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Ten Little Treasures of Game Theory and Ten Intuitive Contradictions

Jacob K. Goeree and Charles A. Holt*

The Nash equilibrium has been the centerpiece of game theory since its introduction about

fifty years ago. Along with supply and demand, the Nash equilibrium is one of the most

commonly used theoretical constructs in economics, and it is increasingly being applied in other

social sciences. Indeed, game theory has finally gained the central role envisioned by John von

Neumann and Oscar Morgenstern, and in some areas of economics (e.g., industrial organization)

virtually all recent theoretical developments are applications of game theory. The impression one

gets from recent surveys and game theory textbooks is that the field has reached a comfortable

maturity, with neat classifications of games and successively stronger (more "refined") versions

of the basic approach being appropriate for more complex categories of games: Nash equilibrium

for static games with complete information, Bayesian Nash for static games with incomplete

information, subgame perfectness for dynamic games with complete information, and some

refinement of the sequential Nash equilibrium for dynamic games with incomplete information

(e.g. Robert Gibbons, 1997). The rationality assumptions that underlie this analysis are often

preceded by persuasive adjectives like "perfect," "intuitive," and "divine." If any noise in

decision making is admitted, it is eliminated in the limit in a process of "purification." It is hard

not to notice parallels with theology, and the highly mathematical nature of the developments

makes this work about as inaccessible to mainstream economists as medieval treatises on

theology would have been to the general public.

The discordant note in this view of game theory has come primarily from laboratory

experiments, but the prevailing opinion among game theorists seems to be that behavior will

eventually converge to Nash predictions under the right conditions.1 This paper presents a much

more unsettled perspective of the current state of game theory. In each of the major types of

games, we present one or more examples for which the relevant version of the Nash equilibrium

* We wish to thank Rachel Parkin and Scott Saiers for research assistance, and Colin Camerer, Monica Capra,
Glenn Harrison, Susan Laury, Melayne McInnes, Theo Offerman, Amnon Rapoport, Joel Sobel, and an anonymous referee
for helpful comments. This research was funded in part by the National Science Foundation (SES-9818683).

1 For example, George Mailath’s (1998) survey of evolutionary models cites the failure of backward induction as

the main cause of behavioral deviations from Nash predictions.
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predicts remarkably well. These "treasures" are observed in games played only once by

financially motivated subjects who have had prior experience in other, similar, strategic situations.

In each of these games, however, we show that a change in the payoff structure can produce a

large inconsistency between theoretical prediction(s) and human behavior. For example, a payoff

change that does not alter the unique Nash equilibrium may move the data to the opposite side

of the range of feasible decisions. Alternatively, a payoff change may cause a major shift in the

game-theoretic predictions and have no noticeable effect on actual behavior. The observed

contradictions are typically somewhat intuitive, even though they are not explained by standard

game theory. In a simultaneous effort-choice coordination game, for example, an increase in the

cost of players’ "effort" decisions is shown to cause a dramatic decrease in effort, despite the fact

that any common effort is a Nash equilibrium for a range of effort costs. In some of these

games, it seems like the Nash equilibrium works only by coincidence, e.g. in symmetric cases

where the costs of errors in each direction are balanced. In other cases, the Nash equilibrium has

considerable drawing power, but economically significant deviations remain to be explained.

The idea that game theory should be tested with laboratory experiments is as old as the

notion of a Nash equilibrium, and indeed, the classic prisoner’s dilemma paradigm was inspired

by an experiment conducted at the RAND Corporation in 1950. Some of the strategic analysts

at RAND were dissatisfied with the received theory of cooperative and zero-sum games in von

Neumann and Morgenstern’s (1944) Theory of Games and Economic Behavior. In particular,

nuclear conflict was not thought of as a zero-sum game because both parties may lose. Sylvia

Nasar (1998) describes the interest at RAND when word spread that a Princeton graduate student,

John Nash, had generalized von Neumann’s existence proof for zero-sum games to the class of

all games with finite numbers of strategies. Two mathematicians, Melvin Dresher and Merrill

Flood, had been running some game experiments with their colleagues, and they were skeptical

that human behavior would be consistent with Nash’s notion of equilibrium. In fact, they

designed an experiment that was run on the same day they heard about Nash’s proof. Each

player in this game had a dominant strategy to defect, but both would earn more if they both

used the cooperative strategy. The game was repeated 100 times with the same two players, and

a fair amount of cooperation was observed. One of Nash’s professors, Al W. Tucker, saw the

payoffs for this game written on a blackboard, and he invented the prisoner’s dilemma story that
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was later used in a lecture on game theory that he gave in the Psychology Department at Stanford

(Tucker, 1950).

Interestingly, Nash’s response to Dresher and Flood’s repeated prisoner’s dilemma

experiment is contained in a note to the authors that was published as a footnote to their paper:

"The flaw in the experiment as a test of equilibrium point theory is that the experiment really

amounts to having the players play one large multi-move game. One cannot just as well think

of the thing as a sequence of independent games as one can in zero-sum cases. There is just too

much interaction..." (quoted from Nasar, 1998, p. 119). In contrast, the experiments that we

report in this paper involved games that were played only once, although related results for

repeated games with random matching will be cited where appropriate. As Nash noted, the

advantage of one-shot games is that they insulate behavior from the incentives for cooperation

and reciprocity that are present in repeated games. One potential disadvantage of one-shot games

is that, without an opportunity to learn and adapt, subjects may be especially prone to the effects

of confusion. The games used in this paper, however, are simple enough in structure to ensure

that Nash-like behavior can be observed in the "treasure" treatment. In addition, the study of

games played only once is of independent interest given the widespread applications of game

theory to model one-shot interactions in economics and other social sciences, e.g. the FCC license

auctions, elections, military campaigns, and legal disputes.

The categories of games to be considered are based on the usual distinctions: static versus

dynamic and complete versus incomplete information. Section I describes the experiments based

on static games with complete information: social dilemma, matching pennies, and coordination

games. Section II contains results from dynamic games with complete information: bargaining

games and games with threats that are not credible. The games reported in sections III and IV

have incomplete information about other players’ payoffs: in static settings (auctions) and two-

stage settings (signaling games).

It is well known that decisions can be affected by psychological factors such as framing,

aspiration levels, social distance, and heuristics (e.g., Daniel Kahneman, Paul Slovic, and Amos

Tversky, 1982; Catherine Eckel and Rick Wilson, 1999). In this paper we try to hold

psychological factors constant and focus on payoff changes that are primarily economic in nature.

As noted below, economic theories can and are being devised to explain the resulting anomalies.
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For example, the rational-choice assumption underlying the notion of a Nash equilibrium

eliminates all errors, but if the cost of "overshooting" an optimal decision are much lower than

the costs of "undershooting," one might expect an upward bias in decisions. In a game, the

endogenous effects of such biases may be reinforcing in a way that creates a "snowball" effect

that moves decisions well away from a Nash prediction. Models that introduce (possibly small)

amounts of noise into the decision making process can produce predictions that are quite far from

any Nash equilibrium (Richard D. McKelvey and Thomas R. Palfrey, 1995; Simon P. Anderson,

Jacob K. Goeree, and Charles A. Holt, 1998a, 1998b, 1999; Stanley S. Reynolds, 1999; Goeree

and Holt, 1999; and C. Monica Capra et al., 1999, 2000).

