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Abstract

Genetic algorithms are computational models of evolution that play a central
role in many arti�cial-life models. We review the history and current scope of
research on genetic algorithms in arti�cial life, using illustrative examples in
which the genetic algorithm is used to study how learning and evolution interact,
and to model ecosystems, immune system, cognitive systems, and social systems.
We also outline a number of open questions and future directions for genetic
algorithms in arti�cial-life research.

1 Introduction

Evolution by natural selection is a central idea in biology, and the concept of natural selection
has in
uenced our view of biological systems tremendously. Likewise, evolution of arti�cial
systems is an important component of arti�cial life, providing an important modeling tool
and an automated design method. Genetic algorithms (GAs) are currently the most promi-
nent and widely used models of evolution in arti�cial-life systems. GAs have been used both
as tools for solving practical problems and as scienti�c models of evolutionary processes.
The intersection between GAs and arti�cial life includes both, although in this article we
focus primarily on GAs as models of natural phenomena. For example, we do not discuss
topics such as \evolutionary robotics" in which the GA is used as a black box to design or
control a system with lifelike properties, even though this is certainly an important role for
GAs in arti�cial life. In the following, we provide a brief overview of GAs, describe some
particularly interesting examples of the overlap between GAs and arti�cial life, and give our
view of some of the most pressing research questions in this �eld.
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2 Overview of Genetic Algorithms

In the 1950s and 1960s several computer scientists independently studied evolutionary sys-
tems with the idea that evolution could be used as an optimization tool for engineering
problems. In Goldberg's short history of evolutionary computation ([42], Chapter 4), the
names of Box [21], [40, 39], Friedman [41], Bledsoe [18], and Bremermann [22] are associated
with a variety of work in the late 1950s and early 1960s, some of which presages the later
development of GAs. These early systems contained the rudiments of evolution in various
forms|all had some kind of \selection of the �ttest," some had population-based schemes
for selection and variation, and some, like many GAs, had binary strings as abstractions of
biological chromosomes.

In the later 1960s, Rechenberg introduced \evolution strategies," a method �rst designed
to optimize real-valued parameters [89]. This idea was further developed by Schwefel [96, 97],
and the �eld of evolution strategies has remained an active area of research, developing in
parallel to GA research, until recently when the two communities have begun to interact.
For a review of evolution strategies, see [9]. Also in the 1960s Fogel, Owens, and Walsh
developed \evolutionary programming" [36]. Candidate solutions to given tasks are repre-
sented as �nite-state machines, and the evolutionary operators are selection and mutation.
Evolutionary programming also remains an area of active research. For a recent description
of the work of Fogel et al., see [34].

GAs as they are known today were �rst described by John Holland in the 1960s and fur-
ther developed by Holland and his students and colleagues at the University of Michigan in
the 1960s and 1970s. Holland's 1975 book Adaptation in Natural and Arti�cial Systems [55]
presents the GA as an abstraction of biological evolution and gives a theoretical framework
for adaptation under the GA. Holland's GA is a method for moving from one population of
\chromosomes" (e.g., bit strings representing organisms or candidate solutions to a problem)
to a new population, using selection together with the genetic operators of crossover, muta-
tion, and inversion. Each chromosome consists of \genes" (e.g., bits), with each gene being
an instance of a particular \allele" (e.g., 0 or 1). Selection chooses those chromosomes in the
population that will be allowed to reproduce, and decides how many o�spring each is likely
to have, with the �tter chromosomes producing on average more o�spring than less �t ones.
Crossover exchanges subparts of two chromosomes (roughly mimicking sexual recombination
between two single-chromosome organisms); mutation randomly changes the values of some
locations in the chromosome; and inversion reverses the order of a contiguous section of
the chromosome, thus rearranging the order in which genes are arrayed in the chromosome.
Inversion is rarely used in today's GAs, at least partially because of the implementation
expense for most representations. A simple form of the GA (without inversion) works as
follows:

1. Start with a randomly generated population of chromosomes (e.g., candidate solutions
to a problem).

2. Calculate the �tness of each chromosome in the population.

3. Apply selection and genetic operators (crossover and mutation) to the population to
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create a new population.

4. Go to step 2.

This process is iterated over many time steps, each of which is called a \generation." After
several generations, the result is often one or more highly �t chromosomes in the popula-
tion. It should be noted that the above description leaves out many important details. For
example, selection can be implemented in di�erent ways|it can arbitrarily eliminate the
least �t 50% of the population and replicate every other individual once, it can replicate
individuals in direct proportion to their �tness (�tness-proportionate selection), or it can
scale the �tness and replicate individuals in direct proportion to their scaled �tnesses. For
implementation details such as these, see [42].

Introducing a population-based algorithm with crossover and inversion was a major in-
novation. Just as signi�cant is the theoretical foundation Holland developed based on the
notion of \schemata" [55, 42]. Until recently, This theoretical foundation has been the basis
of almost all subsequent theoretical work on GAs, although the usefulness of this notion has
been debated (see, e.g., [45]). Holland's work was the �rst attempt to put computational
evolution on a �rm theoretical footing.

GAs in various forms have been applied to many scienti�c and engineering problems,
including the following:

� Optimization: GAs have been used in a wide variety of optimization tasks, including
numerical optimization (e.g., [63]), and combinatorial optimization problems such as
circuit design and job shop scheduling.

� Automatic Programming: GAs have been used to evolve computer programs for
speci�c tasks (e.g., [69]) and to design other computational structures, e.g., cellular
automata [80] and sorting networks [52].

� Machine and robot learning: GAs have been used for many machine-learning
applications, including classi�cation and prediction tasks such as the prediction of
dynamical systems [75], weather prediction [92], and prediction of protein structure
(e.g., [95]). GAs have also been used to design neural networks (e.g., [15, 25, 47,
48, 67, 77, 81, 94, 105]), to evolve rules for learning classi�er systems (e.g., [54, 57])
or symbolic production systems (e.g., [46]), and to design and control robots (e.g.,
[29, 31, 50]). For an overview of GAs in machine learning, see [64, 65].

� Economic models: GAs have been used to model processes of innovation, the devel-
opment of bidding strategies, and the emergence of economic markets (e.g., [3, 58, 4, 5]).

� Immune system models: GAs have been used to model various aspects of the
natural immune system [17, 38], including somatic mutation during an individual's
lifetime and the discovery of multi-gene families during evolutionary time.

� Ecological models: GAs have been used to model ecological phenomena such as bio-
logical arms races, host-parasite co-evolution, symbiosis, and resource 
ow in ecologies
(e.g., [11, 12, 26, 28, 52, 56, 61, 70, 71, 83, 87, 88, 101]).
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� Population genetics models: GAs have been used to study questions in population
genetics, such as \under what conditions will a gene for recombination be evolutionarily
viable?" (e.g., [16, 35, 74, 93]).

� Interactions between evolution and learning: GAs have been used to study how
individual learning and species evolution a�ect one another (e.g., [1, 2, 13, 37, 53, 82,
76, 84, 102, 103]).

� Models of social systems: GAs have been used to study evolutionary aspects of
social systems, such as the evolution of cooperation [7, 8, 73, 78, 79], the evolution of
communication (e.g., [72, 104]), and trail-following behavior in ants (e.g., [27, 68]).

This list is by no means exhaustive, but it gives a 
avor of the kinds of things for
which GAs have been used, both for problem-solving and for modeling. The range of GA
applications continues to increase.

In recent years, algorithms that have been termed \genetic algorithms" have taken many
forms, and in some cases bear little resemblance to Holland's original formulation. Re-
searchers have experimented with di�erent types of representations, crossover and mutation
operators, special-purpose operators, and approaches to reproduction and selection. How-
ever, all of these methods have a \family resemblance" in that they take some inspiration from
biological evolution and from Holland's original GA. A new term, \Evolutionary Computa-
tion," has been introduced to cover these various members of the GA family, evolutionary
programming, and evolution strategies [66].

In the following sections we describe a number of examples illustrating the use of GAs in
arti�cial life. We do not attempt to give an exhaustive review of the entire �eld of GAs or
even that subset relevant to arti�cial life, but rather concentrate on some highlights that we
�nd particularly interesting. We have provided a more complete set of pointers to the GA
and arti�cial-life literature in the \Suggested Reading" section at the end of this article.

