74010-fall2011-parsons-lect012 33

• Deciding what to do, what action to take, is the next issue.

• Normally after running value iteration we would choose the
action with the highest expected utility.

– Greedy agent

• This turns out not to be so great an idea.

csc74010-fall2011-parsons-lect012 34

• Typically a greedy agent will not learn the optimal policy:

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400 450 500

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

1 2 3

1

2

3

–1

+1

4

csc74010-fall2011-parsons-lect012 35

• The issue is that once the agent finds a run that leads to a good
reward, it tends to stick to it.

– It stops exploring.

• To do better we can go back to the idea of ǫ-greedy
exploration/exploitation.

– As we saw earlier these can be slow.

• A better approach is to change the estimated utility assigned to
states in value iteration.

csc74010-fall2011-parsons-lect012 36

• For example we can use:

Ui+1(s)← R(s) + γ max
a∈A(s)

f

∑

s′
P(s′|s, a)Ui(s

′),N(s, a)

where N(s, a) counts how many times we have done a in s, and
f (u, n) provides an exploration-happy estimate of the utility of a
state.

• For example:

f (u, n) =

R+ if n < Ne

u otherwise

R+ is an optimistic reward, and Ne is the number of times we
want the agent to be forced to pick an action in every state.

csc74010-fall2011-parsons-lect012 37

Q-learning

• Q-learning is a model-free approach to reinforcement learning.

– It doesn’t need to learn P(s′|s, a).

• Revolves around the notion of Q(s, a), which denotes the value of
doing a in s.

U(s) = maxa Q(s, a)

•We can write:

Q(s, a) = R(s) + γ
∑

s′
P(s′|s, a)maxa′Q(s′, a′)

and we could do value-iteration style updates on this.

(Wouldn’t be model-free)

csc74010-fall2011-parsons-lect012 38

• However, we can write the update rule as:

Q(s, a)← Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)− Q(s, a))

and recalculate everytime that a is executed in s and takes the
agent to s′.

• α is a learning rate, just like the learning rate in linear regression.

– Controls how quickly we update the Q-value when we have
new information.

csc74010-fall2011-parsons-lect012 39

Summary

• This lecture looked at reinforcement learning.

– Learning when the agent receives periodic rewards and has to
use these to figure out what to do.

•We started with bandit problems.

• Then we looked at multi-state problems, initially looking at
learning the model when we had a fixed policy.

•We moved on to look at active learning, where the agent has to
decide what to do.

• Finally we considered model-free learning.

csc74010-fall2011-parsons-lect012 40