A second type of rationality assumption that is built into the Nash equilibrium is that

beliefs are consistent with actual decisions. Beliefs are not likely to be confirmed out of

equilibrium, and learning will presumably occur in such cases. There is a large recent literature

on incorporating learning into models of adjustment in games that are played repeatedly with

different partners.2 These models include naive Bayesian learning (e.g. David J. Cooper, Susan

Garvin, and John H. Kagel, 1997; Dilip Mookherjee and Barry Sopher, 1997), reinforcement or

stimulus-response learning (e.g. Ido Erev and Alvin E. Roth, 1998), and hybrid models with

elements of both (Colin Camerer and Teck-Hua Ho, 1999). Learning from experience is not

possible in games that are only played once, and beliefs must be formed from introspective

thought processes, which may be subject to considerable noise. Without noise, iterated best

responses will converge to a Nash equilibrium, if they converge at all. Some promising

approaches to explaining deviations from Nash predictions are based on models that limit players’

capacities for introspection, either by limiting the number of iterations (e.g. Dale O. Stahl and

Paul W. Wilson, 1995; Rosemarie Nagel, 1995) or by injecting increasing amounts of noise into

higher levels of iterated beliefs (Goeree and Holt, 1999; Dorothea Kübler and Georg Weizsäcker,

2000). The predictions derived from these approaches, discussed in section V, generally conform

to Nash predictions in the treasure treatments and to the systematic, intuitive deviations in the

contradiction treatments. Some conclusions are offered in section VI.

2 See, for instance, Drew Fudenberg and David K. Levine (1998) for a survey.
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I. STATIC GAMES WITH COMPLETE INFORMATION

In this section we consider a series of two-player, simultaneous-move games, for which

the Nash equilibria show an increasing degree of complexity. The first game is a "social

dilemma" in which the pure-strategy Nash equilibrium coincides with the unique rationalizable

outcome. Next, we consider a matching pennies game with a unique Nash equilibrium in mixed

strategies. Finally, we discuss coordination games that have multiple Nash equilibria, some of

which are better for all players.

In all of the games reported here and in subsequent sections, we used cohorts of student

subjects recruited from undergraduate economics classes at the University of Virginia. Each

cohort consisted of 10 students who were paid $6 for arriving on time, plus all cash they earned

in the games played. These one-shot games followed an initial "part A" in which the subjects

played the same two-person game for 10 periods with new pairings made randomly in each

period.3 Earnings for the two-hour sessions ranged from $15 to $60, with an average of about

$35. Each one-shot game began with the distribution and reading of the instructions for that

game.4 These instructions contained assurances that all money earned would be paid and that

the game would be followed by "another, quite different, decision-making experiment." Since

the one-shot treatments were paired, we switched the order of the treasure and contradiction

conditions in each subsequent session. Finally, the paired treatments were always separated by

other one-shot games of a different type.

The One-Shot Traveler’s Dilemma Game

The Nash equilibrium concept is based on the twin assumptions of perfect error-free

decision making and the consistency of actions and beliefs. The latter requirement may seem

especially strong in the presence of multiple equilibria when there is no obvious way for players

to coordinate. More compelling arguments can be given for the Nash equilibrium when it

3 We only had time to run about six one-shot games in each session, so the data are obtained from a large number
of sessions where part A involved a wide range of repeated games, including public goods, coordination, price
competition, and auction games that are reported in other papers. The one-shot games never followed a repeated game
of the same type.

4 These instructions can be downloaded from http://www.people.virginia.edu/~cah2k/datapage.html.
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predicts the play of the unique justifiable, or rationalizable, action (Douglas B. Bernheim, 1984;

David G. Pierce, 1984). Rationalizability is based on the idea that players should eliminate those

strategies that are never a best response for any possible beliefs, and realize that other (rational)

players will do the same.5

To illustrate this procedure, consider the game in which two players independently and

simultaneously choose integer numbers between (and including) 180 and 300. Both players are

paid the lower of the two numbers, and, in addition, an amount R > 1 is transferred from the

player with the higher number to the player with the lower number. For instance, if one person

chooses 210 and the other chooses 250, they receive payoffs of 210 + R and 210 - R respectively.

Since R > 1, the best response is to undercut the other’s decision by 1 (if that decision were

known), and therefore, the upper bound 300 is never a best response to any possible beliefs that

one could have. Consequently, a rational person must assign a probability of zero to a choice

of 300, and hence 299 cannot be a best response to any possible beliefs that rule out choices of

300, etc. Only the lower bound 180 survives this iterated deletion process and is thus the unique

rationalizable action, and hence the unique Nash equilibrium.6 This game was introduced by

Kaushik Basu (1994) who coined it the "traveler’s dilemma" game.7

Although the Nash equilibrium for this game can be motivated by successively dropping

those strategies that are never a best response (to any beliefs about strategies that have not yet

been eliminated from consideration), this deletion process may be too lengthy for human subjects

with limited cognitive abilities. When the cost of having the higher number is small, i.e. for

small values of R, one might expect more errors in the direction of high claims, well away from

5 A well-known example for which this iterated deletion process results in a unique outcome is a Cournot duopoly
game with linear demand (Fudenberg and Jean Tirole, 1993, pp. 47-48).

6 In other games, rationalizability may allow outcomes that are not Nash equilibria, so it is a weaker concept than
that of a Nash equilibrium, allowing a wider range of possible behavior. It is in this sense that Nash is more persuasive
when it corresponds to the unique rationalizable outcome.

7 The associated story is that two travelers purchase identical antiques while on a tropical vacation. Their luggage
is lost on the return trip, and the airline asks them to make independent claims for compensation. In anticipation of
excessive claims, the airline representative announces: "We know that the bags have identical contents, and we will
entertain any claim between $180 and $300, but you will each be reimbursed at an amount that equals the minimum of
the two claims submitted. If the two claims differ, we will also pay a reward R to the person making the smaller claim
and we will deduct a penalty R from the reimbursement to the person making the larger claim."
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the unique equilibrium at 180, and indeed this is the intuition behind the dilemma. In contrast,

with a large penalty for having the higher of the two claims, players are likely to end up with

claims that are near the unique Nash prediction of 180.

To test these hypotheses we asked 50 subjects (25 pairs) to make choices in a treatment

with R = 180, and again in a matched treatment with R = 5. All subjects made decisions in each

treatment, and the two games were separated by a number of other one-shot games. The ordering

of the two treatments was alternated. The instructions asked the participants to devise their own

numerical examples to be sure that they understood the payoff structure.

Figure 1 shows the frequencies for each 10-cent category centered around the claim label

Figure 1. Claim Frequencies in a Traveler’s Dilemma
for R = 180 (light bars) and R = 5 (dark bars)

on the horizontal axis. The lighter bars pertain to the high-R "treasure" treatment, where close

to 80 percent of all the subjects chose the Nash equilibrium strategy, with an average claim of

201. However, roughly the same fraction chose the highest possible claim in the low-R

treatment, for which the average was 280, as shown by the darker bars. Notice that the data in

the contradiction treatment are clustered at the opposite end of the set of feasible decisions from



8

the unique (rationalizable) Nash equilibrium.8 Moreover, the "anomalous" result for the low-R

treatment does not disappear or even diminish over time when subjects play the game repeatedly

and have the opportunity to learn.9 Since the treatment change does not alter the unique Nash

(and rationalizable) prediction, standard game theory simply cannot explain the most salient

feature of the data, i.e. the effect of the penalty/reward parameter on average claims.

A Matching Pennies Game

Consider a symmetric matching pennies game in which the row player chooses between

Top and Bottom and the column player simultaneously chooses between Left and Right, as shown

in top part of Table 1. The payoff for the row player is $0.80 when the outcome is (Top, Left)

or (Bottom, Right) and $0.40 otherwise. The motivations for the two players are exactly

opposite: column earns $0.80 when row earns $0.40, and vice versa. Since the players have

opposite interests there is no equilibrium in pure strategies. Moreover, in order not to be

exploited by the opponent, neither player should favor one of their strategies, and the mixed-

strategy Nash equilibrium involves randomizing over both alternatives with equal probabilities.

As before, we obtained decisions from 50 subjects in a one-shot version of this game (5 cohorts

of 10 subjects, who were randomly matched and assigned row or column roles). The choice

percentages are shown in parentheses next to the decision labels in the top part of Table 1. Note

that the choice percentages are essentially "fifty-fifty," or as close as possible given that there

was an odd number of players in each role.

