
A Gentle Introduction to

Argumentation Semantics

Martin Caminada
University of Luxembourg

Summer 2008

Abstract

This document presents an overview of some of the standard semantics for formal
argumentation, including Dung’s notions of grounded, preferred, complete and stable
semantics, as well as newer notions like Caminada’s semi-stable semantics and Dung,
Mancarella and Toni’s ideal semantics. These semantics will be treated both in
their original extension-based form, as well as in the form of argument labellings.
Our treatment includes a sketch of few algorithms for skeptical as well as for the
credulous approach to argumentation.

1 Introduction and Overview

In this document, one of the basic building blocks of argumentation theory is treated:
the argument based semantics. The idea is, roughly, that given a set of arguments
where some arguments defeat others, one wants to determine which arguments can
ultimately be accepted. To determine whether or not an argument can be accepted,
it is not sufficient to merely look at its defeaters; what also matters is whether the
defeaters are defeated themselves. Consider the following example (taken from [15]):

Suppose Ralph normally goes fishing on Sundays, but on the Sunday which
is Mother’s day, he typically visits his parents. Furthermore, in the spring
of each leap year his parents take a vacation, so that they cannot be
visited.

Suppose it is Sunday, Mother’s day and a leap year. Then, one can formulate three
arguments related to whether Ralph goes fishing or not:

Argument A:
Ralph goes fishing because it is Sunday.

Argument B:
Ralph does not go fishing because it is Mother’s day, so he visits his parents.

Argument C:
Ralph cannot visit his parents, because it is a leap year, so they are on vacation.

1

We say that an argument B defeats argument A iff B is a reason against A.
If one abstracts from the internal structure of an argument, as well as from the

reasons why they defeat each other, what is left is called an argumentation framework.
An argumentation framework simply consists of a set of (abstract) arguments and a
binary defeat relation between these arguments.

Definition 1. An argumentation framework is a pair AF = (Ar , def) where Ar is
a set of arguments and def ⊆ Ar × Ar. We say that A defeats B iff (A,B) ∈ def .

An argumentation framework essentially specifies a directed graph in which ar-
guments are represented as nodes and the defeat relation is represented as arrows.
For instance, the argumentation framework of the “Ralph goes fishing” example is
shown in figure 1.

A B C

Figure 1: Arguments and reinstatement (AF1).

An interesting question is which of the arguments should ultimately be accepted.
Since A is defeated by B, it would at first seem that A should not be accepted,
since it has a counterargument. If one looks further, however, it turns out that
this counterargument (B) is itself defeated by an argument (C) that is not defeated
by anything. So, at least C should be accepted. But if C is accepted, then B is
ultimately rejected and does not form a reason against A anymore. Therefore, A

should also be accepted.
In figure 1, we say that argument C reinstates argument A.1 Because of the

issue of reinstatement, it is necessary to state some formal criterion that takes an
argumentation framework and determines which of the arguments can be accepted
and which cannot. Such a criterion is called an argument based semantics, or simply
semantics. The idea of a semantics is, given an argumentation framework, to specify
zero or more sets of acceptable arguments. These sets are also called argument based
extensions, or simply extensions.

Various argument based semantics have been stated during recent years. In this
document we provide an overview of the most common ones, as well as various others
that are worthwile mentioning.

2 Argument Labellings

The issue of argument based semantics is perhaps best understood using the ap-
proach of labelling each argument either in, out or undec according to the following
conditions:

1Although reinstatement is directly or indirectly implemented by many systems for defeasible reasoning,
it has been mentioned that in some cases reinstatement can also cause problems; see for instance [13].

2

• an argument is labelled in iff all its defeaters are labelled out, and

• an argument is labelled out iff all it has at least one defeater that is labelled
in.

Informally, labelling an argument in means that one has accepted the argument,
labelling an argument out means that one has rejected the argument and labelling
the argument undec means that one abstains from taking a position on whether the
argument is accepted or rejected. Formally, the labelling approach is described in
Definition 2.

Definition 2. Let (Ar , def) be an argumentation framework and Lab : Ar −→
{in, out, undec} be a total function. We say that Lab is a complete labelling iff
it satisfies the following:

• ∀A ∈ Ar : (Lab(A) = out ≡ ∃B ∈ Ar : (B def A ∧ Lab(B) = in)) and

• ∀A ∈ Ar : (Lab(A) = in ≡ ∀B ∈ Ar : (B def A ⊃ Lab(B) = out)).

We will sometimes write in(Lab) for the set of arguments labelled in by Lab,
out(Lab) for the set of arguments labelled out by Lab and undec(Lab) for the set of
arguments labelled undec by Lab.

It is interesting to examine the argumentation framework of Figure 1 using the
labelling approach. For argument C it holds that all its defeaters are labelled out

(this is trivial, since C does not have any defeaters). Therefore, C must be labelled
in. Argument B now has a defeater that is labelled in. Therefore, B must be labelled
out. For argument A it holds that all its defeaters are labelled out, so that A itself
must be labelled in. The overall result is hence a labelling Lab with Lab(A) = in,
Lab(B) = out and Lab(C) = out.

Another example that is worthwile to examine using the labelling approach is the
following:

Argument A: Bert says that Ernie is unreliable, therefore everything that Ernie
says cannot be relied on.

Argument B: Ernie says that Elmo is unreliable, therefore everything that Elmo
says cannot be relied on.

Argument C: Elmo says that Bert is unreliable, therefore everthing that Bert says
cannot be relied on.

This example yields an argumentation framework (Ar , def) where Ar = {A,B,C}
and def = {(A,B), (B,C), (C,A)}. The argumentation framework is depicted in
figure 2.