3 Interactions between learning and evolution

Many people have drawn analogies between learning and evolution as two adaptive processes|
one taking place during the lifetime of an organism, and the other taking place over the evo-
lutionary history of life on Earth. To what extent do these processes interact? In particular,
can learning that occurs over the course of an individual's lifetime guide the evolution of that
individual's species to any extent? These are major questions in evolutionary psychology.
GAs, often in combination with neural networks, have been used to address these questions.
Here we describe two arti�cial-life systems designed to model interactions between learning
and evolution, and in particular the \Baldwin e�ect."
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3.1 The Baldwin e�ect

Learning during one's lifetime does not directly a�ect one's genetic makeup; consequently,
things learned during an individual's lifetime cannot be transmitted directly to its o�spring.
However, some evolutionary biologists (e.g., [98]) have discussed an indirect e�ect of learning
on evolution, inspired by ideas about evolution due to Baldwin [10]. The idea behind the
so-called \Baldwin e�ect" is that if learning helps survival, then organisms best able to learn
will have the most o�spring and increase the frequency of the genes responsible for learning.
If if the environment is stable so that the best things to learn remain constant, then this
can lead indirectly to a genetic encoding of a trait that originally had to be learned. In
short, the capacity to acquire a certain desired trait allows the learning organism to survive
preferentially and gives genetic variation the possibility of independently discovering the
desired trait. Without such learning, the likelihood of survival|and thus the opportunity
for genetic discovery|decreases. In this indirect way, learning can a�ect evolution, even if
what is learned cannot be transmitted genetically.

3.2 Capturing the Baldwin e�ect in a simple model

Hinton and Nowlan used a GA to model the Baldwin e�ect [53]. Their goal was to demon-
strate this e�ect empirically and to measure its magnitude, using the simplest possible model.
A simple neural-network learning algorithm modeled learning, and the GA played the role of
evolution, evolving a population of neural networks with varying learning capabilities. In the
model, each individual is a neural network with 20 potential connections. A connection can
have one of three values: \present," \absent," and \learnable." These are speci�ed by \1,"
\0," and \?," respectively, where each \?" connection can be set during the learning phase
to 1 or 0. There is only one correct setting for the connections (i.e., only one correct set of
1s and 0s). The problem is to �nd this single correct set of connections. This will not be
possible for networks that have incorrect �xed connections (e.g., a 1 where there should be a
0), but those networks that have correct settings in all places except where there are ?s have
the capacity to learn the correct settings. This is a \needle in a haystack" search problem
because there is only one correct setting in a space of 220 possibilities. However, allowing
learning to take place changes the shape of the �tness landscape, changing the single spike
to a smoother \zone of increased �tness," within which it is possible to learn the correct
connections.

Hinton and Nowlan used the simplest possible \learning" method: random guessing. On
each learning trial, a network guesses a 1 or 0 at random for each of its learnable connections.
This method has little to do with the usual notions of neural-network learning. Hinton and
Nowlan presented this model in terms of neural networks so as to keep in mind the possibility
of extending the example to more standard learning tasks and methods.

In the GA population, each network is represented by a string of length 20 over the
alphabet f0; 1; ?g, denoting the settings on the network's connections. Each individual is
given 1,000 learning trials. On each learning trial, the individual tries a random combination
of settings for the ?s. The �tness is an inverse function of the number of trials needed to
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�nd the correct solution. An individual that already has all of its connections set correctly
has the highest possible �tness, and an individual that never �nds the correct solution has
the lowest possible �tness. Hence, a tradeo� exists between e�ciency and 
exibility: having
many ?s means that, on average, many guesses are needed to arrive at the correct answer,
but the more connections that are �xed, the more likely it is that one or more of them will
be �xed incorrectly, meaning that there is no possibility of �nding the correct answer.

Hinton and Nowlan's experiments showed that learning during an individual's \lifetime"
does guide evolution by allowing the mean �tness of the population to increase. This increase
is due to a Baldwin-like e�ect: those individuals that are able to learn the task e�ciently
tend to be selected to reproduce, and crossovers among these individuals tend to increase
the number of correctly �xed alleles, increasing the learning e�ciency of the o�spring. With
this simple form of learning, evolution could discover individuals with all of their connections
�xed correctly, and such individuals were discovered in these experiments. Without learning,
the evolutionary search never discovered such an individual.

To summarize, learning allows genetically coded partial solutions to get partial credit,
rather than the all-or-nothing reward that an organism would get without learning. A
common claim for learning is that it allows an organism to respond to unpredictable aspects of
an environment|aspects that change too quickly for evolution to track genetically. Although
this is clearly one bene�t of learning, the Baldwin e�ect is di�erent: it says that learning
helps organisms adapt to genetically predictable, but di�cult, aspects of the environment,
and that learning indirectly helps these adaptations become genetically �xed. Consequently,
the Baldwin e�ect is important only on �tness landscapes that are hard to search by evolution
alone, such as the needle-in-a-haystack example given by Hinton and Nowlan.

As Hinton and Nowlan point out, the \learning" mechanism used in Hinton and Nowlan's
experiments|random guessing|is completely unrealistic as a model of learning. Hinton
and Nowlan point out that \a more sophisticated learning procedure only strengthens the
argument for the importance of the Baldwin e�ect" ([53], p. 500). This is true insofar as
a more sophisticated learning procedure would, for example, further smooth the original
\needle in the haystack" �tness landscape in Hinton and Nowlan's learning task. However,
if the learning procedure were too sophisticated|that is, if learning the necessary trait were
too easy|then there would be little selection pressure for evolution to move from the ability
to learn the trait to a genetic encoding of that trait. Such tradeo�s occur in evolution
and can be seen even in Hinton and Nowlan's simple model. Computer simulations such as
theirs can help us to understand and to measure such tradeo�s. More detailed analyses of
this model were performed by Belew [13] and Harvey [49].

3.3 Evolutionary Reinforcement Learning (ERL)

A second computational demonstration of the Baldwin e�ect was given by Ackley and
Littman [1]. In their Evolutionary Reinforcement Learning (ERL) model, adaptive individ-
uals (\agents") move randomly on a two-dimensional lattice, encountering food, predators,
hiding places, and other types of entities. Each agent's state includes the entities in its visual
range, the level of its internal energy store, and other parameters. Each agent possesses two
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feed-forward neural networks: (1) an evaluation network that maps the agent's state at time
t to a number representing how good that state is; and (2) an action network that maps the
agent's state at time t to the action it is to take on that time step. The only possible actions
are moving from the current lattice site to one of the four neighboring sites, but actions can
result in eating, being eaten, and other less radical consequences. The architectures of these
two networks are the same for all agents, but the weights on the links can vary between
agents. The weights on a given agent's evaluation network are �xed from birth|this net-
work represents innate goals and desires inherited from the agent's ancestors (e.g., \being
near food is good"). The weights on the action network change over the agent's lifetime
according to a reinforcement-learning algorithm.

An agent's genome encodes the weights for the evaluation network and the initial weights
for the action network. Agents have an internal energy store (represented by a real number)
which must be kept above a certain level to prevent death; this is accomplished by eating
food that is encountered as the agent moves from site to site on the lattice. An agent must
also avoid predators, or it will be killed. An agent can reproduce once it has enough energy
in its internal store. Agents reproduce by cloning their genomes (subject to mutation). In
addition to cloning, two spatially nearby agents can together produce o�spring via crossover.
There is no \exogenous" a priori �tness function for evaluating a genome as there was in
Hinton and Nowlan's model and in most engineering applications of GAs. Instead, the
�tness of an agent (as well as the rate at which a population turns over) is \endogenous":
it emerges from many actions and interactions over the course of the agent's lifetime. This
feature distinguishes many GAs used in arti�cial-life models from engineering applications.

At each time step t in an agent's life, the agent evaluates its current state, using its
evaluation network. This evaluation is compared with the evaluation it produced at t � 1
with respect to the previous action, and the comparison gives a reinforcement signal used
in modifying the weights in the action network. The idea here is for agents to learn to act
in ways that will improve the current state. After this learning step, the agent's modi�ed
action network is used to determine the next action to take.

Ackley and Littman observed many interesting phenomena in their experiments with
this model. The main emergent phenomena they describe are a version of the Baldwin e�ect
and an e�ect they call \shielding." Here we will describe the former; see [1] for details on
other phenomena. They compared the results of three di�erent experiments: (1) EL: both
evolution of populations and learning in individual agents took place; (2) E: evolution of
populations took place but there was no individual learning, and (3) L: individual learning
took place but there was no evolution. The statistic that Ackley and Littman measured
was roughly the average time until the population became extinct, averaged over many
separate runs. They found that the best performance (longest average time to extinction)
was achieved with EL populations, closely followed by L populations, and with E populations
trailing far behind. More detailed analysis of the EL runs revealed that with respect to
certain behaviors, the relative importance of learning and evolution changed over the course
of a run. In particular, Ackley and Littman looked at the genes related to food-approaching
behavior for both the evaluation and action networks. They found that in earlier generations
the genes encoding evaluation of food proximity (e.g., \being near food is good") remained
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relatively constant across the population while the genes encoding initial weights in the
action network were more variable. This indicated the importance of maintaining the goals
for the learning process and thus the importance of learning for survival. However, later in
the run the evaluation genes were more variable across the population whereas the genes
encoding the initial weights of the action network remained more constant. This indicated
that inherited behaviors were more signi�cant than learning during this phase. Ackley and
Littman interpreted this as a version of the Baldwin e�ect. Initially, it is necessary for agents
to learn to approach food; thus, maintaining the explicit knowledge that \being near food is
good" is essential for the learning process to take place. Later, the genetic knowledge that
being near food is good is superseded by the genetically encoded behavior to \approach food
if near," so the evaluation knowledge is not as necessary. The initial ability to learn the
behavior is what allows it to eventually become genetically coded.