Now consider what happens if the row player’s payoff of $0.80 in the (Top, Left) box is

8 This result is statistically significant at all conventional levels, given the strong treatment effect and the relatively
large number of independent observations (two paired observations for each of the 50 subjects). We will not report
specific non-parametric tests for cases that are so clearly significant. The individual choice data are provided in the Data
Appendix for this paper on: http://www.people.virginia.edu/~cah2k/datapage.html.

9 In Capra et al. (1999), we report results of a repeated traveler’s dilemma game (with random matching). When
subjects chose numbers in the range [80, 200] with R = 5, the average claim rose from approximately 180 in the first
period to 196 in period 5, and the average remained above 190 in later periods. Different cohorts played this game with
different values of R, and successive increases R resulted in successive reductions in average claims. With a
penalty/reward parameter of 5, 10, 20, 25, 50, and 80 the average claims in the final three periods were 195, 186, 119,
138, 85, and 81 respectively. Even though there is one treatment reversal, the effect of the penalty/reward parameter on
average claims is significant at the one-percent level. The patterns of adjustment are well explained by a naive Bayesian
learning model with decision error, and the claim distributions for the final five periods are close to those predicted by
a logit equilibrium (McKelvey and Palfrey, 1995).
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increased to $3.20, as shown in the asymmetric matching pennies game in the middle part of

Table 1. Three One-Shot Matching Pennies Games
(with choice percentages)

Symmetric
Matching
Pennies

Left (48%) Right (52%)

Top (48%)(48%) 80, 40 40, 80

Bottom (52%)(52%) 40, 80 80, 40

Asymmetric
Matching
Pennies

Left (16%) Right (84%)

Top (96%)(96%) 320, 40 40, 80

Bottom (4%)(4%) 40, 80 80, 40

Reversed
Asymmetry

Left (80%) Right (20%)

Top (8%)(8%) 44, 40 40, 80

Bottom (92%)(92%) 40, 80 80, 40

Table 1. In a mixed-strategy equilibrium, a player’s own decision probabilities should be such

that the other player is made indifferent between the two alternatives. Since the column player’s

payoffs are unchanged, the mixed-strategy Nash equilibrium predicts that row’s decision

probabilities do not change either. In other words, the row player should ignore the unusually

high payoff of $3.20 and still choose Top or Bottom with probabilities of one-half. (Since

column’s payoffs are either 40 or 80 for playing Left and either 80 or 40 for playing Right, row’s

decision probabilities must equal 1/2 to keep column indifferent between Left and Right, and
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hence willing to randomize.)10 This counter-intuitive prediction is dramatically rejected by the

data, with 96 percent of the row players choosing the Top decision that gives a chance of the

high $3.20 payoff. Interestingly, the column players seemed to have anticipated this, and they

played Right 84 percent of the time, which is quite close their equilibrium mixed-strategy of 7/8.

Next, we lowered the row player’s (Top, Left) payoff to $0.44, which again should leave the row

player’s own choice probabilities unaffected in a mixed-strategy Nash equilibrium. Again the

effect is dramatic, with 92 percent of the choices being Down, as shown in the bottom part of

Table 1. As before, the column players seemed to have anticipated this reaction, playing Left

80 percent of the time. To summarize, the unique Nash prediction is for the bolded row-choice

percentages to be unchanged at 50 percent for all three treatments. This prediction is violated

in an intuitive manner, with row players’ choices responding to their own payoffs.11 In this

context, the Nash mixed-strategy prediction seems to work only by coincidence, when the payoffs

are symmetric.

A Coordination Game with a Secure Outside Option

Games with multiple Nash equilibria pose interesting new problems for predicting

behavior, especially when some equilibria produce higher payoffs for all players. The problem

of coordinating on the high-payoff equilibrium may be complicated by the possible gains and

losses associated with payoffs that are not part of any equilibrium outcome. Consider a

coordination game in which players receive $1.80 if they coordinate on the high-payoff

equilibrium (H,H), $0.90 if they coordinate on the low-payoff equilibrium (L,L), and they receive

nothing if they fail to coordinate (i.e. when one player chooses H and the other L). Suppose that,

10 The predicted equilibrium probabilities for the row player are not affected if we relax the assumption of risk
neutrality. There are only two possible payoff levels for column so without loss of generality columns’ utilities for
payoffs of 40 and 80 can be normalized to 0 and 1. Hence even a risk-averse column player will only be indifferent when
row uses choice probabilities of 1/2.

11 This anomaly is persistent when subjects play the game repeatedly. Jack Ochs (1995) investigates a matching
pennies game with an asymmetry similar to that of the middle game in Table 1, and reports that the row players continue
to select Top considerably more than one-half of the time, even after as many as fifty rounds. These results are replicated
in McKelvey, Palfrey, and Roberto A. Weber (2000). Similarly, Goeree, Holt, and Palfrey (2000) report results for ten-
period repeated matching pennies games that exactly match those in Table 1. The results are qualitatively similar but less
dramatic than those in Table 1, with row’s choice probabilities showing strong "own-payoff" effects that are not predicted
by the Nash equilibrium.
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in addition, the column player has a secure option S that yields $0.40 for column and results in

a zero payoff for the row player. This game is given in Table 2 when x = 0. To analyze the

Nash equilibria of this game, notice that for the column player a fifty-fifty combination of L and

H dominates S, and a rational column player should therefore avoid the secure option.

Eliminating S turns the game into a standard two-by-two coordination game that has three Nash

equilibria: both players choosing L, both choosing H, and a mixed-strategy equilibrium in which

both players choose L with probability 2/3.

The Nash equilibria are independent of x, which is the payoff to the row player when

Table 2. An Extended Coordination Game

L H S

L 90, 90 0, 0 x, 40

H 0, 0 180, 180 0, 40

(L,S) is the outcome, since the argument for eliminating S is based solely on column’s payoffs.

However, the magnitude of x may affect the coordination process: for x = 0, row is indifferent

between L and H when column selects S, and row is likely to prefer H when column does not

select S (since then L and H have the same number of zero payoffs for row, but H has a higher

potential payoff). Row is thus more likely to choose H, which is then also the optimal action

for the column player. However, when x is large, say 400, the column player may anticipate that

row will select L in which case column should avoid H.

This intuition is borne out by the experimental data: in the treasure treatment with x = 0,

96 percent of the row players and 84 percent of the column players chose the high-payoff action

H, while in the contradiction treatment with x = 400 only 64 percent of the row players and 76

percent of the column players chose H. The percentages of outcomes that were coordinated on

the high-payoff equilibrium were 80 for the treasure treatment versus 32 for the contradiction

treatment. In the latter treatment, an additional 16 percent of the outcomes were coordinated on

the low-payoff equilibrium, but more than half of all the outcomes were uncoordinated, non-Nash

outcomes.
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A Minimum-Effort Coordination Game

The next game we consider is also a coordination game with multiple equilibria, but in

this case the focus is on the effect of payoff asymmetries that determine the risks of deviating

in the upward and downward directions. The two players in this game choose "effort" levels

simultaneously, and the cost of effort determines the risk of deviation. The joint product is of

the fixed-coefficients variety, so that each person’s payoff is the minimum of the two efforts,

minus the product of the player’s own effort and a constant cost factor, c. In the experiment, we

let efforts be any integer in the range from 110 to 170. If c < 1, any common effort in this range

is a Nash equilibrium, because a unilateral one-unit increase in effort above a common starting

point will not change the minimum but will reduce one’s payoff by c. Similarly, a one-unit

decrease in effort will reduce one’s payoff by 1 - c, i.e. the reduction in the minimum is more

than the savings in effort costs when c < 1. Obviously, a higher effort cost increases the risk of

raising effort and reduces the risk of lowering effort. Thus simple intuition suggests that effort

levels will be inversely related to effort costs, despite the fact that any common effort level is

a Nash equilibrium.