For figure 2, there exists only a single labelling Lab, with Lab(A) = undec,
Lab(B) = undec and Lab(C) = undec. That is, it is not possible to label A, B

or C with in or out. This can be seen as follows. Suppose that there is a labelling
where A is labelled in. Then all defeaters of A should be labelled out, which means
that C should be labelled out. The fact that C is labelled out means that C should
have a defeater that is labelled in, which implies that B is labelled in. The fact that
B is labelled in means that all defeaters of B must be labelled out, which implies
that A is labelled out. Contradiction.

3

A

B

C

Figure 2: Bert, Ernie and Elmo

Similarly, assume that there is a labelling where A is labelled out. Then A must
have a defeater that is labelled in, which implies that C is labelled in. The fact that
C is labelled in means that every defeater of C must be labelled out, which implies
that B is labelled out. The fact that B is labelled out means that B has a defeater
that is labelled in, which implies that A is labelled in. Contradiction.

A labelling of an argumentation framework may not be unique. That is, there
exist argumentation frameworks for which there is more than one labelling. An
example of this is the well-known Nixon diamond:

Argument A: Nixon is a pacifist because be is a quaker.

Argument B: Nixon is not a pacifict because he is republican.

This example yields an argumentation framework (Ar , def) where Ar = {A,B}
and def = {(A,B), (B,A)}. The argumentation framework is graphically depicted
in figure 3.

A B

Figure 3: The Nixon diamond

For figure 3, three labellings exist:

1. Lab1 with Lab1(A) = in and Lab1(B) = out,

2. Lab2 with Lab2(A) = out and Lab2(B) = in, and

3. Lab3 with Lab3(A) = undec and Lab3(B) = undec.

In essence, one can interpret each labelling as a reasonable position someone can
take regarding argument reinstatement. In the case of figure 3, there exist three such
positions, one in which A is believed and B is disbelieved, one in which B is believed
and A is disbelieved, and one in which a position on both A and B is abstained from.
In the case of figure 2, one can only abstain from any position on A, B and C. In the
case of figure 1, however, one cannot abstain from a position on C, since it has no
defeaters and therefore must be in. For similar reasons, one also cannot reasonably
abstain from taking a position on the arguments B and A. Thus, it can be observed
that while the introduction of undec allows for argumentation frameworks have at

4

least one labelling — something they would not have without undec — the label
undec does not serve as a “wildcard” that one can always apply to any arbitrary
argument.

Exercise 1. Give all complete labellings of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

BA DC

Figure 4: Argumentation framework I

CB DA E

Figure 5: Argumentation framework II

A

B

C D

Figure 6: Argumentation framework III

3 Extension Based Semantics

The approach of complete labellings of argumentation framewoeks, although intu-
itive, has received only limited following in most argumentation research. The issue
of whether an argument can be regarded as overall justified is usually handled my
means of the concept of an extension of arguments. In this section, we treat five
definitions according to which extensions of arguments can be determined. We show
how these definitions are related not only to each other, but also to the previously
discussed notion of complete labelling.

5

E

A B
C

D

Figure 7: Argumentation framework IV

3.1 Complete Semantics

The first extension-based argument semantics to be discussed is complete semantics
[9]. We first discuss some preliminary notions.

Definition 3. Let (Ar , def) be an argumentation framework and let A ∈ Ar and
Args ⊆ Ar.
We define A+ as {B | Adef B} and Args+ as {B | Adef B for some A ∈ Args}.
We define A− as {B | Bdef A} and Args− as {B | Bdef A for some A ∈ Args}.

A set of arguments is called conflict-free iff it does not contain any arguments A

and B such that A defeats B.

Definition 4. Let (Ar , def) be an argumentation framework and let Args ⊆ Ar.
Args is said to be conflict-free iff Args ∩ Args+ = ∅.

A set of arguments is said to defend an argument C iff each defeater of C is
defeated by an argument in Args . This situation is depicted in Figure 8.

Definition 5. Let (Ar , def) be an argumentation framework, Args ⊆ Ar and B ∈
Ar. Args is said to defend B iff B− ⊆ Args+.

C

B2

B3

B1A1

A3

A2

Args

Figure 8: Args defends argument C

Exercise 2. In figure 4:

6

(a) does {A} defend C?

(b) does {C} defend C?

(c) does {B} defend C?

The function F yields the arguments defended by a given set of arguments. That
is, is specifies the set of arguments that are acceptable in the sense of [9].

Definition 6. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. We
introduce a function F : 2Ar −→ 2Ar such that F (Args) = {A | A is defended by
Args}.

Exercise 3. In figure 7:

(a) give F ({A})

(b) give F ({B})

(c) give F ({B,D})

Definition 7. Let (Ar , def) be an argumentation framework and Args be a conflict-
free set of arguments. Args is said to be a a complete extension iff Args = F (Args).

In figure 1, there exists just one complete extension: {A,C}. It is a complete
extension since it is conflict-free and defends exactly itself. Notice that {A,B,C} is
also a fixpoint of F , but is not a complete extension since it is not conflict-free. In
figure 3, there exists three complete extensions: {A}, {B} and ∅. In figure 2, there
exists just one complete extension: ∅.

Exercise 4. Give all complete extensions of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

There exists a strong connection between complete extensions and complete la-
bellings, as has been mentioned in [6]. For every complete labelling, the set of in
labelled arguments forms a complete extension. This is because the set of in labelled
arguments is conflict-free and defends exactly itself. Furthermore, each complete ex-
tension Args is associated with a unique complete labelling in which all arguments in
Args are labelled in, all arguments in Args+ are labelled out and all other arguments
are labelled undec. Precise details can be found in [6]. For now, it suffices to say
that complete extensions and complete labellings are basically the same things.