This e�ect has not been completely analyzed, nor has the strength of the e�ect been
determined. Nevertheless, results such as these, and those of Hinton and Nowlan's exper-
iments, demonstrate the potential of arti�cial-life modeling: biological phenomena can be
studied with controlled computational experiments whose natural equivalent (e.g., running
for thousands of generations) is not possible or practical. And when performed correctly, such
experiments can produce new evidence for and new insight into these natural phenomena.
The potential bene�ts of such work are not limited to understanding natural phenomena.
A growing community of GA researchers is studying ways to apply GAs to optimize neu-
ral networks to solve practical problems|a practical application of the interaction between
learning and evolution. A survey of this work is given in [94]. Other researchers are inves-
tigating the bene�ts of adding \Lamarckian" learning to the GA, and have found in some
cases that it leads to signi�cant improvements in GA performance [2, 44].

4 Ecosystems and evolutionary dynamics

Another major area of arti�cial-life research is modeling ecosystem behavior and the evolu-
tionary dynamics of populations. (Ackley and Littman's work described above could �t into
this category as well.) Here we describe two such models which use GAs: Holland's Echo
system, meant to allow a large range of ecological interactions to be modeled, and Bedau
and Packard's Strategic Bugs system, for which a measure of evolutionary activity is de�ned
and studied. As in the ERL system, both Echo and Strategic Bugs illustrate the use of
endogenous �tness.

4.1 Echo

Echo is a model of ecological systems formulated by Holland [55, 56, 62]. Echo models
ecologies in the same sense that the GA models population genetics [56]. It abstracts away
virtually all of the physical details of real ecological systems and concentrates on a small
set of primitive agent-agent and agent-environment interactions. The extent to which Echo
captures the essence of real ecological systems is still largely undetermined, yet it is signi�cant
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because of the generality of the model and its ambitious scope. The goal of Echo is to
study how simple interactions among simple agents lead to emergent high-level phenomena
such as the 
ow of resources in a system or cooperation and competition in networks of
agents (e.g., communities, trading networks, or arms races). Echo extends the GA in several
important ways: resources are modeled explicitly in the system, individuals (called agents)
have a geographical location which a�ects their (implicit) �tness, certain types of interactions
between agents are built into the system (e.g., trade, combat, and mating), and �tness is
endogenous.

Similar to Ackley and Littman's ERL model, Echo consists of a population of agents
distributed on a set of sites on a lattice. Many agents can cohabit the same site, and there
is a measure of locality within each site. Also distributed on the lattice are di�erent types of
renewable resources; each type of resource is encoded by a letter (e.g., \a," \b," \c," \d").
Di�erent types of agents use di�erent types of resources and can store these resources (the
letters) internally.

Agents interact by mating, trading, or �ghting. Trading and �ghting result in the ex-
change of internal resources between agents, and mating results in an o�spring whose genome
is a combination of those of the parents. Agents also self-reproduce (described below), but
mating is a process distinct from replication. Each agent has a particular set of rules which
determines its interactions with other agents (e.g., which resources it is willing to trade, the
conditions under which it will �ght, etc.). \External appearance" can also be coded in these
rules as a string tag visible to other agents. This allows the possibility of the evolution of
social rules and potentially of mimicry, a phenomenon frequently observed in natural ecosys-
tems. The interaction rules use string matching, and it is therefore easy to encode the strings
used by the rules onto the genome.

Each agent's genotype encodes the details of the rules by which it interacts (e.g., the
conditions under which the rules are applied) and the types of resources it requires. As in
many other arti�cial-life models (e.g., ERL and the Strategic Bugs model described below),
Echo has no explicit �tness function guiding selection and reproduction. Instead, an agent
reproduces when it accumulates su�cient resources to make an exact copy of its genome.
For example, if an agent's genome consists of 25 a's, 13 b's, and 50 c's, then it would have to
accumulate in its internal storage at least 25 a's, 13 b's, and 50 c's before cloning itself. As
is usual in a GA, cloning is subject to a low rate of mutation, and, as was mentioned above,
genetic material is exchanged through mating.

In preliminary simulations, the Echo system has demonstrated surprisingly complex be-
havior (including something resembling a biological \arms race" in which two competing
species develop progressively more complex o�ensive and defensive combat strategies), eco-
logical dependencies among di�erent species (e.g., a symbiotic \ant-caterpillar-
y" triangle),
and sensitivity (in terms of the number of di�erent phenotypes) to di�ering levels of renew-
able resources [55].

Some possible directions for future work on Echo include: (1) studying the evolution of
external tags as mechanisms for social communication; (2) extending the model to allow the
evolution of \metazoans"|connected communities of agents that have internal boundaries
and reproduce as a unit; this capacity will allow for the study of individual agent special-
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ization and the evolution of multi-cellularity; (3) studying the evolutionary dynamics of
schemata in the population; and (4) using the results from (3) to formulate a generalization
of the well-known Schema Theorem based on endogenous �tness [56]. The last is a particu-
larly important goal, since there has been very little mathematical analysis of arti�cial-life
simulations in which �tness is endogenous.

4.2 Measuring evolutionary activity

How can we decide if an observed system is evolving? And how can we measure the rate
of evolution in such a system? Bedau and Packard developed an arti�cial-life model, called
\Strategic Bugs" [11], to address these questions. Their model is simpler than both ERL
and Echo. The Strategic Bugs world is a two-dimensional lattice, containing only adaptive
agents (\bugs") and food. The food supply is renewable; it is refreshed periodically and
distributed randomly across the lattice. Bugs survive by �nding and eating food, storing it
in an internal reservoir until they have enough energy to reproduce. Bugs use energy from
their internal reservoir in order to move. A bug dies when its internal reservoir is empty.
Thus, bugs have to �nd food continually in order to survive.

Each bug's behavior is controlled by an internal look-up table that maps sensory data
from the bug's local neighborhood to a vector giving the direction and distance of the bug's
next foray. For example, one entry might be, \If more than 10 units of food are two steps to
the northeast and the other neighboring sites are empty, move two steps to the northeast."
This look-up table is the bug's \genetic material," and each entry is a gene. A bug can
reproduce either asexually, in which case it passes on its genetic material to its o�spring
with some low probability of mutation at each gene, or sexually, in which case it mates with
a spatially adjacent bug, producing o�spring whose genetic material is a combination of that
of the parents, possibly with some small number of mutations.

Bedau and Packard wanted to de�ne and measure the degree of \evolutionary activity"
in this system over time, where evolutionary activity is de�ned informally as, \the rate at
which useful genetic innovations are absorbed into the population." Bedau and Packard
assert that \persistent usage of new genes is what signals genuine evolutionary activity,"
since evolutionary activity is meant to measure the degree to which useful new genes are
discovered and persist in the population.

To measure evolutionary activity, Bedau and Packard began by keeping statistics on
gene usage for every gene that appeared in the population. Recall that in the Strategic Bugs
model, a bug's genome is represented as a look-up table, and a gene is simply an entry in
the table|an input/action pair. Each gene is assigned a counter, initialized to 0, which is
incremented every time the gene is used|that is, every time the speci�ed input situation
arises and the speci�ed action is taken. When a parent passes on a gene to a child through
asexual reproduction or through crossover, the value of the counter is passed on as well and
remains with the gene. The only time a counter is initialized to 0 is when a new gene is
created through mutation. In this way, a gene's counter value re
ects the usage of that gene
over many generations. When a bug dies, its genes (and their counters) die with it.
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In [11], Bedau and Packard plot, for each time step during a run, histograms of the
number of genes in the population displaying a given usage value (i.e., a given counter
value). These histograms display \waves of activity" over time, showing that clusters of
genes are continually being discovered that persist in usage over time|in other words, that
the population is continually �nding and exploiting new genetic innovations. This is precisely
Bedau and Packard's de�nition of evolution, and according to them, as long as the waves
continue to occur, it can be said that the population is continuing to evolve. Bedau and
Packard de�ne a single number, the evolutionary activity at a given time, A(t), that roughly
measures the degree to which the population is acquiring new and useful genetic material at
time t|in short, whether or not such activity waves are occurring at time t and what their
characteristics are. If A(t) is positive, then evolution is occurring at time t. Claiming that life
is a property of populations and not of individual organisms, Bedau and Packard ambitiously
propose A(t) as a test for life in a system|if A(t) is positive, then the system is exhibiting
life at time t. Bedau, Ronneburg, and Zwick have extended this work to propose several
measures of population diversity and to measure them and characterize their dynamics in
the context of the Strategic Bugs model [12].