We ran one treatment with a low effort cost of 0.1, and the data for 50 randomly matched

subjects in this treatment are shown by the dark bars in Figure 2. Notice that behavior is quite

concentrated at the highest effort level of 170; subjects coordinate on the Pareto-dominant

outcome. The high effort cost treatment (c = 0.9), however, produced a preponderance of efforts

at the lowest possible level, as can be seen by the lighter bars in the figure. Clearly, the extent

of this "coordination failure" is affected by the key economic variable in this model, even though

Nash theory is silent.12

12 The standard analysis of equilibrium selection in coordination is based on the Harsanyi and Selten’s (1988) notion
of risk dominance, which allows a formal analysis of the tradeoff between risk and payoff dominance. Straub (1995)
reports experimental evidence for risk dominance as a selection criterium. There is no agreement on how to generalize
risk dominance beyond 2 × 2 games, but see Anderson, Goeree, and Holt (2000) for a proposed generalization based on
the "stochastic potential." Experiments with repeated plays of coordination games have shown that behavior may begin
near the Pareto-dominant equilibrium, but later converge to the equilibrium that is worst for all concerned (John B. van
Huyck, Raymond C. Battalio, and Richard O. Beil, 1990). Moreover, the equilibrium that is selected may be affected
by the payoff structure for dominated strategies (Russell Cooper et al., 1992). See Goeree and Holt (1998) for results
of a repeated coordination game with random matching. They show that the dynamic patterns of effort choices are well
explained by a simple evolutionary model of noisy adjustment toward higher payoffs, and that final-period effort decisions
can be explained by the maximization of stochastic potential function.
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Figure 2. Effort Choice Frequencies for a Minimum Effort Coordination Game
With High Effort Cost (Light Bars) and Low Effort Cost (Dark Bars)

The Kreps Game

The previous examples demonstrate how the cold logic of game theory can be at odds

with intuitive notions about human behavior. This tension has not gone unnoticed by some game

theorists. For instance, David M. Kreps (1995) discusses a variant of the game in the top part

of Table 3 (where we have scaled back the payoffs to levels that are appropriate for the

laboratory). The pure-strategy equilibrium outcomes of this game are (Top, Left) and (Bottom,

Right). In addition, there is a mixed-strategy equilibrium in which row randomizes between Top

and Bottom and column randomizes between Left and Middle. The only column strategy that is

not part of any Nash equilibrium is labeled Non-Nash. Kreps argues that column players will

tend to choose Non-Nash because the other options yield at best a slightly higher payoff (i.e. 10,

15, or 20 cents higher) but could lead to substantial losses of $1 or $2.50. Notice that this

intuition is based on payoff magnitudes out of equilibrium, in contrast to Nash calculations based
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only on signs of payoff differences.

Table 3. Two Versions of the Kreps Game
(with choice percentages)

Basic
Game

Left (26%) Middle (8%) Non-Nash (68%) Right (0%)

Top (68%) 200, 50 0, 45 10, 30 20, -250

Bottom (32%) 0, -250 10, -100 30, 30 50, 40

Positive
Payoff
Frame

Left (24%) Middle (12%) Non-Nash (64%) Right (0%)

Top (84%) 500, 350 300, 345 310, 330 320, 50

Bottom (16%) 300, 50 310, 200 330, 330 350, 340

Kreps did try the high-hypothetical-payoff version of this game on several graduate

students, but lets consider what happens with financially motivated subjects in an anonymous

laboratory situation. As before, we randomly paired 50 subjects and let them make a single

choice. Subjects were told that losses would be subtracted from prior earnings, which were quite

substantial by that point. As seen from the percentages in parentheses in the top part of the table,

the Non-Nash decision was selected by approximately two-thirds of the column players. Of

course, it is possible that this result is simply a consequence of "loss-aversion," i.e. the disutility

of losing some amount of money is greater than the utility associated with winning the same

amount (Daniel Kahneman, Jack L. Knetsch, and Richard H. Thaler, 1991). Since all the other

columns contain negative payoffs, loss-averse subjects would thus be naturally inclined to choose

Non-Nash. Therefore, we ran another 50 subjects through the same game, but with 300 cents

added to payoffs to avoid losses, as shown in the bottom part of Table 3. The choice percentages

shown in parentheses indicate very little change, with close to two-thirds of column players

choosing Non-Nash as before. Thus "loss aversion" biases are not apparent in the data, and do

not seem to be the source of the prevalence of Non-Nash decisions. Finally, we ran 50 new
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subjects through the original version in the top part of the table, with the (Bottom, Right) payoffs

of (50, 40) being replaced by (350, 400), which (again) does not alter the equilibrium structure

of the game. With this admittedly heavy-handed enhancement of the equilibrium in that cell, we

observed 96 percent Bottom choices and 84 percent Right choices, with 16 percent Non-Nash

persisting in this, the "treasure" treatment.

II. DYNAMIC GAMES WITH COMPLETE INFORMATION

As game theory became more widely used in fields like industrial organization, the

complexity of the applications increased to accommodate dynamics and asymmetric information.

One of the major developments coming out of these applications was the use of backward

induction to eliminate equilibria with threats that are not "credible" (Reinhard Selten, 1975).

Backward induction was also used to develop solutions to alternating-offer bargaining games

(Ariel Rubinstein, 1982), which was the first major advance on this historically perplexing topic

since Nash’s (1950) axiomatic approach. However, there have been persistent doubts that people

are able to figure out complicated, multi-stage backward induction arguments. Robert W.

Rosenthal (1981) quickly proposed a game, later dubbed the "centipede game," in which

backward induction over a large number of stages (e.g. 100 stages) was thought to be particularly

problematic (e.g. McKelvey and Palfrey, 1992). Many of the games in this section are inspired

by Rosenthal’s (1981) doubts and Randolph T. Beard and Beil’s (1994) experimental results.

Indeed, the anomalies in this section are better known than those in other sections, but we focus

on very simple games with two or three stages, using parallel procedures and subjects who have

previously made a number of strategic decisions in different one-shot games.

Should You Trust Others to be Rational?

The power of backward induction is illustrated in the top game in Figure 3. The first

player begins by choosing between a safe decision, S, and a risky decision, R. If R is chosen,

the second player must choose between a decision P that punishes both of them and a decision

N that leads to a Nash equilibrium that is also a joint-payoff maximum. There is, however, a

second Nash equilibrium where the first player chooses S and the second chooses P. The second
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player has no incentive to deviate from this equilibrium because the self-inflicted punishment

Figure 3. Should You Trust Others to be Rational?

occurs off of the equilibrium path. Subgame perfectness rules out this equilibrium by requiring

equilibrium behavior in each subgame, i.e. that the second player behave optimally in the event

that the second-stage subgame is reached.

Again, we used 50 randomly paired subjects who played this game only once. The data

for this treasure treatment are quite consistent with the subgame-perfect equilibrium; a

preponderance of first players trust the other’s rationality enough to choose R, and there are no

irrational P decisions that follow. The game shown in the bottom part of Figure 3 is identical,

except that the second player only forgoes 2 cents by choosing P. This change does not alter the

fact that there are two Nash equilibria, one of which is ruled out by subgame perfectness. The

choice percentages for 50 subjects indicate that a majority of the first players did not trust others

to be perfectly rational when the cost of irrationality is so small. Only about a third of the
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outcomes matched the subgame perfect equilibrium in this game.13 We did a third treatment

(not shown) in which we multiplied all payoffs by a factor of 5, except that the P decision led

to (100, 348) instead of (100, 340). This large increase in payoffs produced an even more

dramatic result; only 16 percent of the outcomes were subgame perfect, and 80 percent of the

outcomes were at the Nash equilibrium that is not subgame perfect.

Should You Believe a Threat That Is Not Credible?

The game just considered is a little unusual in that, in the absence of relative payoff

effects, the second player has no reason to punish, since the first player’s R decision also benefits

the second player. This is not the case for the game in Figure 4, where an R decision by the first

player will lower the second player’s payoff. As before, there are two Nash equilibria, with the

(R, P) equilibrium ruled out by subgame perfectness. In addition to not being credible, the threat

to play P is a relatively costly punishment for the second player to administer (40 cents).