3.2 Grounded Semantics

Complete semantics has as a fundamental property that more than one complete ex-
tension may exist. In some situations it can have advantages to apply an argument-
based semantics that is guaranteed to yield exactly one extension. Grounded se-
mantics, a concept that has its root in Pollock’s oscar [17] and the well-founded

7

semantics of logic programming [21], is such a semantics. The idea is, roughly, to
specifically select the complete labelling Lab in which in(Lab) (the set of in-labelled
arguments) is minimal (with respect to set-inclusion)2.

Since F is a monotonic function (that is, if Args ⊆ Args ′ then F (Args) ⊆
F (Args ′)), it is guarenteed to have a smallest fixpoint by the Knaster-Tarski the-
orem. This implies that the grounded extension is well-defined.

Definition 8. Let (Ar , def) be an argumentation framework. The grounded exten-
sion is the minimal fixpoint of F .

The grounded extension is also conflict-free, for reasons explained in [7]. This
means that the grounded extension is actually the smallest complete extension.

From the perspective of complete labellings, the grounded extension coincides
with the complete labelling in which in is minimized (with respect to set-inclusion).
This also means that in such a labelling out is also minimized (this is because by
getting less in labelled arguments, one can only get less or equal out labelled argu-
ments). Since both in and out are minimized, this means that undec is maximized.
Thus, grounded semantics basically boils down to chosing the complete labelling with
minimal in, minimal out and maximal undec.

In figure 1, the grounded extension is {A,C}. In figure 3 and figure 2, the
grounded extension is ∅.

Exercise 5. Give the grounded extension of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

3.3 Preferred Semantics

Grounded semantics has as advantage that there always exists exactly one grounded
extension. A potential disadvantage, however, is that grounded semantics is very
sceptical approach. Some people have argued that what is needed is a more credulous
approach. Preferred semantics is an example of such. The idea of preferred semantics
is, roughly, that instead of maximizing undec, one maximizes in (and therefore also
out).

A central notion in preferred semantics is that of admissibility. A set of arguments
is admissible iff it is conflict-free and defends at least itself.

Definition 9. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. Args
is said to be admissible iff Args is conflict-free and Args ⊆ F (Args).

2In this document, whenever we mention sets that are minimal or maximal, we refer to minimality or
maximality with respect to the partial ordering defined by set-inclusion.

8

For instance, in figure 1, {C} is an admissible set, just like {A,C}. The set {B},
however is not admissible because it does not defend itself against C. The set {A}
is also not admissible, as it does not defend itself against B. In figure 3, {A} and
{B} are admissible sets. The set {A,B}, however, is not admissible, since it is not
conflict-free. In figure 2, the sets {A}, {B} and {C} are not admissible as they do
not defend themselves against C, A and B, respectively.

As the empty set is conflict-free and trivially defends itself against each of its
defeaters (this is because the empty set does not have any defeaters), the empty set
is admissible in every argumentation framework.

Exercise 6. Are the following sets of argumements admissible:

(a) {A} in figure 4

(b) {C} in figure 5

(c) {A} in figure 6

(d) {A,C,D} in figure 7

The concept of a preferred extension can then be defined as follows.

Definition 10. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. Args
is said to be a preferred extension iff Args is a maximal (with respect to set-inclusion)
admissible set.

In figure 1, there exists just one preferred extension: {A,C}. In figure 3, there
exist two preferred extensions: {A} and {B}. In figure 2, there only exists one
preferred extension: the empty set.

Exercise 7. Give the preferred extensions of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

For any argumentation framework, there exists at least one preferred extension.
To prove this, we have to deal with the situation that, for an argumentation frame-
work with an infinite set of arguments, there exist infinitly many admissible sets,
and there exists at least one sequence of admissible sets Args1,Args2,Args3, . . . such
that Argsi+1) Args i (i ≥ 1). This would leave open the possibility that a preferred
extension does not exist because there is no maximal admissible set, because for
any admissible set one could always find a greater one, without there being a global
maximum.

To deal with this situation, it can be mentioned that the union of an ever in-
creasing sequence of admissible sets Args1,Args2,Args3, . . . is again an admissible
set (say: Args ′). This is because this union is conflict-free (otherwise at least one
Args i (i ≥ 1) would not be conflict-free) and defends all its elements (otherwise at

9

least one Args i (i ≥ 1) would not defend all its arguments). Using this observa-
tion, one can then apply Zorn’s Lemma, which can be stated as follows: “Every
non-empty partially ordered set (S) of which every totally ordered subset (T) has an
upper bound contains at least one maximal element.” Let S be the set of all admis-
sible sets, where the admissible sets are ordered according to the subset relation. As
every totally ordered subset T (that is: every sequence of increasing admissible sets)
has an upper bound (that is: its union), one can apply Zorn’s Lemma and obtain
the existence of at least one maximal element (the preferred extension). Although
not explicitly mentioned in [9], this is in fact the reason why there always exists a
preferred extension.

It has been proved that every preferred extension is also a complete extension
[9][Theorem 25]. From the perspective of complete labellings, preferred extensions
coincide with those tabellings in which in is maximal and out is maximal.

3.4 Stable Semantics

Stable semantics is one of the oldest argument-based semantics available. The origins
of stable semantics go back to default logic [20] and the stable model semantics of
logic programming [12]. In terms of complete labellings, the idea of stable semantics
is only to take into account those labellings not containing undec.

A set of arguments is a stable extension iff it defeats each argument which does
not belong to it. We use Args+ as a shorthand for {A | A is defeated by an argument
in Args}.

Definition 11. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. Args
is a stable extension iff Args+ = Ar\Args.