The important contribution of Bedau and Packard's paper is the attempt to de�ne a
macroscopic quantity such as evolutionary activity. It is a �rst step at such a de�nition,
and the particular de�nition of gene usage is no doubt too speci�c to the Strategic Bugs
model, in which the relationship between genes and behavior is completely straightforward.
In more realistic models it will be considerably harder to de�ne such quantities. However,
the formulation of macroscopic measures of evolution and adaptation, as well as descriptions
of the microscopic mechanisms by which the macroscopic quantities emerge, is essential if
arti�cial life is to be made into an explanatory science and if it is to contribute signi�cantly
to real evolutionary biology.

5 Learning classi�er systems

Learning classi�er systems [57] are one of the earliest examples of how GAs have been
incorporated into models of living systems, in this case cognitive systems. Classi�er systems
have been used as models of stimulus-response behavior and of more complex cognitive
processes. Classi�er systems are based on three principles: learning, intermittent feedback
from the environment, and hierarchies of internal models that represent the environment.
Classi�er systems have been used to model a variety of \intelligent" processes, such as how
people behave in economic and social situations (playing the stock market, obeying social
norms, etc), maze running by rats, and categorization tasks.

Like neural networks, classi�er systems consist of a parallel machine (most often imple-
mented in software) and learning algorithms which adjust the con�guration of the underlying
machine over time. Classi�er systems di�er from neural networks in the details of the parallel
machine, referred to as the internal performance system, and in the details of the learning
algorithms. Speci�cally, the classi�er system machine is more complex than most neural
networks, computing with quantities called \messages" and controlling its state with if-then
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rules that specify patterns of messages. The GA is used to discover useful rules, based on in-
termittent feedback from the environment and an internal credit-assignment algorithm called
the bucket brigade. Thus, a classi�er system consists of three layers, with the performance
system forming the lowest level. At the second level, the bucket-brigade learning algorithm
manages credit assignment among competing classi�ers. It plays a role similar to that of
back-propagation in neural networks. Finally, at the highest level are genetic operators that
create new classi�ers.

Associated with each classi�er is a parameter called its strength. This measure re
ects the
utility of that rule, based on the system's past experience. The bucket-brigade algorithm is
the mechanism for altering each rule's strength. The algorithm is based on the metaphor of an
economy, with the environment acting both as the producer of raw materials and the ultimate
consumer of �nished goods, and each classi�er acting as an intermediary in an economic chain
of production. Using the bucket brigade, a classi�er system is able to identify and use the
subset of its rule base that has proven useful in the past. However, a classi�er system's
initial rule base usually will not contain all of the classi�ers necessary for good performance.
The GA interprets a classi�er's strength as a measure of its �tness, and periodically (after
the strengths have stabilized under the bucket brigade), the GA deletes rules which have
not been useful or relevant in the past (those with low strength), and generates new rules
by modifying existing high-strength rules through mutation, crossover, and other special-
purpose operators. Similarly to conventionaly GAs, these deletions and additions are all
performed probabilistically. Under the de�nition of induction as \all inferential processes
that expand knowledge in the face of uncertainty" ([57], p. 1), the GA plays the role of an
inductive mechanism in classi�er systems.

An important motivation in the formulation of classi�er systems was the principle that
inductive systems need the ability to construct internal models. Internal models should allow
a system to generate predictions even when its knowledge of the environment is incomplete or
incorrect, and further, to re�ne its internal model as more information about the environment
becomes available. This leads naturally to the idea of a default hierarchy in which a system
can represent high-level approximations, or defaults, based on early information, and, over
time, re�ne the defaults with more speci�c details and exceptions to rules. In classi�er
systems, default hierarchies are represented using clusters of rules of di�erent speci�cities.
In [57], the concept of a \quasi-morphism" is introduced to describe this modeling process
formally.

There have been several modeling e�orts based on learning classi�er systems, including
[19, 20, 32, 90, 91, 106, 107]. Each of these is a variation on the standard classi�er system as
described above, but each of the variations captures the major principles of classi�er systems.
For example, in [90] Riolo used a classi�er system to model the kind of latent learning and
look-ahead behavior of the type observed in rats. For this work, Riolo designed a simple
maze, similar to those in latent-learning experiments on rats. The maze has one start point
and several end points. At each end point there is a box, which may or may not be �lled with
food, and the various end-point boxes may or may not be distinguishable (e.g., by color)
from one another. In these kinds of experiments, the procedure is roughly as follows: (1)
before food is placed in the boxes, non-hungry rats are placed in the maze and allowed to
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explore; (2) the rats are not fed for 24 hours; (3) the rats are placed in the maze (at one of
the endpoints) and allowed to eat from one of the boxes; (4) the rats are placed at the start
location of the maze, and their behavior is observed. If the boxes are distinguishable, then
the rats reliably choose the path through the maze leading to the box from which they ate.

Riolo makes several points about these experiments: (1) in the \pre-reward" phase, the
rats learn the structure of the maze without explicit rewards; (2) they learn to use an internal
model to perform a look-ahead search which allows them to predict which box was in which
part of the maze; (3) the rats are able to use this look-ahead search once they associate food
with a particular box; and (4) this type of inference can not be made by a simple reactive
(stimulus-response) system. It is commonly believed that the task requires the use of internal
models and look-ahead prediction.

To model these experiments using a classi�er system, Riolo augmented the basic classi-
�er system model to include a look-ahead component. The extensions included: (1) allowing
the classi�er system to iterate several cycles of its performance system (the rule base) be-
fore choosing an action, in e�ect \running" an internal model before acting; (2) choosing
special-purpose genetic operators to coordinate the internal model-building (i.e., to distin-
guish predictions from suggested actions); and (3) using three di�erent kinds of strength to
measure the utility of rules (to measure predictive ability versus real-time ability, to produce
a reward from an action, and to measure long-term versus short-term utility). With these
modi�cations, the classi�er system achieved results comparable to the latent-learning results
reported for rats. Further, the classi�er system with the look-ahead component outperformed
the unmodi�ed version signi�cantly. Riolo's experiment is one of the best demonstrations to
date of the necessity of internal models for classi�er systems to succeed on some tasks.

6 Immune systems

Immune systems are adaptive systems in which learning takes place by evolutionary mecha-
nisms similar to biological evolution. Immune systems have been studied by the arti�cial-life
community both because of their intrinsic scienti�c interest and because of potential ap-
plications of ideas from immunology to computational problems (e.g., [17]). The immune
system is capable of recognizing virtually any foreign cell or molecule. To do this, it must
distinguish the body's own cells and molecules which are created and circulated internally
(estimated to consist of on the order of 105 di�erent proteins) from those that are foreign.
It has been estimated that the immune system is capable of recognizing on the order of 1016

di�erent foreign molecules [60]. From a pattern-recognition perspective these are staggering
numbers, particularly when one considers that the human genome, which encodes the \pro-
gram" for constructing the immune system, only contains about 105 genes, and further, that
the immune system is distributed throughout the body with no central organ to control it.

Di�erent approaches to modeling the immune system have included di�erential-equation-
based models (e.g., see [86, 85]), cellular-automata models [24], classi�er systems [33], and
GAs [38]. In the last, GAs are used to model both somatic mutation (the process by which
antibodies are evolved during the lifetime of an individual to match a speci�c antigen) and
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the more traditional type of evolution over many individual lifetimes of variable-, or V-,
region gene libraries (the genetic material that codes for speci�c receptors).

The GA models of Forrest et al. [38] are based on a universe in which antigens (foreign
material) and antibodies (the cells that perform the recognition) are represented by binary
strings. More precisely, the binary strings are used to represent receptors on B cells and
T cells and epitopes on antigens, although we refer to these (loosely) as antibodies and
antigens. Recognition in the natural immune system is achieved by molecular binding|the
extent of the binding being determined by molecular shape and electrostatic charge. The
complex chemistry of antigen recognition is highly simpli�ed in the binary immune system,
and modeled as string matching. The GA is used to evolve populations of strings that
match speci�c antigens well. For strings of any signi�cant length a perfect match is highly
improbable, so a partial matching rule is used which rewards more speci�c matches (i.e.,
matches on more bits) over less speci�c ones. This partial matching rule re
ects the fact
that the immune system's recognition capabilities need to be fairly speci�c in order to avoid
confusing self molecules with foreign molecules.

In Forrest et al.'s models, one population of antibodies and one of antigens is created,
each randomly. For most experiments, the antigen population is held constant, and the
antibody population is evolved under the GA. However, in some experiments the antigen
population is allowed to co-evolve with the antibodies (i.e., antigens evolve away from the
antibodies while the antibodies are evolving towards the antigens). Antigens are \presented"
to the antibody population sequentially (again, by analogy with the natural immune system),
and high-a�nity antibodies (those that match at many bit positions) have their �tnesses
increased.

