
REINFORCEMENT LEARNING



Overview

• Last lecture looked at inductive learning

– How to learn rules given examples of decisions.

• Supervised learning = examples of correct behavior.

• Often we don’t have such examples.

• Just know when we succeed or fail.

• This is the domain of reinforcement learning (RL).
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• First section of the lecture leans heavily on:

R. Sutton and A. Barto, Reinforcement learning, MIT Press.

• A book I thoroughly recommend.
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Example

•We’ll start by playing a pair of slot-machines:

• Choice is between playing machine A and machine B.
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•What do you choose?
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n-armed bandits

• How can we formally analyze this kind of situation?

– n-armed bandit

• Classify problems as:

– Evaluatve vs instructive feedback

Evaluative depends totally on the action you take.

Instructive (tells you the right action) does not.

– Associative vs. nonassociative learning

Assocative maps inputs to outputs and learns the best output
for each input

Nonassociative learns the one best output.

• n-armed bandit is nonassociative and has evaluative feedback.
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• Choose repeatedly from one of n actions

– Each choice is called a play

• After each play at , you get a reward rt , where:

E〈rt|at〉 = Q∗(at)

These are unknown action values.

• Distribution of rt depends only on at.

• Objective is to maximize the reward in the long term

– Say over 1000 plays

• To solve the n-armed bandit problem, you must explore a variety
of actions and then exploit the best of them
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Exploration vs. exploitation

• Suppose you form action value estimates:

Qt(a) which estimates Q∗(a)

which try to say what each action is worth at each point in time.

• The greedy action at t is

a∗t = argmax
a

Qt(a)

• Picking a∗t is exploitation.

• Picking at 6= a∗t is exploration.

• You can’t exploit all the time; you can’t explore all the time.

• You can never stop exploring; but you should always reduce
exploring.
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•Who knew The North Face were experts in reinforcement
learning.
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Action-value methods

•Methods that adapt action-value estimates and nothing else.

• For example suppose by the t-th play, action a had been chosen
ka times, producing rewards.

r1, r2, . . . , rka

then:

Qt(a) =
r1 + r2 + . . . + rka

ka

• This is just the sample average of the reward.

•We have:
lim

ka→∞
Qt(a) = Q∗(a)

csc74010-fall2011-parsons-lect012 11



Aside

•We can compute the average reward incrementally.

• If Qk is the average of the first k rewards and rk+1 is the k + 1th
reward, then

Qk+1 =
1

k + 1

k+1
∑

i=1
ri

=
1

k + 1





rk+1 +
k
∑

i=1







=
1

k + 1
(rk+1 + kQk + Qk − Qk)

=
1

k + 1
(rk+1 + (k + 1)Qk − Qk)

= Qk +
1

k + 1
(rk+1 − Qk)
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• Given an estimate of a reward for each action, we than have to
decide what to do.

• Greedy action selection:

at = a∗t = argmaxa Qt(a)

• ǫ-greedy action selection:

at =















a∗t with probability 1− ǫ

random action with probability ǫ

• The simplest way to try to balance exploration and exploitation.
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10-armed bandit

• n = 10 possible actions.

• Each Q∗(a) is chosen randomly from a normal distribution:
η(0, 1).

• Each rt is also normal η(Q∗(at), 1).

• 1000 plays.

• Repeat the whole thing 2000 times and average the results.
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• ǫ-greedy makes a random choice among the non-optimal actions.

• Sometimes, it is good not to pick actions with really poor
outcomes.

• Softmax picks non-optimal actions based on their reward.
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• Common to use the Gibbs distribution to pick the action.

• Chooses action a on the rth play with probability:

e
Qt(a)
τ

∑n
b=1 e

Qt(b)
τ

where τ is the temperature.

•When temperature is high, all actions are approximately equally
likely.

• A temperature tends to 0, action selection tends to greedy
selection.
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• Can vary τ over time — high to start, low as the agent thinks it is
converging.

– Look at received payoff
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More complex scenarios

• The bandit model makes a key simplifying assumption

– The agent is always in the same state.

• So we only have to learn about one action.

• In general, agents can be in multiple states, and the best action
varies with state.

• In general, the agent faces an MDP.

– But the parameters of the MDP are unknown.
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Passive learning

• Remember this world which we solved as an MDP:
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• In passive learning the agent’s policy is fixed:

– In state s it always executes π(s).

• It has to learn the utility function Uπ(s).

• Comparing with the MDP case, the agent doesn’t know the
transition model:

P(s′|s, a)

and it doesn’t know the reward function

R(s)

• How can it learn them?
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• It learns them by carrying out runs through the environment.