From the above definition, it follows that a stable extension is conflict-free. This
is because otherwise it would hold that Args ∩ Args+ 6= ∅ and therefore Args+ 6=
Ar\Args . Furthermore, a stable extension is also an admissible set, as it defeats all
its defeaters. Finally, a stable extension is also a maximal admissible set, as any
strict superset of a stable extension is not conflict-free. Therefore, a stable extension
is also a preferred extension.

In terms of complete labellings, stable extensions correspond with labellings with-
out undec. As a stable extension defeats every argument not in it, only two lables
apply: in (for the stable extension itself) and out (for all the rest).

In figure 1 only one stable extension exists: {A,C}. In figure 3 two stable exten-
sions exist: {A} and {B}. In figure 2 there exist no stable extensions at all.

Exercise 8. Give the stable extensions (if any exist) of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

10

3.5 Semi-Stable Semantics

The last admissibility based semantics to be discussed is that of semi-stable semantics.
Where stable semantics requires that undec is empty, semi-stable semantics merely
requires that undec is minimal.

Definition 12. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. Args
is said to be a semi-stable extension iff Args is a complete extension of which Args ∪
Args+ is maximal.

When Args∪Args+ is maximized, it follows that the associated complete labelling
must have undec minimized.

In figure 1 only one semi-stable extension exists: {A,C}. In figure 3 two semi-
stable extensions exist: {A} and {B}. In figure 2 only one semi-stable extension
exists: ∅.

Exercise 9. Give the semi-stable extensions of:

(a) figure 4

(b) figure 5

(c) figure 6

(d) figure 7

Every stable extension is a semi-stable extension. Also, if there exists at least
one stable extension then the semi-stable extensions are the same as the stable ex-
tensions. Finally, every semi-stable extension is also a preferred extension, although
the converse is generally not the case.

The existence of semi-stable extensions can only be assured for argumentation
frameworks where the set of arguments is finite. That is, when the set of arguments
in the argumentation framework is infinite, it might be that there exists no semi-
stable extension. See [3] for an example of this.

3.6 Semantics Compared

There exists a partial ordering between the various admissibility-based semantics.
Every stable extension is a semi-stable extension, every semi-stable extension is a
preferred extension, every preferred extension is a complete extension, and every
grounded extension is a complete extension. This is depicted in Figure 9.

In essence, a complete labelling can be seen as a subjective but reasonable point
of view that an agent can take with respect to which arguments are in, out or
undec. Each such position is internally coherent in the sense that, if questioned,
the agent can use its own position to defend itself. It is possible for the position to
be disagreed with, but at least one cannot point out an internal inconsistency. The
set of all complete labellings thus stands for all possible and reasonable positions an
agent can take.

11

stable extension

semi−stable extension

preferred extension grounded extension
is a

complete extension

is a

is a

is a

Figure 9: An overview of the different semantics.

Semantics Description Complete Labellings Extension Based Description

complete all labellings conflict-free fixpoint of F

grounded labellings with minimal in minimal fixpoint of F

labellings with minimal out minimal complete extension
labellings with maximal undec

preferred labellings with maximal in maximal admissible set
labellings with maximal out maximal complete extension

semi-stable labellings with minimal undec admissible set with max. Args ∪ Args+

complete ext. with max Args ∪Args+

stable labellings with empty undec Args defeating exactly Ar\Args

conflict-free Args defeating Ar\Args

admissible set Args defeating Ar\Args

complete ext. Args defeating Ar\Args

preferred ext. Args defeating Ar\Args

semi-stable ext. Args defeating Ar\Args

Table 1: An overview of admissibility based semantics

4 Proof Procedures

If one accepts the view that labellings correspond to the reasonable positions one can
take in the presence of an argumentation framework, and one is interested whether
a particular argument (say A) can be accepted, then two questions become relevant:

1. Is there at least one reasonable position where A is accepted? That is, is there
at least one labelling Lab with Lab(A) = in ?

2. Is A accepted in every reasonable position? That is, does it hold that for every
labelling Lab, Lab(A) = in ?

The first question refers to the issue of credulous acceptance; the second question
refers to the issue of sceptical acceptance.

12

4.1 Credulous Acceptance

When it comes to the question whether an argument A is labelled in in at least
one complete labelling, a naive approach would be to generate all possible complete
labellings and examine whether A is labelled in in at least one of them. For conve-
nience, one could restrict oneself to complete labellings in which in is maximal (the
preferred labellings), and apply an algorithm such as the one described in [8].

In this section, we will, however, treat a more sophisticated way of determining
whether A is labelled in in every complete labelling, a way that requires us to generate
not even one single complete labelling. To do so, we now introduce the notion of a
partial labelling.

Definition 13. A partial labelling is a partial function Lab : Ar −→ {in, out} such
that:

• if Lab(A) = in then for each defeater B of A it holds that Lab(B) = out, and

• if Lab(A) = out then there exists a defeater B of A such that Lab(B) = in.

A partial labelling differs in three respects from a complete labelling. First of all,
not every argument needs to have a label, since Lab is a partial function. Secondly,
a partial labelling does not contain undec. Thirdly, the conditions “iff” in Definition
2 are changed to the much weaker “if” in Definition 13.

The interesting property of partial labellings is that they correspond to admissible
sets.

Theorem 1. Let (Ar , def) be an argumentation framework.

1. If Lab is a partial labelling, then in(Lab) is an admissible set.

2. If Args is an admisssible set, then there exists a partial labelling with in(Lab) =
Args.

Proof.

1. Let Lab be a partial labelling. In order for in(Lab) to be an admisssible set,
two conditions need to hold:

(a) in(Lab) is conflict-free. Suppose this is not the case. Then there exist
A,B ∈ in(Lab) such that B defeats A. However, the fact that B defeats
A means, by Definition 13, that Lab(B) = out. Contradiction.