The threat to play P in the top part of Figure 4 is evidently not believed, and 88 percent

of the first players choose the R strategy, with impunity. The threat is cheap (2 cents) for the

game in the bottom part of the figure, and outcomes for 25 subject pairs are evenly divided

between the subgame imperfect outcome, the incredible threat outcome, and the subgame perfect

outcome. Cheap threats often are (and apparently should be) believed. Again we see that payoff

magnitudes and off-the-equilibrium-path risks matter.

Since the P decisions in the bottom games of Figures 3 and 4 only reduce the second

player’s payoff by 2 cents, behavior may be affected by small variations in payoff preferences

or emotions, e.g. spite or rivalry. As suggested by Gary E. Bolton and Axel Ockenfels (2000)

and Ernst Fehr and Klaus Schmidt (1999), players may be willing to sacrifice own earnings in

order to reduce payoff inequities which would explain the P choices in the contraction treatments.

Alternatively, the occurrence of the high fraction of P decisions in the bottom game of Figure

4 may be due to negative emotions that follow the first-player’s R decision, which reduces the

second player’s earnings (Matthew Rabin, 1993). Notice that this earnings reduction does not

occur when the first player chooses R for the game in the bottom part of Figure 3, which could

13 See Beard and Beil (1994) for similar results in a two-stage game played only once.
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explain the lower rate of punishments in that game.

Figure 4. Should You Believe a Threat That Is Not Credible?

The anomalous results of the contradiction treatments may not come as any surprise to

Selten, the originator of the notion of subgame perfectness. His attitude toward game theory has

been that there is a sharp contrast between standard theory and behavior. For a long time he

essentially wore different hats when he did theory and ran experiments, although his 1995 Nobel

prize was clearly for his contributions in theory. This schizophrenic stance may seem

inconsistent, but it may prevent unnecessary anxiety, and some of Selten’s recent theoretical work

is based on models of boundedly rational (directional) learning (Selten and Joachim Buchta,

1998). In contrast, John Nash was reportedly discouraged by the predictive failures of game

theory and gave up on both experimentation and game theory (Nasar, 1998, p.150).

Two-Stage Bargaining Games

Bargaining has long been considered a central part of economic analysis, and at the same
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time, one of the most difficult problems for economic theory. One promising approach is to

model unstructured bargaining situations "as if" the parties take turns making offers, with the

costs of delayed agreement reflected in a shrinking size of the pie to be divided. This problem

is particularly easy to analyze when the number of alternating offers is fixed and small.

Consider a bargaining game in which each player gets to make a single proposal for how

to split a pie, but the amount of money to be divided falls from $5 in the first stage to $2 in the

second. The first player proposes a split of $5 that is either accepted (and implemented) or

rejected, in which case the second player proposes a split of $2 that is either accepted or rejected

by the first player. This final rejection results in payoffs of zero for both players, so the second

player can (in theory) successfully demand $1.99 in the second stage if the first player prefers

a penny to nothing. Knowing this, the first player should demand $3 and offer $2 to the other

in the first stage. In a subgame perfect equilibrium, the first player receives the amount by which

the pie shrinks, so a larger cost of delay confers a greater advantage to the player making the

initial demand, which seems reasonable. For example, a similar argument shows that if the pie

shrinks by $4.50, from $5 to $0.50, then the first player should make an initial demand of $4.50.

We used 60 subjects (6 cohorts of 10 subjects each), who were randomly paired for each

of the two treatments described above (alternating in order and separated by other one-shot

games). The average demand for the first player was $2.83 for the $5/$2 treatment, with a

standard deviation of $0.29. This is quite close to the predicted $3.00 demand, and 14 of the 30

initial demands were exactly equal to $3.00 in this treasure treatment. But the average demand

only increased to $3.38 for the other treatment with a $4.50 prediction, and 28 of the 30 demands

were below the prediction of $4.50. Rejections were quite common in this contradiction

treatment with higher demands and correspondingly lower offers to the second player, which is

not surprising given the smaller costs of rejecting "stingy" offers.

These results fit into a larger pattern surveyed in Douglas D. Davis and Holt (1993,

chapter 5) and Roth (1995); initial demands in two-stage bargaining games tend to be "too low"

relative to theoretical predictions when the equilibrium demand is high, say more than 80 percent

of the pie as in our $5.00/$0.50 treatment, and initial demands tend to be close to predictions

when the equilibrium demand is 50-75 percent of the pie (as in our $5.00/$2.00 treatment).

Interestingly, initial demands are "too high" when the equilibrium demand is less than half of the
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pie. Here is an example of why theoretical explanations of behavior should not be based on

experiments in only one part of the parameter space, and why theorists should have more than

just a casual, second-hand knowledge of the experimental economics literature.14 Many of the

diverse theoretical explanations for anomalous behavior in bargaining games hinge on models of

preferences in which a person’s utility depends on the payoffs of both players, i.e. distribution

matters (Bolton, 1998; Bolton and Ockenfels, 2000; Fehr and Schmidt, 1999). The role of

fairness is illustrated dramatically in the experiment reported in Goeree and Holt (2000a), who

obtained even larger deviations from subgame perfect Nash predictions than those reported here

by giving subjects asymmetric money endowments that were paid independently of the bargaining

outcome. These endowments were selected to accentuate the payoff inequities that result in the

subgame perfect Nash equilibrium, and hence their effect was to exaggerate fairness issues

without altering the equilibrium prediction. The result (for seven different one-shot bargaining

games) was for demands to be inversely related to the subgame-perfect Nash predictions.

III. STATIC GAMES WITH INCOMPLETE INFORMATION

William Vickrey’s (1961) models of auctions with incomplete information constitute one

of the most widely used applications of game theory. If private values are drawn from a uniform

distribution, the Bayesian Nash equilibrium predicts that bids will be proportional to value, which

is generally consistent with laboratory evidence. The main deviation from theoretical predictions

is the tendency of human subjects to "overbid" (relative to Nash), which is commonly

rationalized in terms of risk aversion, an explanation that has lead to some controversy. Glen

Harrison (1989), for instance, argues that deviations from the Nash equilibrium may well be

caused by a lack of monetary incentives since the costs of such deviations are rather small: the

"flat maximum critique." Our approach here is to specify two auction games with identical Nash

equilibria, but with differing incentives not to overbid.

First, consider a game in which each of two bidders receives a private value for a prize

to be auctioned in a first-price, sealed bid auction. In other words, the prize goes to the highest

14 Another example is the development of theories of generalized expected utility to explain "fanning out"
preferences in Allais paradox situations, when later experiments in other parts of the probability triangle found "fanning
in."
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bidder for a price equal to that bidder’s own bid. Each bidder’s value for the prize is equally

Table 4. Equilibrium Expected Payoffs for the (0,2,5) Treatment
(Optimal Bids Are Denoted by an Asterisk *)

bid = 0 bid = 1 bid = 2 bid = 3 bid = 4 bid = 5

value = $0 0* -.5 -1.66 - 3 - 4 - 5

value = $2 .33 .5* 0 -1 -2 - 3

value = $5 .83 2 2.5* 2 1 0

likely to be $0, $2, or $5. Bids are constrained to be integer dollar amounts, with ties decided

by the flip of a coin.