This binary immune system has been used to study several di�erent aspects of the immune
system, including (1) its ability to detect common patterns (schemas) in the noisy environ-
ment of randomly presented antigens [38]; (2) its ability to discover and maintain coverage
of the diverse antigen population [99]; and (3) its ability to learn e�ectively, even when not
all antibodies are expressed and not all antigens are presented [51]. This last experiment is
particularly relevant to the more general question of how selection pressures operating only
at the global, phenotypic level can produce appropriate low-level, genetic structures. The
question is most interesting when the connection between phenotype and genotype is more
than a simple, direct mapping. The multigene families (V-region libraries) of the immune
system provide a good subject for experimentation from this point of view|the phenotype
is not a direct mapping from the genotype, but the connection is simple enough that it can
be studied analytically. In [51], all antigens were exactly 64 bits. The V-region library was
modeled as a set of four libraries, each with eight entries of length 16 (producing a genome
with 512 bits). Antibodies were expressed by randomly choosing one entry from each library
and concatenating them together to form one 64-bit antibody.

Recent work on the kind of genotype-phenotype relations that might be expected between
a sequence (e.g., an RNA sequence) and its corresponding higher-order structure (e.g., its
secondary structure) may also apply to modeling the immune system [59]. For example, the
interaction between the immune system and a rapidly evolving pathogen can be regarded as
a system with rapidly changing �tness criteria at the level of the secondary structure. Yet,
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Player B
Cooperate Defect

Player A Cooperate 3, 3 0, 5
Defect 5, 0 1, 1

Table 1: The payo� matrix for the Prisoner's Dilemma. The pairs of numbers in each cell
give the respective payo�s for players A and B in the given situation.

the immune system and pathogen are both co-evolving through mutations at the genetic
level. In a co-evolutionary system such as this, the populations evolve towards relatively
uncorrelated parts of the phenotype landscape where mutations have a relatively large e�ect
on the secondary structure, thus facilitating the process of continuous adaptation itself. This
is a similar point to that raised in [51]. The idea of exploiting variations in the phenotype
through mutations at the genetic level is a recurring theme in evolution, and the immune
system provides a clear example of where such exploitation might occur.

7 Social systems

Understanding and modeling social systems, be they insect colonies or human societies, has
been a focus of many arti�cial-life researchers. GAs have played a role in some of these
models, particularly those modeling the evolution of cooperation. Here we describe how the
GA was used to evolve strategies for interaction in the context of the Prisoner's Dilemma.

The Prisoner's Dilemma (PD) is a simple two-person game that has been studied exten-
sively in game theory, economics, and political science because it can be seen as an idealized
model for real-world phenomena such as arms races [6]. On a given turn, each player in-
dependently decides whether to \cooperate" or \defect." The game is summarized by the
payo� matrix shown in Table 1. If both players cooperate, they each get three points. If
player A defects and player B cooperates, then player A gets �ve points and player B gets
zero points; vice versa if the situation is reversed. Finally, if both players defect, they each
get one point. What is the best strategy to take? If there is only one turn to be played,
then clearly the best strategy is to defect: the worst consequence for a defector is to get one
point and the best is to get �ve points, which are better than the worst score and the best
score, respectively, for a cooperator. The dilemma is that if the game is iterated, that is, if
two players play several turns in a row, the strategy of always defecting will lead to a much
lower total payo� than the players would get if they both cooperated. How can reciprocal
cooperation be induced? This question takes on special signi�cance when the notions of
\cooperating" and \defecting" correspond to actions in the real world, such as a real-world
arms race.

Axelrod has studied the PD and related games extensively [6]. Early work, including
the results of two tournaments that played pairs of human-designed strategies against each
other, suggested that the best strategy for playing the iterated PD is one of the simplest:
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TIT FOR TAT. TIT FOR TAT cooperates on the �rst move and then, on subsequent moves,
does whatever the other player did last. That is, it o�ers cooperation and then reciprocates
it, but if the other player defects, TIT FOR TAT will retaliate with a defection.

Axelrod performed a series of experiments to see if a GA could evolve strategies to play
this game successfully [8]. Strategies were encoded as look-up tables, with each entry (C or
D) being the action to be taken given the outcomes of three previous turns. In Axelrod's �rst
experiment, the evolving strategies were played against eight human-designed strategies, and
the �tness of an evolving strategy was a weighted average of the scores against each of the
eight �xed strategies. Most of the strategies that evolved were similar to TIT FOR TAT,
having many of the properties that make TIT FOR TAT successful. Strikingly, the GA
occasionally found strategies that scored substantially higher than TIT FOR TAT.

It is not correct to conclude that the GA evolved strategies that are \better" than
any human-designed strategy. The performance of a strategy depends very much on its
environment|that is, the other strategies with which it is playing. Here the environment
was �xed and the highest-scoring strategies produced by the GA were ones that discovered
how to exploit speci�c weaknesses of the eight �xed strategies. It is not necessarily true that
these high-scoring strategies would also score well in some other environment. TIT FOR
TAT is a generalist, whereas the highest-scoring evolved strategies were more specialized
to their given environment. Axelrod concluded that the GA is good at doing what evolu-
tion often does: developing highly specialized adaptations to speci�c characteristics of the
environment.

To study the e�ects of a dynamic environment, Axelrod carried out another experiment
in which the �tness was determined by allowing the strategies in the population to play
with each other rather than with the �xed set of eight strategies. The environment changes
from generation to generation because the strategies themselves are evolving. At each gen-
eration, each strategy played an iterated Prisoner's Dilemma with the other members of
the population, and its �tness was the average score over all these games. In this second
set of experiments, Axelrod observed the following phenomenon. The GA initially evolves
uncooperative strategies, because strategies that tend to cooperate early on do not �nd re-
ciprocation among their fellow population members and thus tend to die out. But after
about 10 to 20 generations, the trend starts to reverse: the GA discovers strategies that
reciprocate cooperation and that punish defection (i.e., variants of TIT FOR TAT). These
strategies do well with each other and are not completely defeated by other strategies, as
were the initial cooperative strategies. The reciprocators score better than average, so they
spread in the population, resulting in more and more cooperation and increasing �tness.

Lindgren performed a series of experiments similar to Axelrod's second experiment, but
included the possibility of noise, in which players can make mistakes in following their strate-
gies [70]. He also allowed a more open-ended kind of evolution in which a \gene duplication"
operator allowed the amount of memory available to a given strategy to increase. He ob-
served some very interesting evolutionary dynamics, including periods of relative stasis with
one or two strategies fairly stable in the population, punctuated by mass extinction events.
Other work using computational evolution to discover PD strategies in the presence of noise
or imperfect information about the past (both making the PD a more realistic model of
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social or political interactions) has been done by Miller [79] and Marks [73], among others.

8 Open problems and future directions

In the previous sections we have brie
y described some representative examples of arti�cial-
life projects that use the GA in a signi�cant way. These examples, and many others which
we do not have space to discuss, point the way to several open problems in GAs. Some of
these are quite technical, (e.g., questions about genetic operators and representations) and
some are more general questions, relevant to many areas of arti�cial life.

It is di�cult to distinguish between \yet another cute simulation" and systems that teach
us something important and general, either about how to construct arti�cial life or about the
natural phenomena that they model. We suggest that arti�cial-life research should address
at least one of these two criteria, and that it is important to be explicit about what any
speci�c system teaches us that was not known before. This is a much more di�cult task
than may be readily appreciated, so di�cult in fact that we consider it an open problem to
develop adequate criteria and methods for evaluating arti�cial life systems.

On the modeling side it can be very di�cult to relate the behavior of a simulation quan-
titatively to the behavior of the system it is intended to model. This is because the level at
which arti�cial-life models are constructed is often so abstract that they are unlikely to make
numerical predictions. In GAs, for example, all of the biophysical details of transcription,
protein synthesis, gene expression, and meiosis have been stripped away. Useful arti�cial-life
models, however, may well reveal general conditions under which certain qualitative behav-
iors arise, or critical parameters in which a small change can have a drastic e�ect on the
behavior of the system. What is di�cult is to distinguish between good qualitative modeling
and simulations which are only vaguely suggestive of natural phenomena.

More speci�c to GAs is the central question of representation. For any given environment
or problem domain, the choice of which features to represent on the genotype and how to
represent them is crucial to the performance of the GA (or any other learning system). The
choice of system primitives (in the case of GAs, the features which comprise the genotype) is
a design decision which cannot be automated. GAs typically use low-level primitives such as
bits, which can be very far removed from the natural representation of environmental states
and control parameters. For this reason, the representation problem is especially important
for GAs, both for constructing arti�cial life and in modeling living systems.