–1

+1

1

2

3

1 2 3 4

• As ever, a run is a sequence of states and actions that continues
until the agent reaches the terminal state:

(1, 1)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→

• Note that we have reward as well.
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• As the agent moves it can calculate a sample estimate of
P(s′|s, π(s))

– Each time it moves it creates a new sample for one state.

• Each reward is a contribution to the computation of utility.
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•We could estimate the utility of a state by the rewards generated
along the run from that state.

– Direct utility estimation.

• Thus a sample reward for (1, 1) from the run above is the sum of
the rewards all the way to a goal state.

• The same run will produce two samples for (1, 2) and (1, 3).

• You can do the calculation with or without discount.
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Adaptive dynamic programming

•We can improve on the direct estimation by remembering the
Bellman equation for a fixed policy:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

• The utility of a state is the
reward for being in that state
plus the expected discounted
reward of being in the next
state.

• This is the formula from page
33 of the notes for Lecture 8.
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• Since we are using the fixed policy version of the Bellman
equation we don’t have the max that makes the original so hard
to solve.

• Can just plug results into an LP solver

– As we discussed when talking about policy iteration.

• Can also use value iteration, using:

Ui+1(s)← R(s) + γ
∑

s′
P(s′|s, π(s))Ui(s

′)

to update utilities.

• (We do this in policy iteration also — we just ran out of time to
talk about it).
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• Results:
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• Now, to get the utilities, the agent started with a fixed policy, so
it always knew what action to take.

• It used this to get utilities.

• Having gotten the utilities, it could use them to choose actions.

– Just picks the action with the best expected utility in a given
state.

• However, there is a problem with doing this.

•What is it?
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•Might not yet have experienced the bad effects of an action:

• Textbook uses the example of successfully running a red light.

• Of course, this kind of over-reliance on not-full-explored
state/action spaces is what people do all the time.
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• In addition, as the textbook points out, there are ways to get
around this.

• There is no way to be sure that the action your reinforcement
learner is picking doesn’t have possible bad outcomes.

• But there are ways to try to mitigate the issue.
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Active reinforcement learning

• The passive reinforcement learning agent is told what to do.

– Fixed policy

• An active reinforcement learning agent must decide what to do.

•We’ll think about how to do this by adapting the passive learner.

•We can use exactly the same approach to estimating the
transition function.

– Sample average of the transitions we observe.

• But computing utilities is more complex.
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•When we had a policy, we could use the simple version of the
Bellman equation:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

•When we have to choose actions, we need to solve the full
Bellman equation:

U(s) = R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)U(s′)

with its pesky max.

•What to do?
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•Well, we know what to do, we use value iteration.

• At any stage, we can run:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

to stability to compute a new set of utilities.
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• Deciding what to do, what action to take, is the next issue.

• Normally after running value iteration we would choose the
action with the highest expected utility.

– Greedy agent

• This turns out not to be so great an idea.
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• Typically a greedy agent will not learn the optimal policy:
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• The issue is that once the agent finds a run that leads to a good
reward, it tends to stick to it.

– It stops exploring.

• To do better we can go back to the idea of ǫ-greedy
exploration/exploitation.

– As we saw earlier these can be slow.

• A better approach is to change the estimated utility assigned to
states in value iteration.
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• For example we can use:

Ui+1(s)← R(s) + γ max
a∈A(s)

f






∑

s′
P(s′|s, a)Ui(s

′),N(s, a)






where N(s, a) counts how many times we have done a in s, and
f (u, n) provides an exploration-happy estimate of the utility of a
state.

• For example:

f (u, n) =















R+ if n < Ne

u otherwise

R+ is an optimistic reward, and Ne is the number of times we
want the agent to be forced to pick an action in every state.
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Q-learning

• Q-learning is a model-free approach to reinforcement learning.

– It doesn’t need to learn P(s′|s, a).

• Revolves around the notion of Q(s, a), which denotes the value of
doing a in s.

U(s) = maxa Q(s, a)

•We can write:

Q(s, a) = R(s) + γ
∑

s′
P(s′|s, a)maxa′Q(s′, a′)

and we could do value-iteration style updates on this.

(Wouldn’t be model-free)
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• However, we can write the update rule as:

Q(s, a)← Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)− Q(s, a))

and recalculate everytime that a is executed in s and takes the
agent to s′.

• α is a learning rate, just like the learning rate in linear regression.

– Controls how quickly we update the Q-value when we have
new information.
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Summary

• This lecture looked at reinforcement learning.

– Learning when the agent receives periodic rewards and has to
use these to figure out what to do.

•We started with bandit problems.

• Then we looked at multi-state problems, initially looking at
learning the model when we had a fixed policy.

•We moved on to look at active learning, where the agent has to
decide what to do.

• Finally we considered model-free learning.

csc74010-fall2011-parsons-lect012 40