The relevant Nash equilibrium in this game with incomplete information about others’

preferences is the Bayesian Nash equilibrium, which specifies an equilibrium bid for each

possible realization of a bidder’s value. It is straightforward but tedious to verify that the Nash

equilibrium bids are $0, $1, and $2 for a value of $0, $2, and $5 respectively, as can be seen

from the equilibrium expected payoffs in Table 4. For example, consider a bidder with a private

value of $5 (in the bottom row) who faces a rival that bids according to the proposed Nash

solution. A bid of 0 has a 1/2 chance of winning (decided by a coin flip) if the rival’s value, and

hence the rival’s bid, is zero, which happens with probability 1/3. Therefore, the expected payoff

of a zero bid with a value of $5 equals 1/2*1/3*($5 - $0) = $5/6 = .83. If the bid is raised to

$1, the probability of winning becomes 1/2 (1/3 when the rival’s value is $0 plus 1/6 when the

rival’s value is $2). Hence, the expected payoff of a $1 bid is 1/2*($5 - $1) = $2. The other

numbers in Table 4 are derived in a similar way. The maximum expected payoff in each row

coincides with the equilibrium bid, as indicated by an asterisk (*). Note that the equilibrium

involves bidding about one half of the value.15

Table 5 shows the analogous calculations for the second treatment, with equally likely

private values of $0, $3, or $6. Interestingly, this increase in values does not alter the

equilibrium bids in the unique Bayesian Nash equilibrium, as indicated by the location of optimal

15 The bids would be exactly half of value if the highest value were $4 instead of $5, but we had to raise the
highest value to eliminate multiple Nash equilibria.
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bids for each value. Even though the equilibria are the same, we expected more of an upward

Table 5. Equilibrium Expected Payoffs for the (0,3,6) Treatment
(Optimal Bids Are Denoted by an Asterisk *)

bid = 0 bid = 1 bid = 2 bid = 3 bid = 4 bid = 5

value = $0 0* -.5 -1.66 - 3 - 4 - 5

value = $3 .5 1* .83 0 -1 - 2

value = $6 1 2.5 3.33* 3 2 1

bias in bids in the second (0, 3, 6) treatment. The intuition can be seen by looking at payoff

losses associated with deviations from the Nash equilibrium. Consider, for instance, the middle-

value bidder with expected payoffs shown in the second rows of Tables 4 and 5. In the (0, 3,

6) treatment, the cost of bidding $1 above the equilibrium bid is $1 - $0.83 = $0.17, which is less

than the cost of bidding $1 below the equilibrium bid: $1 - $0.50 = $0.50. In the (0, 2, 5)

treatment, the cost of an upward deviation from the equilibrium bid is greater than the cost of

a downward deviation, see the middle row of Table 4. A similar argument applies to the high-

value bidders, while deviation costs are the same in both treatments for the low-value bidder.

Hence we expected more overbidding for the (0, 3, 6) treatment.

This intuition is borne out by bid data for the 50 subjects who participated in a single

auction under each condition (again alternating the order of the two treatments and separating the

two auctions with other one-shot games). Eighty percent of the bids in the (0, 2, 5) treatment

matched the equilibrium: the average bids for low, medium, and high value bidders were $0,

$1.06, and $2.64 respectively. In contrast, the average bids for the (0, 3, 6) treatment were $0,

$1.82, and $3.40 for the three value levels, and only 50 percent of all bids were Nash bids. The

bid frequencies for each value are shown in Table 6. As in previous games, deviations from

Nash behavior in these private value auctions seem to be sensitive to the costs of deviation. Of

course, this does not rule out the possibility that risk aversion or some other factor may also have

some role in explaining the overbidding observed here, especially the slight overbidding for the
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high value in the (0, 2, 5) treatment.16

Table 6. Bid Frequencies (Equilibrium Bids Marked with an Asterisk *)

(0, 2, 5) treatment (0, 3, 6) treatment

bid frequency bid frequency

value = 0 0* 20 value = 0 0* 17

value = 2 1* 15 value = 3 1* 5

2 1 2 11

3 0 3 2

value = 5 1 1 value = 6 1 0

2* 5 2* 3

3 6 3 4

4 2 4 6

5 0 5 1

6 0 6 1

IV. DYNAMIC GAMES WITH INCOMPLETE INFORMATION: SIGNALING

Signaling games are complex and interesting because the two-stage structure allows an

opportunity for players to make inferences and change others’ inferences about private

information. This complexity often generates multiple equilibria that, in turn, have stimulated

a sequence of increasingly complex refinements of the Nash equilibrium condition. Although it

is unlikely that introspective thinking about the game will produce equilibrium behavior in a

single play of a game this complex (except by coincidence), the one-shot play reveals useful

16 Goeree, Holt, and Palfrey (1999) report a first-price auction experiment with 6 possible values, under repeated
random matching for ten periods. A two-parameter econometric model that includes both decision error and risk aversion
provides a good fit of 67 value/bid frequencies and shows that both the error and risk aversion parameters are significantly
different from zero. David Lucking-Reiley (1999) mentions risk aversion as a possible explanation for overbidding in
a variety of auction experiments.
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information about subjects’ cognitive processes.

Table 7. Signaling with a Separating Equilibrium
(sender’s payoff, responder’s payoff)

response to Left signal response to Right signal

C D E C D E

type A
sends
Left

300, 300 0, 0 500, 300
type A
sends
Right

450, 900 150, 150 1000, 300

type B
sends
Left

500, 500 300, 450 300, 0
type B
sends
Right

450, 0 0, 300 0, 150

In the experiment, half of the subjects were designated as "senders" and half as

"responders." After reading the instructions, we began by throwing a die for each sender to

determine whether the sender was of type A or B. Everybody knew that the ex ante probability

of a type A sender was 1/2. The sender, knowing his/her own type would choose a signal, Left

or Right. This signal determined whether the payoffs on the right or left side of Table would be

used. (The instructions used letters to identify the signals, but we will use words here to

facilitate the explanations.) This signal would be communicated to the responder that was

matched with that sender. The responder would see the sender’s signal, Left or Right, but not

the sender’s type, and then choose a response, C, D, or E. The payoffs were determined by

Table 7, with the sender’s payoff to the left in each cell.

First, consider the problem facing a type A sender, for whom the possible payoffs from

sending a Left signal (300, 0, 500) seem, in some loose sense, less attractive than those for

sending a Right signal (450, 150, 1000). For example, if each response is thought to be equally

likely (the "principle of insufficient reason"), then the Right signal has a higher expected payoff.

Consequently, the Right row has been shaded in the top right part of Table 7. Applying the

principle of insufficient reason again, a type B sender looking at the payoffs in the bottom row

of the table might be more attracted by the Left signal, with payoffs of (500, 300, 300) as
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compared with (450, 0, 0).17 Therefore, the payoffs for type B sending the Left signal have

been shaded. In fact, all of the type B subjects did send the Left signal, and 7 of the 10 type A

subjects sent the Right signal. All responses in this game were C, so all but three of the

outcomes were in the two boxes that have thick outlines. Notice that this is an equilibrium, since

neither type of sender would benefit from sending the other signal, and the respondent cannot do

any better than the maximum payoff received in the boxes. This is a separating Nash

equilibrium; the signal reveals the sender’s type.

The payoff structure for this game becomes a little clearer if you think of the responses

as one of three answers to a request: Concede, Deny, or Evade. With some uncertainty about

the sender’s type, Evade is sufficiently unattractive to respondents that it is never selected.

Consider the other two responses and note that a sender always prefers that the responder choose

Concede instead of Deny. In the separating equilibrium, the signals reveal the senders’ types,

the responder always Concedes, and all players are satisfied. There is, however, a second

equilibrium for the game in Table 7 in which the responder Concedes to Left and Denies Right,

and therefore both sender types send Left to avoid being Denied.18 Backward induction

rationality (of the sequential Nash equilibrium) does not rule out these beliefs, since a deviation

does not occur in equilibrium, and the respondent is making a best response to the beliefs. What

is unintuitive about these beliefs (that a deviant Right signal comes from a type B) is that the

type B is earning 500 in this (Left, Concede) equilibrium outcome, and no deviation could

conceivably increase this payoff. In contrast, the type A is earning 300 in the Left side pooling

equilibrium, and this type could possibly earn more (450 or even 1000), depending on the

response to a deviation. The In-Koo Cho and Kreps (1987) intuitive criterion rules out these

beliefs, and selects the separating equilibrium observed in the treasure treatment.19

17 These are not dominance arguments, since the responder can respond differently to each signal, and the lowest
payoff from sending one signal is not higher than the highest payoff that can be obtained from sending the other signal.