Although the representation problem has been acknowledged for many years, there have
been surprisingly few innovative representations, the recent work on genetic programming
[69] and messy GAs [43] being notable exceptions. In genetic programming, individuals
are represented as S-expressions|small programs written in a subset of Lisp. Although S-
expressions can be written as linear strings, they are naturally viewed as trees, and the genetic
operators operate on trees. Crossover for example, swaps subtrees between S-expressions.
Messy GAs were developed by Goldberg [43] to allow variable-length strings which can
be either over- or under-speci�ed with respect to the problem being solved. This allows
the GA to manipulate short strings early in a run, and over time, to combine short well-
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tested building blocks into longer, more complex strings. New versions of the crossover
operator (e.g., uniform crossover [100]) can reduce the inherent bias in standard crossover
of breaking up correlated genes that are widely separated on the chromosome (referred to
as \positional bias"). These approaches are promising in some cases, especially since the
strong positional dependence of most current representations is an artifact introduced by
GAs. In natural genetic systems, one gene (approximately) codes for one protein regardless
of where it is located, although the expression of a gene (when the protein is synthesized) is
indirectly controlled by its location. In spite of the foregoing, the vast majority of current GA
implementations use a simple binary alphabet linearly ordered along a single haploid string.
It should be noted that researchers interested in engineering applications have long advocated
the use of simple \higher-cardinality alphabets," including for example, real numbers as
alleles [30]. Given the fact that GA performance is heavily dependent on the representation
chosen, this lack of diversity is surprising.

The representation issues described above primarily address the question of how to en-
gineer GAs. Moving away from this question towards more realistic models of evolution are
more extended mappings between the genotypic representation and the phenotype. Buss,
among others, has pointed out that the principle of evolution by natural selection is appli-
cable at many levels besides that of the individual, and in particular, that natural selection
controls development (e.g., embryology) which interacts with selection at the level of the
individual [23]. Related to this point, and to the observation that evolution and learning
can interact, are several recent studies of GAs that include a \development" cycle, which
translates the genotype through a series of steps into the phenotype. The most common
example of this is to let the genotype specify a grammar (as in L-systems). The grammar
is then used to produce a legal object in the language it speci�es (the development step),
and this string (the phenotype) is then evaluated by the �tness function. Examples of this
exploratory work include [14, 47, 67, 108]. Although this work is only a crude approximation
of development in living systems, it is an important �rst step and represents a promising
avenue for future research.

Related to the question of representation is the choice of genetic operators for introducing
variation into a population. One reason that binary linearly ordered representations are so
popular is that the standard mutation and crossover operators can be applied in a problem-
independent way. Other operators have been experimented with in optimization settings,
but no new general-purpose operators have been widely adopted since the advent of GAs.
Rather, the inversion operator, included in the original proposals for theoretical reasons, has
been largely abandoned. We believe it deserves more study. In addition, during the past
several decades, molecular biology has discovered many new mechanisms for rearranging
genetic material (e.g., jumping genes, gene deletion and duplication, and introns and exons).
It would be interesting to know if any of these is signi�cant algorithmically.

Explicit �tness evaluation is the most biologically unrealistic aspect of GAs. Several
of the examples described in the previous sections (e.g., ERL, Echo, Strategic Bugs, and
some of the Prisoner's Dilemma work) move away from an external, static �tness measure
towards more co-evolutionary and endogenous evaluations. Although it is relatively easy
to implement endogenous or co-evolutionary �tness strategies, there is virtually no theory
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describing the behavior of GAs under these circumstances. In particular, a theory about
how building blocks are processed (cf. [55, 42]) under these circumstances would be helpful.

Perhaps the most obvious area for extending the GA is to the study of evolution itself.
Although ideas from evolution have provided inspiration for developing interesting computa-
tional techniques, there have been few attempts to use these techniques to better understand
the evolutionary systems which inspired them. GAs, and the insights provided by analyz-
ing them carefully, should help us to better understand natural evolutionary systems. This
\closing of the modeling loop" is an important area of future research on evolutionary com-
putational methods.

Acknowledgments

The authors gratefully acknowledge the Santa Fe Institute Adaptive Computation Program
and the Alfred P. Sloan Foundation (grant B1992-46). Support was also provided to Forrest
by the National Science Foundation (grant IRI-9157644). We thank Ron Hightower, Terry
Jones, and Chris Langton for suggestions that improved this paper.

Suggested Reading

Holland, J. H. (1992). Adaptation in natural and arti�cial systems. Cambridge, MA: MIT
Press. Second edition (First edition, 1975).

Goldberg, D. E (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. (1986). Induction: Processes
of inference, learning, and discovery. Cambridge, MA: MIT Press.

Holland, J. H. (1992). Genetic algorithms. Scienti�c American, July, pp. 114{116.

Mitchell, M. (1993). Genetic algorithms. In Nadel, L. and Stein, D. L. (Eds.), 1992 Lectures
in Complex Systems. Reading, MA: Addison-Wesley.

Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computa-
tion. Science, 261, 872-878.

Langton, C. G. (Ed.) (1989). Arti�cial Life. Reading, MA: Addison-Wesley.

Langton, C. G., Taylor, C., Farmer, J. D., and Rasmussen, S. (Eds.) (1992). Arti�cial Life
II. Reading, MA: Addison-Wesley.

Langton, C. G. (Ed.) (1993). Arti�cial Life III. Reading, MA: Addison-Wesley.

Varela, F. J. and Bourgine, P. (Eds.) (1992). Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference on Arti�cial Life. Cambridge, MA:
MIT Press.

Grefenstette, J. J. (Ed.) (1985). Proceedings of an International Conference on Genetic
Algorithms and Their Applications. Hillsdale, NJ: Lawrence Erlbaum Associates.

19



Grefenstette, J. J. (Ed.) (1987). Proceedings of the Second International Conference on
Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates.

Scha�er, J. D. (ed.) (1989). Proceedings of the Third International Conference on Genetic
Algorithms. Los Altos, CA: Morgan-Kaufmann.

Belew, R. K. and Booker, L. B. (Eds.) (1991) Proceedings of the Fourth International
Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann.

Forrest, S. (Ed.) (1993) Proceedings of the Fifth International Conference on Genetic Algo-
rithms. San Mateo, CA: Morgan Kaufmann.

Schwefel, H.-P. and M�anner, R. (Eds.) (1990). Parallel Problem Solving From Nature.
Berlin: Springer-Verlag (Lecture Notes in Computer Science, Vol. 496).

M�anner, R. and B. Manderick, (Eds.) (1992). Parallel Problem Solving From Nature 2.
Amsterdam: North Holland.

Meyer, J.-A. and Wilson, S. W. (Eds.) (1991). From Animals to Animats: Proceedings of
the First International Conference on Simulation of Adaptive Behavior. Cambridge,
MA: MIT Press

Meyer, J.-A., Roitblatt, H. L., and Wilson, S. W. (Eds.) (1993). From Animals to Animats
2: Proceedings of the Second International Conference on Simulation of Adaptive
Behavior. Cambridge, MA: MIT Press

Farmer, J. D., Lapedes, A. , Packard, N. H., and Wendro�, B., (Eds.) (1986). Evolution,
games, and learning. Special issue of Physica D, 22.

Forrest, S. (Ed.) (1990). Emergent computation. Cambridge, MA: MIT Press. Also pub-
lished as Physica D, 42.

References

[1] D. H. Ackley and M. L. Littman. Interactions between learning and evolution. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II,
pages 487{507, Reading, MA, 1992. Addison-Wesley.

[2] D. H. Ackley and M. L. Littman. A case for Lamarckian evolution. In C. G. Langton,
editor, Arti�cial Life III, Reading, MA, 1993. Addison-Wesley.

[3] J. Andreoni and J. H. Miller. Auctions with adaptive arti�cial agents. Technical Report
91-01-004, Santa Fe Institute, Santa Fe, New Mexico 87501, 1991.

[4] J. Andreoni and J. H. Miller. Auction experiments in arti�cial worlds. Cuadernos, In
press.

[5] W. Brian Arthur. On designing economic agents that behave like human agents.
Evolutionary Economics, 3:1{22, 1993.

[6] R. Axelrod. The evolution of cooperation. Basic Books, New York, N.Y., 1984.

20



[7] R. Axelrod. An evolutionary approach to norms. The American Political Science
Review, 80, 1986.

[8] R. Axelrod. The evolution of strategies in the iterated Prisoner's Dilemma. In L. D.
Davis, editor, Genetic Algorithms and Simulated Annealing, Research Notes in Arti�-
cial Intelligence, Los Altos, CA, 1987. Morgan Kaufmann.

[9] T. B�ack, F. Ho�meister, and H.-P. Schwefel. A survey of evolution strategies. In R. K.
Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 2{9, San Mateo, CA, 1991. Morgan Kaufmann.

[10] J. M. Baldwin. A new factor in evolution. American Naturalist, 30:441{451, 1896.

[11] M. A. Bedau and N. H. Packard. Measurement of evolutionary activity, teleology, and
life. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial
Life II, pages 431{461, Reading, MA, 1992. Addison-Wesley.