(b) Every argument B defeating some A ∈ in(Lab) is defeated by an argument
C ∈ in(Lab). Let B be an arbitrary argument defeating some A ∈ in(Lab).
Then, according to Definition 13, it holds that Lab(B) = out. It then
follows from Definition 13 that B is defeated by an argument C with
Lab(C) = in. That is, C ∈ in(Lab).

2. Let Args be an admissible set. Now consider the partial function Lab =
{(A, in) | A ∈ Args} ∪ {(A, out) | A ∈ Args+}. As Args is conflict-free it
holds that Args ∩ Args+ = ∅, thus Lab is well-defined (it is not possible for
an argument to be labelled both in and out). It holds that Lab is a partial
labelling. This is because Lab satisfies the following:

13

(a) If Lab(A) = in then for each defeater B of A it holds that Lab(B) = out.
Let A ∈ Ar such that Lab(A) = in. Let B be an arbitrary argument that
defeats A. From the fact that Args is an admissible set, it follows that
Args defeats B. That is, B ∈ Args+. This means that Lab(B) = out.

(b) If Lab(A) = out then there exists a defeater B of A such that Lab(B) = in.
Let A ∈ Ar such that Lab(A) = out. Then A ∈ Args+. This means that
there exists a B ∈ Args such that B defeats A. As B ∈ Args , it follows
that Lab(B) = in.

The interesting thing about a partial labelling is that it can always be extended
to a complete labelling.

Theorem 2. Let Lab be a partial labelling of argumentation framework (Ar , def).
There exists a complete labelling Lab ′ such that Lab ⊆ Lab ′.

Proof. We first define two new functions: extendout and extendin such that:
extendout(Lab) = Lab ∪ {(A, out) | (B, in) ∈ Lab and B defeats A}
extendin(Lab) = Lab ∪ {(A, in) | for every B that defeats A: (B, out) ∈ Lab}
Let Lab ′′ be the smallest superset of Lab that is closed under extendout and extendin.
As an aside, Lab ′′ could for a finite argumentation framework be computed by iter-
atively applying extendout and extendin on Lab until the result does not change
anymore. As extendout and extendin are closed under partial labellings, Lab′′ is
again a partial labelling. Let Lab ′ = Lab ′′ ∪ {(A, undec) | A ∈ Ar and (A, in) 6∈ Lab ′′

and (A, out) 6∈ Lab ′′}. It holds that Lab′ is a complete labelling. For this, we have
to prove that:

1. Lab(A) = in ⇔ for each defeater B of A it holds that Lab(B) = out.
The ⇒ part follows directly from the definition of a partial labelling. The ⇐
part follows from the fact that Lab′ is closed under extendin.

2. Lab(A) = out iff A has a defeater B such that Lab(B) = in.
The ⇒ part follows directly from the definition of a partial labelling. The ⇐
part follows from the fact that Lab′ is closed under extendout.

Theorem 3. Let Lab ′ be a complete labelling of (Ar , def). There exists a partial
labelling Lab such that Lab ⊆ Lab′.

Proof. Partial labelling Lab can be constructed based on Lab′ basically by omitting
the undec labelled part of Lab ′.

From Theorem 2 and 3 it follows that an argument A is labelled in in at least one
complete labelling iff A is labelled in in at least one partial labelling. An interesting
question, therefore, is how to determine whether an argument is labelled in in a
partial labelling. A possible way of doing so is by means of formalized discussion,
between a proponent (P) and an opponent (O) of argument A. Consider the following
example:

14

P: I have a partial labelling where A is in.
O: Then, in your labelling A’s defeater B must be out. Why?
P: B is out because B’s defeater C is in.
O: Then, in your labelling C’s defeater D must be out. Why?
...

In general, the debate whether an argument is in in a (partial/complete) labelling
can be described as follows [22]:

• Proponent (P) and opponent (O) take turns; P begins.

• Each move of O is a defeater of some (not necessarily the directly preceeding)
argument of P.

• Each responding move of P is a defeater of the directly preceeding argument of
O.

• O is not allowed to repeat its own moves, but may repeat the proponent’s moves.

• P is allowed to repeat it’s own moves, but may not repeat the opponent’s moves.

This can be formalized as follows.

Definition 14. A discussion under preferred semantics (p-discussion) is a list [A1, A2, . . . , An]
— where Ai is called a proponent-move iff i is odd, and an opponent-move iff i is
even — such that:

1. for every proponent-move Ai (i ≥ 3) there exists an opponent-move Aj , with
j = i − 1, such that Ai defeats Aj ;

2. for every opponent-move Ai (i ≥ 2) there exists a proponent-move Aj , with
j < i, such that Ai defeats Aj ; and

3. there exist no two opponent-moves Ai and Aj such that Ai = Aj and i 6= j.

4. there exists no proponent-move Ai and opponent-move Aj with i > j and Ai =
Aj .

A p-discussion [A1, A2, . . . , An] is finished iff (1) An is an opponent move that is
equivalent to an opponent move Ai with i < n, or (2) there exists no An+1 such
that [A1, A2, . . . , An, An+1] is a discussion. A finished p-discussion is won by the
proponent iff the last move is a proponent-move; it is won by the opponent iff the last
move is an opponent-move.

Theorem 4. Let (Ar , def) be an argumentation framework and A ∈ Ar. A is labelled
in in at least one partial labelling iff there exists at least one p-discussion that is won
by the proponent.