18 To check that the responder has no incentive to deviate, note that Concede is a best response to a Left regardless
of the sender’s type, and that Deny is a best response to a deviant Right signal if the responder believes that it was sent
by a type B.

19 Jordi Brandts and Holt (1992, 1993) report experimental data that contradict the predictions of the intuitive

criterion, i.e. the decision converged to an equilibrium ruled out by that criterion.
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The game in Table 8 is a minor variation on the previous game, with the only change

Table 8. Signaling without a Separating Equilibrium
(sender’s payoff, responder’s payoff)

response to Left signal response to Right signal

C D E C D E

type A
sends
Left

300, 300 0, 0 500, 300
type A
sends
Right

450, 900 150, 150 1000, 300

type B
sends
Left

300, 300 300, 450 300, 0
type B
sends
Right

450, 0 0, 300 0, 150

being that the (500, 500) in the bottom left part of Table 7 is replaced by a (300, 300) payoff.20

As before, consider the sender’s expected payoffs when each response is presumed to be equally

likely, which leads one to expect that type A senders will choose Right and that type B senders

will choose Left, as indicated by the shading. In the experiment, 10 of the 13 type A senders did

choose Right, and 9 of the 11 type B senders did choose Left. But the separation observed in

this contradiction treatment is not a Nash equilibrium.21 All equilibria for this contradiction

treatment involve "pooling," with both types sending the same signal.22

V. EXPLAINING ANOMALOUS BEHAVIOR IN ONE-SHOT GAMES

Although the results for the contradiction treatments seem to preclude a game-theoretic

explanation, many of the anomalous data patterns are related to the nature of the incentives. This

20 Unlike the paired treatments considered previously, the payoff change for these signaling games does alter the

set of Nash equilibria.

21 The respondents would prefer to Concede to a Right signal and Deny a Left signal. Type B senders would
therefore have an incentive to deviate from the proposed separating equilibrium and send a Right signal. In the
experiment, half of the Left signals were Denied, whereas only 2 of the 12 Right signals were Denied.

22 For example, it is an equilibrium for both types to send Right if a Left signal triggers a C or a D response. The
D response to Left is appropriate if the respondent thinks the deviant signal comes from a type B sender, and the C
response is appropriate if the deviant is thought to be of type A. Beliefs that the deviant is of type A are intuitive, since
type A earns 450 in equilibrium and could possibly earn more (500) by switching to Left (if an E response follows).
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suggests that it may be possible to develop formal models that explain both treasures and

contradictions. Below we discuss several recent approaches that relax the common assumptions

of perfect selfishness, perfect decision making (no error), and perfect foresight (no surprises).

As noted in section III, the anomalies observed for the dynamic games in Figures 3 and

4 are consistent with models of inequity aversion (Bolton and Ockenfels, 2000; Fehr and

Schmidt, 1999), which assume that people like higher payoffs for themselves and dislike earning

less than the other person ("envy") or earning more ("guilt"). Inequity aversion also seems

plausible when players bargain over the division of a fixed amount of money (Goeree and Holt,

2000b). However, it cannot explain observed behavior in the contradiction matching pennies

treatments. Consider, for example, the "320" version of the matching pennies game in Table 1.

Since column is averse to the (320, 40) outcome, column would only be willing to randomize

between Left and Right if the attractiveness of Right is increased by having row play Bottom

more often than the 0.5 probability that would make a purely selfish column player indifferent.

This prediction, that row should play Bottom more often, is sharply contradicted by the data in

the middle part of Table 1.23, 24

Another possibility is that behavior in one-shot games conforms to a simple heuristic.

Indeed, some experimental economists have suggested that subjects in the initial period of a

repeated game choose the decision that maximizes their security level, i.e. the "maximin"

decision. For example, in the Kreps game of Table 3, the frequently observed Non-Nash decision

maximizes column’s security. The strong treatment effects in the matching pennies games cannot

be explained in this way, however, since in all three treatments each player’s minimum payoff

is the same for both decisions. A similar argument applies to the coordination game in Table

2. Moreover, the security-maximizing choices in the traveler’s dilemma and the minimum-effort

coordination game are the lowest possible decision, which is contradicted by the high claim and

23 Goeree, Holt, and Palfrey (2000) report formal econometric tests that reject the predictions of inequity aversion
models in the context of a group of repeated asymmetric matching pennies games.

24 Payoff inequity aversion also has no effect in the minimum-effort coordination game; any common effort level
is still a Nash equilibrium. To see this, note that a unilateral effort increase from a common level reduces one’s own
payoff and creates an disadvantageous inequity. Similarly, a unilateral decrease from a common effort level reduces one’s
payoff and creates an inequity where one earns more than the other, since their costly extra effort is wasted. Thus
inequity aversion cannot explain the strong effect of an increase in effort costs.
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effort choices in the contradiction treatments. Subjects may be risk averse in unfamiliar

situations, but the extreme risk aversion implied by maximum security is generally not observed.

Furthermore, heuristics based on reciprocity or a status quo bias do not apply to single-stage,

one-shot games where there is neither a precedent nor an opportunity to reciprocate. Nor can

loss aversion be the primary cause, since losses are impossible in most of the games reported

here, and the possibility of a loss had no effect in the Kreps game.

As an alternative to simple heuristics, one could try to model players’ introspective

thought processes. Previous models have typically specified some process of belief formation,

assuming that players best respond to the resulting beliefs.25 The experiments reported above

indicate that magnitudes (not just signs) of payoff differences matter, and it is thus natural to

consider a decision rule for which choice probabilities are positively but imperfectly related to

payoffs. The logit rule, for example, specifies that choice probabilities, pi, for options i = 1,...,m,

are proportional to exponential functions of the associated expected payoffs, πi
e:

where the sum in the denominator ensures that the probabilities sum to one, and the "error

(1)

parameter," µ, determines how sensitive choice probabilities are to payoff differences.26

In order to use the "logit best response" in (1), we need to model the process of belief

formation, since belief probabilities are used to calculate the expected payoffs on the right side

25 Perhaps the best known model of introspection is Harsanyi and Selten’s (1988) "tracing procedure." This
procedure involves an axiomatic determination of players’ common priors (the "preliminary theory") and the construction
of a modified game with payoffs for each decision that are weighted averages of those in the original game and of the
expected payoffs determined by the prior distribution. By varying the weight on the original game, a sequence of best
responses for the modified game are generated. This process is used to select one of the Nash equilibria of the original
game. Gonzalo Olcina and Amparo Urbano (1994) also use an axiomatic approach to select a prior distribution, which
is then revised by a simulated learning process that is essentially a partial adjustment from current beliefs to best responses
to current beliefs. Since neither the Harsanyi/Selten model nor the Olcina/Urbano model incorporates any noise, they
predict that behavior will converge to the Nash equilibrium in games with a unique equilibrium, which is an undesirable
feature in light of the contradictions data reported above.

26 As µ goes to zero, payoff differences are "blown up," and the probability of the optimal decision converges to
1. In the other extreme, as µ goes to ∞, the choice probabilities converge to 1/m independently of expected payoffs. See
Duncan R. Luce (1959) for an axiomatic derivation of the logit choice rule in (1).
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of (1). By the principle of insufficient reason one might postulate that each of the others’ actions

are equally likely. This corresponds to the Stahl and Wilson (1995) notion of "level 1"

rationality, which captures many of the first-period decisions in the "guessing game" reported by

Nagel (1995).27 It is easy to verify that level-one rationality also provides good predictions for

both treasure and contradiction treatments in the traveler’s dilemma, the minimum-effort

coordination game, and the Kreps game. There is evidence, however, that at least some subjects

form more precise beliefs about others’ actions, possibly through higher levels of introspection.28

In the matching pennies games in Table 1, for example, a flat prior makes column indifferent

between Left and Right, and yet most column players seem to anticipate that row will choose Top

in the 320 version and Bottom in the 44 version of this game.