[12] M. A. Bedau, F. Ronneburg, and M. Zwick. Dynamics of diversity in an evolving
population. In R. M�anner and B. Manderick, editors, Parallel Problem Solving from
Nature 2, pages 95{104, Amsterdam, 1992. North Holland.

[13] R. K. Belew. Evolution, learning, and culture: Computational metaphors for adaptive
algorithms. Complex Systems, 4:11{49, 1990.

[14] R. K. Belew. Interposing an ontogenic model between genetic algorithms and neural
networks. In J. Cowan, editor, Advances in Neural Information Processing (NIPS5),
San Mateo, CA, 1993. Morgan Kaufmann.

[15] R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using the
genetic algorithm with connectionist learning. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Arti�cial Life II, Santa Fe Institute Studies in the
Sciences of Complexity, pages 511{547, Reading, MA, 1992. Addison-Wesley.

[16] A. Bergman and M. W. Feldman. Recombination dynamics and the �tness landscape.
Physica D, 56:57{67, 1992.

[17] H. Bersini and F. J. Varela. The immune recruitment mechanism: A selective evolu-
tionary strategy. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 520{526, San Mateo, CA, 1991.
Morgan Kaufmann.

[18] W. W. Bledsoe. The use of biological concepts in the analytical study of systems,
November 1961. Paper presented at the ORSA-TIMS National Meeting, San Francisco,
CA.

[19] L. Booker. Instinct as an inductive bias for learning behavioral sequences. In J.A. Meyer
and S. W. Wilson, editors, From animals to animats: Proceedings of the �rst interna-
tional conference on simulation of adaptive behavior, pages 230{237, Cambridge, MA,
1991. MIT Press.

21



[20] L. B. Booker. Intelligent Behavior as an Adaptation to the Task Environment. PhD
thesis, The University of Michigan, Ann Arbor, MI, 1982.

[21] G. E. P. Box. Evolutionary operation: A method for increasing industrial productivity.
Journal of the Royal Statistical Society C, 6(2):81{101, 1957.

[22] H. J. Bremermann. Optimization through evolution and recombination. In M. C.
Yovits, G. T. Jacobi, and G. D. Goldstein, editors, Self-organizing systems, pages
93{106, Washington, D.C., 1962. Spartan Books.

[23] L. W. Buss. The Evolution of Individuality. Princeton University Press, Princeton,
N.J., 1987.

[24] F. Celada and P. E. Seiden. A computer model of cellular interactions in the immune
system. Immunology Today, 13(2):56{62, 1992.

[25] D. J. Chalmers. The evolution of learning: An experiment in genetic connectionism. In
D. S. Touretzky et al., editor, Proceedings of the 1990 Connectionist Models Summer
School, San Mateo, CA, 1990. Morgan Kaufmann.

[26] R. J. Collins and D. R. Je�erson. Selection in massively parallel genetic algorithms.
In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 249{256, San Mateo, CA, 1991. Morgan
Kaufmann.

[27] R. J. Collins and D. R. Je�erson. AntFarm: Towards simulated evolution. In C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages
579{601, Reading, MA, 1992. Addison-Wesley.

[28] R. J. Collins and D. R. Je�erson. The evolution of sexual selection and female choice.
In F. J. Varela and P. Bourgine, editors, Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference on Arti�cial Life, pages 327{336, Cam-
bridge, MA, 1992. MIT Press/Bradford Books.

[29] Y. Davidor. Genetic algorithms and robotics. Robotics and Automated Systems. World
Scienti�c, Singapore, 1991.

[30] L. D. Davis, editor. The Handbook of Genetic Algorithms. Van Nostrand Reinhold,
1991.

[31] M. Dorigo and E. Sirtori. Alecsys: A parallel laboratory for learning classi�er systems.
In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 296{302, San Mateo, CA, 1991. Morgan
Kaufmann.

[32] R. Dumeur. Extended classi�ers for simulation of adaptive behavior. In J.A. Meyer and
S. W. Wilson, editors, From animals to animats: Proceedings of the �rst international
conference on simulation of adaptive behavior, pages 58{65, Cambridge, MA, 1991.
MIT Press.

22



[33] J. D. Farmer, N. H. Packard, and A. S. Perelson. The immune system, adaptation,
and machine learning. Physica D, 22:187{204, 1986.

[34] D. B. Fogel. Evolving Arti�cial Intelligence. PhD thesis, University of California, San
Diego, CA, 1992.

[35] D. B. Fogel and J. W. Atmar. Comparing genetic operators with Gaussian mutations
in simulated evolutionary processes using linear search. Biological Cybernetics, 63:111{
114, 1990.

[36] L. J. Fogel, A. J. Owens, and M. J. Walsh. Arti�cial Intelligence Through Simulated
Evolution. John Wiley, New York, 1966.

[37] J. F. Fontanari and R. Meir. The e�ect of learning on the evolution of asexual popu-
lations. Complex Systems, 4:401{414, 1990.

[38] S. Forrest, B. Javornik, R. Smith, and A. Perelson. Using genetic algorithms to explore
pattern recognition in the immune system. Evolutionary Computation, in press.

[39] A.S. Fraser. Simulation of genetic systems by automatic digital computers: I. intro-
duction. Australian Journal of Biological Science, 10:484{491, 1957.

[40] A.S. Fraser. Simulation of genetic systems by automatic digital computers: Ii. e�ects
of linkage on rates of advance under selection. Australian Journal of Biological Science,
10:492{499, 1957.

[41] G. J. Friedman. Digital simulation of an evolutionary process. General Systems Year-
book, 4:171{184, 1959.

[42] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[43] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,
and �rst results. Complex Systems, 3:493{530, 1990.

[44] J. J. Grefenstette. Lamarckian learning in multi-agent environments. In R. K. Belew
and L. B. Booker, editors, Proceedings of the Fourth International Conference on Ge-
netic Algorithms, pages 303{310, San Mateo, CA, 1991. Morgan Kaufmann.

[45] J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical look at
implicit parallelism. In J. D. Scha�er, editor, Proceedings of the Third International
Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufmann.

[46] J. J. Grefenstette, C. L. Ramsey, and A. C. Schultz. Learning sequential decision rules
using simulation models and competition. Machine Learning, 5(4):355{381, 1990.

[47] F. Gruau. Genetic synthesis of Boolean neural networks with a cell rewriting develop-
mental process. In L. D. Whitley and J. D. Scha�er, editors, International Workshop on
Combinations of Genetic Algorithms and Neural Networks, pages 55{72, Los Alamitos,
CA, 1992. IEEE Computer Society Press.

23



[48] S. A. Harp and T. Samad. Genetic synthesis of neural network architecture. In L. D.
Davis, editor, Handbook of Genetic Algorithms, pages 202{221. Van Nostrand Reinhold,
1991.

[49] I. Harvey. The puzzle of the persistent question marks: A case study of genetic drift.
In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 15{22, San Mateo, CA, 1993. Morgan Kaufmann.

[50] I. Harvey, P. Husbands, and D. Cli�. Issues in evolutionary robotics. In J.-A. Meyer,
H. L. Roitblat, and S. W. Wilson, editors, From Animals to Animats 2: Proceedings of
the second international conference on simulation of adaptive behavior, pages 364{373,
Cambridge, MA, 1993. MIT Press.

[51] R. Hightower, S. Forrest, and A. Perelson. The evolution of secondary organization in
immune system gene libraries. In Proceedings of the Second European Conference on
Arti�cial Life, (in press).

[52] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D, 42:228{234, 1990.

[53] G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems,
1:495{502, 1987.

[54] J. H. Holland. Escaping brittleness: The possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors, Machine Learning II, pages 593{623, San Mateo, CA, 1986.
Morgan Kaufmann.

[55] J. H. Holland. Adaptation in Natural and Arti�cial Systems. MIT Press, Cambridge,
MA, 1992. Second edition (First edition, 1975).

[56] J. H. Holland. Echoing emergence: Objectives, rough de�nitions, and speculations for
Echo-class models. Technical Report 93-04-023, Santa Fe Institute, 1993. To appear
in Integrative Themes, G. Cowan, D. Pines and D. Melzner, Reading, MA: Addison-
Wesley.

[57] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard. Induction: Processes of
Inference, Learning, and Discovery. MIT Press, 1986.

[58] J. H. Holland and J. H. Miller. Arti�cial adaptive agents in economic theory. Technical
Report 91-05-025, Santa Fe Institute, Santa Fe, New Mexico, 1991.

[59] M. Huynen. Evolutionary dynamics and pattern generation in the sequence and sec-
ondary structure of RNA. PhD thesis, Universiteit Utrecht, The Netherlands, 1993.

[60] J. K. Inman. The antibody combining region: Speculations on the hypothesis of
general multispeci�city. In G. I. Bell, A. S. Perelson, and G. H. Pimbley Jr., editors,
Theoretical Immunology, pages 243{278. M. Dekker, NY, 1978.