Proof.
“=⇒”: Let Lab be a partial labelling with Lab(A) = in. Let [A1, A2, . . . , An] (with
A1 = A and n ≥ 1) be a discussion where the last move is a proponent-move and every
proponent-move is labelled in and every opponent-move is labelled out by Lab; such
a discussion always exists since a trivial one is [A]. Then for every opponent-move
An+1 there exists a proponent-move An+2 such that [A1, A2, . . . , An, An+1, An+2] is a

15

discussion in which every opponent-move is labelled out and every proponent-move
is labelled in by Lab. This is because An+1 is labelled out (follows from the definition
of a partial labelling and the fact that all proponent-moves in [A1, A2, . . . , An] are
labelled in) and there exists an argument An+2 that is labelled in and defeats An+1

(also follows from the definition of a partial labelling, and the fact that An+1 is
labelled out). From the thus derived observation that every discussion where the
last move is a proponent-move can be extended to a discussion where the last move
is again a proponent-move (under the condition that the discussion can be extended
at all), and the fact that it is not possible to infinitly extend a discussion (due to
the finiteness of the argumentation framework, and the fact that the opponent is not
allowed to repeat its moves), it follows that the proponent has a winning strategy.
“⇐=”: Suppose the proponent has a winning strategy for A. Then there exists a
finished discussion won by the proponent. Now define the function Lab such that
Lab(B) = in for every proponent-argument B in this discussion, and Lab(C) = out

for every opponent-argument C in this discussion. It holds that:

• each argument labelled out has a defeater that is labelled in (this follows from
the fact that the last move is a proponent-move).

• for each argument labelled in it holds that all its defeaters are labelled out

(this follows from the fact that the discussion is finished with a proponent-move,
which means that all possible counterarguments against the proponent-moves
have already been given, and they are all labelled out).

Thus, it follows that Lab is a partial labelling.

4.2 Sceptical Acceptance

The next thing to be studied is how to determine which arguments are labelled in

(or out) in every complete labelling. Recall that the grounded extension is equal
to the intersection of all complete extensions. As complete labellings and complete
extensions are essentially equivalent, determining whether an argument is labelled
in in every complete labelling can be done by examining whether the argument is
labelled in in the grounded labelling.

In most cases, the grounded labelling can be calculated in a relatively straight-
forward way. The basic idea can be illustrated using the argumentation framework
of Figure 6 (page 5). Here, argument B has no defeaters, so it must be labelled in

in every complete labelling. This then means that argument C must be labelled out

in every complete labelling, causing D to be labelled in in every complete labelling.
The idea is thus to start with the arguments that have no defeaters and label them
in, then to examine which arguments as a result of that must be labelled out, then
to examine which arguments as a result of that must be labelled in, etc. . .

Formally, the procedure can be described as follows. Let extendin be a function
such that for a partial labelling Lab it holds that extendin(Lab) = Lab ∪ {(A, in) |
for every B that defeats A it holds that Lab(B) = out}. Let extendout be a function
such that for a partial labelling Lab it holds that extendout(Lab) = Lab ∪ {(A, out) |
there is a defeater B of A such that Lab(B) = in}. Let extendinout be the func-
tion extendout ◦ extendin. It can be verified that if Lab is a partial labelling, then

16

extendin(Lab), extendout(Lab) and extendinout(Lab) are also partial labellings. No-
tice that extendinout is similar to the function F of Definition 6. The main difference
is that extendinout is defined for partial labellings whereas F is defined for (admis-
sible) sets.

For a finite argumentation framework the grounded labelling can be determined
by successively applying extendinout, starting from the empty set, until the result
yields nothing new anymore. That is, one can apply the following algorithm.

L :=∅
REPEAT

Lold := L;
L :=extendin(L);
L :=extendout(L);
UNTIL(L = Lold)

Let Lab′ be Lab in which all unlabelled arguments are labelled undec. That is,
Lab′ = Lab∪{(A, undec) | (A, in) 6∈ Lab and (A, out) 6∈ Lab}. It now holds that Lab ′

is the grounded labelling.
In the case of an infinite argumentation framework, the situation is slightly more

complex. It holds that if an argument is in (out) in ∪∞

i=oextendinouti(∅) then the
argument is in (out) in the grounded labelling. The converse, however, does not
need to be the case. A counterexample is the argumentation framework of Figure 10
(taken from [9]) where each Ai defeats Ai+1, and each Ai with even i defeats B. Here,
the grounded labelling labels B in (as well as every Ai with odd i). Nevertheless, B

is not labelled in in ∪∞

i=oextendinouti(∅) since this would require that every Ai with
ever i is labelled out, which is impossible to achieve in a finite number of steps.

A1 A3 A4 A5 A6A2

B

Figure 10: An argumentation framework that is not finitary.

Nevertheless, in [9] it is proved that in any finitary argumentation framework (that
is, an argumentation framework where each argument has at most a finite number
of defeaters) the grounded extension is equal to ∪∞

i=oF
i(∅). From this it follows

that in any finitary argumentation framework, the grounded labelling is equal to
∪∞

i=oextendinouti(∅).
The disadvantage of the above procedure is that it requires computing the entire

grounded extension, even if one is only interested in whether a single argument (A)

17

is in it. In many cases, there exists a faster and more efficient way of determining
such. The idea is to apply a dialectical argument game, much like the p-discussions
that were discussed in the previous section.

The discussion whether an argument is labelled in in every complete labelling
(a discussion under grounded semantics, or simply g-discussion) can be described as
follows [19, 5, 18]:

• Proponent (P) and opponent (O) take turns; the proponent begins.

• Each move of O is a defeater of the directly preceeding argument of P.

• Each move of P is a defeater of the directly preceeding argument of O.

• P is not allowed to repeat any of its earlier moves.

• O is allowed to repeat its earlier moves.