Of course, what the other player does depends on what they think you will do, so the next

logical step is to assume that others make responses to a flat prior, and then you respond to that

anticipated response (Selten, 1991). This is Stahl and Wilson’s (1995) "level two" rationality.

There is, however, no obvious reason to truncate the levels of iterated thinking. The notion of

rationalizability discussed above, for example, involves infinitely many levels of iterated thinking,

with "never-best" responses eliminated in succession. But rationalizability seems to imply too

much rationality, since it predicts that all claims in the traveler’s dilemma will be equal to the

minimum claim, independent of the penalty/reward parameter. One way to limit the precision

of the thought process, without making an arbitrary assumption about the number of iterations,

is to inject increasing amounts of noise into higher levels of iterated thinking (Goeree and Holt,

2000b; Kübler and Weizsäcker, 2000). Let φµ denote the logit best response map (for error rate

µ) on the right side of (1). Just as a single logit response to beliefs, p0, can be represented as p

= φµ(p0), a series of such responses can be represented as:29

27 In our own work, we have used a noisy response to a flat prior as a way of starting computer simulations of
simulations of behavior in repeated games (Jordi Brandts and Holt, 1995; Goeree and Holt, 1999; Capra et al., 1999,
2000).

28 Vincent Crawford and Miguel Gomez (2000), for example, infer some heterogeneity in the amount of
introspection by observing the types of information that subjects acquire before making a decision.

29 Goeree and Holt (2000b) use continuity arguments to show that the limit in (2) exists even if the (increasing)
error parameters are person specific.
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where µ1 ≤ µ2 ≤ ..., with µ∞ converging to infinity.30 This assumption captures the idea that it

(2)

becomes increasingly complex to do more and more iterations.31 Since φµ for µ = ∞ maps the

whole probability simplex to a single point, the right side of (2) is independent of the initial

belief vector p0. Moreover, the process in (2) yields a unique outcome even in games with

multiple Nash equilibria. Note that the choice probabilities on the left side of (2) generally do

not match the belief probabilities at any stage of the iterative process on the right. In other

words, the introspective process allows for surprises, which are likely to occur in one-shot games.

For games with very different levels of complexity such as the ones reported here, the

error parameters that provide the best fit are likely to be different. In this case, the estimates

indicate the degree of complexity, i.e. they serve as a measurement device. For games of similar

complexity, the model in (2) could be used to predict behavior across games. For example, we

have used it to explain data patterns in a series of 37 simple matrix games, using a simple two-

parameter parametrization µn = µ tn, where t determines the rate at which noise increases with

higher iterations (Goeree and Holt, 2000b). The estimated value (t = 4.1) implies that there is

more noise for higher levels of introspection, a result that is roughly consistent with estimates

obtained by Kübler and Weizsäcker (2000) for data from information cascade experiments.

The analysis of introspection is a relatively understudied topic in game theory, as

compared with equilibrium refinements and learning, for example. Several of the models

discussed above do a fairly good job of organizing the qualitative patterns of conformity and

deviation from the predictions of standard theory, but there are obvious discrepancies. We hope

that this paper will stimulate further theoretical work on models of behavior in one-shot games.

30 The case of a constant parameter (µ1 = µ2 = ... = µ) is of special interest. In this case, the process may not
converge for some games (e.g. matching pennies), but when it does, the limit probabilities, p*, must be invariant under
the logit map: φµ(p*) = p*. A fixed point of this type constitutes a "logit equilibrium," which is a special case of the
quantal response equilibrium defined in McKelvey and Palfrey (1995). It is in this sense that the logit equilibrium arises
as a limit case of the noisy introspective process defined in (2).

31 For an interesting alternative approach, see Capra (1998). In her model, beliefs are represented by degenerate
distributions that put all probability mass at a single point. The location of the belief points is, ex ante, stochastic.
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One potentially useful approach may be to elicit beliefs directly as the games are played (Andrew

Schotter and Yaw Narkov, 1998; Theo Offerman, 1997).

VI. CONCLUSION

One-shot game experiments are interesting because many games are in fact only played

once; single play is especially relevant in applications of game theory in other fields, e.g.

international conflicts, election campaigns, and legal disputes. The decision makers in these

contexts, like the subjects in our experiments, typically have experience in similar games with

other people. One-shot games are also appealing because they allow us to abstract away from

issues of learning and attempts to manipulate others’ beliefs, behavior, or preferences (e.g.

reciprocity, cooperativeness). This paper reports the results of ten pairs of games that are played

only once by subjects who have experience with other one-shot and repeated games. The Nash

equilibrium (or relevant refinement) provides accurate predictions for standard versions of these

games. In each case, however, there is a matched game for which the Nash prediction clearly

fails, although it fails in a way that is consistent with simple (non-game-theoretic) intuition. The

results for these experienced subjects show:

1) Behavior may diverge sharply from the unique rationalizable (Nash) equilibrium in a

social (traveler’s) dilemma. In these games, the Nash equilibrium is located on one side of the

range of feasible decisions, and data for the contradiction treatment have a mode on the opposite

side of this range. The most salient feature of the data is the extreme sensitivity to a parameter

that has no effect on the Nash outcome.

2) Students suffering through game theory classes may have good reasons when they have

trouble understanding why a change in one player’s payoffs only affects the other player’s

decision probabilities in a mixed-strategy Nash equilibrium. The data from matching pennies

experiments show strong "own-payoff" effects that are not predicted by the unique (mixed-

strategy) Nash equilibrium. The Nash analysis seems to work only by coincidence, when the

payoff structure is symmetric and deviation risks are balanced.

3) Effort choices are strongly influenced by the cost of effort in coordination games, an

intuitive result that is not explained by standard theory, since any common effort is a Nash

equilibrium in such games. Moreover, as Kreps conjectured, it is possible to design coordination
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games where the majority of one player’s decisions correspond to the only action that is not part

of any Nash equilibrium.

4) Subjects often do not trust others to be rational when irrationality is relatively costless.

Moreover, "threats" that are not credible in a technical sense may nevertheless alter behavior in

simple two-stage games when carrying out these threats is not costly.

5) Deviations from Nash predictions in alternating-offer bargaining games and in private-

value auctions are inversely related to the costs of such deviations. The effects of these biases

can be quite large in the games considered.

6) It is possible to set up a simple signaling game in which the decisions reveal the

signaler’s type (separation), even though the equilibrium involves pooling.

So what should be done? Reinhard Selten, one of the three game theorists to share the

1995 Nobel Prize, has said: "Game theory is for proving theorems, not for playing games."32

Indeed, the internal elegance of traditional game theory is appealing, and it has been defended

as being a normative theory about how perfectly rational people should play games with each

other, rather than a positive theory that predicts actual behavior (Rubinstein, 1982). It is natural

to separate normative and positive studies of individual decision making, which allows one to

compare actual and optimal decision making. This normative-based defense is not convincing

for games, however, since the best way for one to play a game depends on how others actually

play, not on how some theory dictates that rational people should play. John Nash, one of the

other Nobel recipients, saw no way around this dilemma, and when his experiments were not

providing support to theory, he lost whatever confidence he had in the relevance of game theory

and focused on more purely mathematical topics in his later research (Nasar, 1998).

Nash seems to have undersold the importance of his insight, and we will be the first to

admit that we begin the analysis of a new strategic problem by considering the equilibria derived

from standard game theory, before considering the effects of payoff and risk asymmetries on

incentives to deviate. But in an interactive, strategic context, biases can have reinforcing effects

that drive behavior well away from Nash predictions, and economists are starting to explain such

deviations using computer simulations and theoretical analyses of learning and decision error

32 Selten reiterated this point of view in a personal communication to the authors.
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processes. There has been relatively little theoretical analysis of one-shot games where learning

is impossible. The models of iterated introspection discussed here offer some promise in

explaining the qualitative features of deviations from Nash predictions enumerated above. Taken

together, these new approaches to a stochastic game theory enhance the behavioral relevance of

standard game theory. And looking at laboratory data is a lot less stressful than before.
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