24



[61] D. Je�erson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor, and
A. Wang. Evolution as a theme in arti�cial life: The Genesys/Tracker system. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II,
pages 549{577, Reading, MA, 1992. Addison-Wesley.

[62] T. Jones and S. Forrest. An introduction to s� echo. Technical Report 93-12-074,
Santa Fe Institute, Santa Fe, N.M., 1993.

[63] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, The University of Michigan, Ann Arbor, MI, 1975.

[64] K. A. De Jong. Genetic-algorithm-based learning. In Y. Kodrato� and R. Michalski,
editors, Machine Learning, volume 3, pages 611{638, 1990.

[65] K. A. De Jong. Introduction to second special issue on genetic algorithms. Machine
Learning, 5(4):351{353, 1990.

[66] K. De Jong. Editorial introduction. Evolutionary Computation, 1(1), 1993.

[67] H. Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex Systems, 4:461{476, 1990.

[68] J. R. Koza. Genetic evolution and co-evolution of computer programs. In C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages
603{629, Reading, MA, 1992. Addison-Wesley.

[69] J. R. Koza. Genetic programming: On the programming of computers by means of
natural selection. MIT Press, Cambridge, MA, 1993.

[70] K. Lindgren. Evolutionary phenomena in simple dynamics. In C. G. Langton, C. Tay-
lor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages 295{312, Reading,
MA, 1992. Addison-Wesley.

[71] K. Lindgren and M. G. Nordhal. Arti�cial food webs. In C. G. Langton, editor,
Arti�cial Life III, Reading, MA, 1993. Addison-Wesley.

[72] B. MacLennan. Synthetic ethology: An approach to the study of communication. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II,
pages 631{655, Reading, MA, 1992. Addison-Wesley.

[73] R. E. Marks. Breeding hybrid strategies: optimal behavior for oligopolists. Journal of
Evolutionary Economics, 2:17{38, 1992.

[74] F. Menczer and D. Parisi. A model for the emergence of sex in evolving networks:
Adaptive advantage or random drift? In F. J. Varela and P. Bourgine, editors, Toward
a Practice of Autonomous Systems: Proceedings of the First European Conference on
Arti�cial Life, Cambridge, MA, 1992. MIT Press/Bradford Books.

25



[75] T. P. Meyer and N. H. Packard. Local forcasting of high dimensional chaotic dynam-
ics. Technical Report CCSR-91-1, Center for Complex Systems Research, Beckman
Institute, University of Illinois at Urbana Champaign, 1991.

[76] G. F. Miller and P. M. Todd. Exploring adaptive agency I: Theory and methods for
simulating the evolution of learning. In D. S. Touretzky et al., editor, Proceedings of the
1990 Connectionist Models Summer School, San Mateo, CA, 1990. Morgan Kaufmann.

[77] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic
algorithms. In J. D. Scha�er, editor, Proceedings of the Third International Conference
on Genetic Algorithms, pages 379{384. Morgan Kaufmann, San Mateo, CA, 1989.

[78] J. H. Miller. Two Essays on the Economics of Imperfect Information. PhD thesis, The
University of Michigan, Ann Arbor, MI, 1988.

[79] J. H. Miller. The coevolution of automata in the repeated prisoner's dilemma. Technical
Report 89-003, Santa Fe Institute, Santa Fe, New Mexico 87501, 1989.

[80] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber. Evolving cellular automata to perform
computations: Mechanisms and impediments. Submitted to Physica D, 1993.

[81] D. J. Montana and L. D. Davis. Training feedforward networks using genetic algo-
rithms. In Proceedings of the International Joint Conference on Arti�cial Intelligence,
San Mateo, CA, 1989. Morgan Kaufmann.

[82] S. Nol�, J. L. Elman, and D. Parisi. Learning and evolution in neural networks.
Technical Report CRL 9019, Center for Research in Language, University of California,
San Diego, 1990.

[83] N. H. Packard. Intrinsic adaptation in a simple model for evolution. In C. G. Langton,
editor, Arti�cial Life, pages 141{155, Reading, MA, 1989. Addison-Wesley.

[84] D. Parisi, S. Nol�, and F. Cecconi. Learning, behavior, and evolution. In Proceed-
ings of the First European Conference on Arti�cial Life, Cambridge, MA, 1992. MIT
Press/Bradford Books.

[85] A. S. Perelson. Immune network theory. Immunol. Rev., 110:5{36, 1989.

[86] A. S. Perelson, G. Weisbuch, and A. Coutinho, editors. Theoretical and Experimental
Insights into Immunology. Springer-Verlag, NY, 1992.

[87] T. S. Ray. Is it alive, or is it GA? In R. K. Belew and L. B. Booker, editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 527{534, San
Mateo, CA, 1991. Morgan Kaufmann.

[88] T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages 371{408, Reading, MA,
1992. Addison-Wesley.

26



[89] I. Rechenberg. Evolutionstrategie: optimierung technischer systeme nach prinzipien
der biologischen evolution. Frommann-Holzboog, Stuttgart, 1973.

[90] R. Riolo. Lookahead planning and latent learning in a classi�er system. In J.A. Meyer
and S. W. Wilson, editors, From animals to animats: Proceedings of the �rst interna-
tional conference on simulation of adaptive behavior, pages 316{326, Cambridge, MA,
1991. MIT Press.

[91] R. Riolo. Modeling simple human category learning with a classi�er system. In R.K.
Belew and L.B. Booker, editors, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 324{333, San Mateo, CA, 1991. Morgan-Kaufmann.

[92] D. Rogers. Weather prediction using a genetic memory. Technical Report 90.6, Re-
search Institute for Advanced Computer Science, NASA Ames Research Center, Mof-
fett Field, CA, 1990.

[93] J. D. Scha�er and L. J. Eshelman. On crossover as an evolutionarily viable strategy. In
R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International Confer-
ence on Genetic Algorithms, pages 61{68, San Mateo, CA, 1991. Morgan Kaufmann.

[94] J. D. Scha�er, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms
and neural networks: A survey of the state of the art. In L. D. Whitley and J. D.
Scha�er, editors, International Workshop on Combinations of Genetic Algorithms and
Neural Networks, pages 1{37, Los Alamitos, CA, 1992. IEEE Computer Society Press.

[95] S. Schulze-Kremer. Genetic algorithms for protein tertiary structure prediction. In
R. M�anner and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages
391{400, Amsterdam, 1992. North Holland.

[96] H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Tech-
nische Universit�at Berlin, Berlin, 1975.

[97] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolu-
tionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkh�auser, Basel,
1977.

[98] J. Maynard Smith. When learning guides evolution. Nature, 329, 1987.

[99] R. Smith, S. Forrest, and A. S. Perelson. Searching for diverse, cooperative populations
with genetic algorithms. Evolutionary Computation, 1(2):127{149, 1993.

[100] G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Scha�er, editor,
Proceedings of the Third International Conference on Genetic Algorithms, pages 2{9,
San Mateo, CA, 1989. Morgan Kaufmann.

[101] C. E. Taylor, D. R. Je�erson, S. R. Turner, and S. R. Goldman. RAM: Arti�cial life
for the exploration of complex biological systems. In C. G. Langton, editor, Arti�cial
Life, pages 275{295, Reading, MA, 1989. Addison-Wesley.

27



[102] P. M. Todd and G. F. Miller. Exploring adaptive agency III: Simulating the evolution
of habituation and sensitization. In H.-P. Schwefel and R. M�anner, editors, Parallel
Problem Solving from Nature, Berlin, 1990. Springer-Verlag (Lecture Notes in Com-
puter Science).

[103] P. M. Todd and G. F. Miller. Exploring adaptive agency II: Simulating the evolution
of associative learning. In J.-A. Meyer and S. W. Wilson, editors, From animals to
animats: Proceedings of the �rst international conference on simulation of adaptive
behavior, pages 306{315, Cambridge, MA, 1991. MIT Press.

[104] G. M. Werner and M. G. Dyer. Evolution of communication in arti�cial organisms. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II,
pages 659{687, Reading, MA, 1992. Addison-Wesley.

[105] L. D. Whitley, S. Dominic, and R. Das. Genetic reinforcement learning with multilayer
neural networks. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 562{569, San Mateo, CA, 1991.
Morgan Kaufmann.

[106] S. W. Wilson. Knowledge growth in an arti�cial animal. In J. Grefenstette, editor,
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, Hillsdale, New Jersey, 1985. Lawrence Erlbaum Associates.

[107] S. W. Wilson. Classi�er systems and the animat problem. Machine Learning, 2:199{
228, 1987.

[108] S. W. Wilson. The genetic algorithm and simulated evolution. In C. G. Langton,
editor, Arti�cial Life, pages 157{165, Reading, MA, 1989. Addison-Wesley.

28