Definition 15. A discussion under grounded semantics (g-discussion) is a list [A1, A2, . . . , An]
— where Ai is called a proponent-move iff i is odd, and an opponent-move iff i is
even — such that:

1. every proponent-move Ai (i ≥ 3) defeats the directly preceeding opponent-move
Ai−1;

2. every opponent-move Ai (i ≥ 2) defeats the directly preceeding proponent-move
Ai−1; and

3. there exist no two proponent-moves Ai and Aj such that Ai = Aj and i 6= j.

A g-discussion [A1, A2, . . . , An] is finished iff there exists no An+1 such that [A1, A2, . . . , An, An+1]
is a g-discussion. A finished discussion is won by the proponent iff the last move is
a proponent-move; it is won by the opponent iff the last move is an opponent-move.

To determine whether an argument is labelled in in the grounded labelling, it is
not enough that there exists at least one g-discussion that is won by the proponent.
What is needed is the existence of a winning strategy. The idea of a winning strategy
is to provide a roadmap for which moves the proponent should play, taking into
account every possible counter move of the opponent.

Definition 16. Let A be an argument. A winning strategy for A is a tree of which
the nodes are associated with arguments, the root associated with A, such that:

1. each path from the root to a leaf corresponds to a discussion won by the propo-
nent,

2. each opponent-move on such a path has exactly one child, and

3. each proponent-move (say B) on such a path has a child (C) for every C such
that [A, . . . , B,C] is a discussion.

Theorem 5. Let (Ar , def) be a finitery argumentation framework and A ∈ Ar. A

is labelled in in every complete labelling iff the proponent has a winning strategy for
A in the discussion using g-discussions.

18

Proof.
“=⇒”: Suppose A is labelled in in every complete labelling. Then it is also labelled
in in the complete labelling that corresponds with the grounded extension. This
means there exists some minimal i such that extendinouti(∅) labels A in. We now
prove that A has a winning strategy. This is done by induction on i.

basis Let i = 1. In this case, A does not have any counterarguments, which means
[A] is a finished discussion that is won by the proponent, which trivially implies
that there exists a winning strategy for A.

step Suppose that all arguments labelled in in extendinouti(∅) have a winning
strategy. We now prove that also all arguments labelled in in extendinouti+1(∅)
have a winning strategy. Let A be an arbitrary argument that is labelled in by
extendinouti+1(∅) and let {B1, B2, . . . , Bm} be the set of defeaters of A. From
the definition of extendinout it follows that every Bj (1 ≤ j ≤ m) is labeled
out in extendinouti(∅). This means that for every Bj there exists some Cj that
is labelled in in extendinouti(∅) such that Cj defeats Bj. According to the
induction hypothesis, there exists a winning strategy for each Cj . Therefore,
there also exists a winning strategy for A. Notice that in this winning strategy
the proponent indeed does not repeat any of its moves (this is because A is not
labelled in by extendinouti(∅)).

“⇐=”: Let A ∈ Ar be an argument for which the proponent has a winning strategy.
We now prove that A is labeled in in the grounded labeling (and therefore also in
every complete labelling). This is done by induction on the depth of the winning
strategy. As every discussion in the winning strategy is won by the proponent, the
depth of each winning strategy is always an odd number.

basis Let i = 1. In this case the winning strategy consists of a single node A.
This means there are no counterarguments against A. It then follows that A

is labelled in in extendinout(∅) and is therefore labelled in in the grounded
labelling.

step Suppose that for each winning strategy with a depth less or equal to i it holds
that its root is labelled in in the grounded labelling. We now prove that each
winning strategy with a depth of i + 2 also has its root labelled in in the
grounded labelling. Let WS be a winning strategy, with root A, of depth less
or equal to i + 2. Now consider all subtrees starting at a distance of 2 from
the root. These are again winning strategies, of depth less or equal to i. The
induction hypothesis states that the roots of these trees are labelled in in the
grounded labelling. This means that there exists a j such that extendinoutj(∅)
labels the roots of all these winning strategies in. From this it follows that
that A is labelled in in extendinoutj+1(∅) and is therefore labelled in in the
grounded labelling.

19

5 Other Semantics

The different semantics that have been treated until now (complete, grounded, pre-
ferred, stable and semi-stable) are those that can easily be descibed in terms of
complete labellings. Except for semi-stable semantics, they have all been treated in
the landmark paper of Dung [9].

One interesting additional semantics, however, comes under the name of ideal
sematics [1, 11, 10]. An ideal extension can be described as the largest admissible
set (w.r.t set-inclusion) that is a subset of every preferred extension. For example,
in Figure 11, the ideal extension is empty. This is because there exists two preferred
extensions ({A,D} and {B,D}) whose intersection is {D}. The largest admissible
subset of {D} is ∅. In Figure 12, the ideal extension is {B}. This is because there
exists just one preferred extension ({B}) which then automatically becomes the ideal
extension. It can be shown that there always exists exactly one ideal extension. Fur-
thermore, it can also be shown that the ideal extension is also a complete extension,
and is therefore a superset of (possibly equal to) the grounded extension. The value
of ideal semantics is that it is a unique-extension semantics that less sceptical than
grounded.

C D

A

Figure 11: Here, the ideal extension is ∅.

A B

Figure 12: Here, the ideal extension is {B}.

An important design consideration when defining an argumentation semantics
is whether each resulting extension is guaranteed to be an admissible set. For the
semantics that have been treated until now, this is indeed the case. Every complete,
grounded, preferred, stable, semi-stable or ideal extension is itself an admissible set.
There also exist semantics, however, where this is not the case.

An example of a non-admissibility based semantics is the work of Jakobovits and
Vermeir [14]. In their formalism, argument C in Figure 13 would be justified. In the
CF2 semantics defined by Baroni et al. [2] it is on the other hand argument B that
becomes justified.

20

A CB

Figure 13: Argument B justified in [2]; Argument C justified in [14].

In this document, we will not treat the non-admissibility based semantics in any
detail. One of the reasons for this is that by dropping the requirement of admissibility
one introduces a wide range of problems and difficulties, both from technical and
philosophical perspective. The technical difficulties have to do with what happens
if one uses arguments that are constructed from a knowledge base, and fall outside
the scope of the current document. The philosophical difficulties have to do with the
nature of a justified argument, and are discussed below.

In essence, one can distinguish two kinds of justifications of a statement: model-
theoretic and dialectical. A statement is justified (“true”) in the model-theoretic
sense if it follows from every possible model. A statement is justified in the dialectical
sense if it can be defended in a rational discussion. Although most logic based
research nowadays is based on the model-theoretic approach, one could in many
cases equally well apply a dialectical approach to semantics. For clasical logic, such
an approach has been worked out by Lorenzen and Lorenz [16], who define a rational
discusion for determining the validity of a classical first order formula.

For defeasible reasoning and argumentation, the model-theoretical approach has
received some following, but has not become dominant, perhaps because the kind of
preferred model semantics that defeasible reasoning seems to require is not always
easy and straightforward to deal with. A more natural approach seems to be to
choose the dialectical way of justifying arguments, an approach that can be traced
back to classical antiquity, in particular to the discourses of Socrates.

Let us consider the example of the 3-cycle of Figure 2. Here, the non-admissibility
based CF2-semantics [2] would yield three extensions: {A}, {B} and {C}. One can
easily imagine a Socratic-style discussion in which the tenability of, for instance, A

is questioned.

Proponent: “I hold that A”
Opponent: “Then you have to reject A’s defeater C. Based on what grounds?
Proponent: “I reject C because I hold that B”
Opponent: “But then you would have to explicitly reject B’s defeater A, don’t you?”
Proponent: [understands that he has caught himself in] “Euhhh...”

It should be observed that the above discussion is essentially an informal p-
discusion. Thus, one can see that essentially every argument that is not part of
an admisible set cannot be defended in a reasonable debate, as any such attempt
leads to self-refutation on the side of the proponent. It appears that that which
cannot be defended should not be called justified, nor be part of any reasonable po-
sition (like an extension of arguments). This, as well as reasons related to quality

21

postulates [4], made us decide not to treat these “advanced” forms of semantics and
instead restrict ourselves to the traditional semantics where each extension is also an
admisible set.

References

[1] José Júlio Alferes, Phan Minh Dung, and Lúıs Pereira. Scenario semantics
of extended logic programs. In A. Nerode and L. Pereira, editors, Proc. 2nd
International Workshop on Logic Programming and Non-monotonic Reasoning,
pages 334–348. MIT Press, 1993.

[2] P. Baroni, M. Giacomin, and G. Guida. Scc-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168(1-2):165–210, 2005.

[3] Martin Caminada. Semi-stable semantics for formal argumentation. paper avail-
able on request (martin.caminada@uni.lu).

[4] Martin Caminada and Leila Amgoud. On the evaluation of argumentation for-
malisms. Artificial Intelligence, 171(5-6):286–310, 2007.

[5] M.W.A. Caminada. For the sake of the Argument. Explorations into argument-
based reasoning. Doctoral dissertation Free University Amsterdam, 2004.

[6] M.W.A. Caminada. On the issue of reinstatement in argumentation. In M. Fis-
cher, W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics in Artificial
Intelligence; 10th European Conference, JELIA 2006, pages 111–123. Springer,
2006. LNAI 4160.

[7] M.W.A. Caminada. Semi-stable semantics. In P.E. Dunne and TJ.M. Bench-
Capon, editors, Computational Models of Argument; Proceedings of COMMA
2006, pages 121–130. IOS Press, 2006.

[8] S. Doutre and J. Mengin. An algorithm that computes the preferred extensions
of argumentation frameworks. In ECAI’2000, Third International Workshop on
Computational Dialectics (CD’2000), pages 55–62, August 2000.

[9] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[10] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal
sceptical argumentation. Technical report, Imperial College, 2006.

[11] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectical pro-
cedure for sceptical, assumption-based argumentation. In P.E. Dunne and
TJ.M. Bench-Capon, editors, Computational Models of Argument; Proceedings
of COMMA 2006, pages 145–156. IOS, 2006.

[12] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference/Symposium on Logic
Programming, pages 1070–1080. MIT Press, 1988.

22

[13] J. Horty. Argument construction and reinstatement in logics for defeasible rea-
soning. Artificial Intelligence and Law, 9:1–28, 2001.

[14] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks.
Journal of logic and computation, 9(2):215–261, 1999.

[15] K. Konolige. Defeasible argumentation in reasoning about events. Methodologies
for Intelligent Systems, 3:380–390, 1988.

[16] P. Lorenzen and K. Lorenz. Dialogische logik. Wissenschaftliche Buchge-
sellschaft, Darmstadt, 1978.

[17] J. L. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42, 1992.

[18] H. Prakken. Commonsense reasoning. Technical report, Institute of Information
and Computing Sciences, Utrecht University, 2004. Course material.

[19] H. Prakken and G. Sartor. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

[20] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[21] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. J. ACM, 38(3):620–650, 1991.

[22] G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games
for preferred semantics. In Proceedings of the 7th European Workshop on Logic
for Artificial Intelligence (JELIA-00), number 1919 in Springer Lecture Notes
in AI, pages 239–253, Berlin, 2000. Springer Verlag.

23

