
LECTURE 2: INTELLIGENT AGENTS

An Introduction to Multiagent Systems

CIS 7412, Fall 2011

Lecture 2 An Introduction to Multiagent Systems

What is an Agent?

• The main point about agents is they are autonomous: capable of
acting independently, exhibiting control over their internal state.

An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in
that environment in order to meet its delegated objectives.

• It is all about decisions

– An agent has to choose what action to perform.
– An agent has to decide when to perform an action.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 1

Lecture 2 An Introduction to Multiagent Systems

sensors

effectors

percepts

actions

Environment

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 2

Lecture 2 An Introduction to Multiagent Systems

• There is a spectrum of autonomy.

– Humans and other animals at one end
– Word processors at the other.

• Autonomy is adjustable

– Decisions handed to a higher authority when this is beneficial.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 3

Lecture 2 An Introduction to Multiagent Systems

• Trivial (non-interesting) agents:

– thermostat;
– light switch;
– UNIX daemon (e.g., biff).

• More interesting agents are intelligent.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 4

Lecture 2 An Introduction to Multiagent Systems

• An intelligent agent is a computer system capable of flexible
autonomous action in some environment.
By flexible, we mean:

– reactive;
– pro-active;
– social.

• All these properties make it able to respond to what is around it.

(More on the next few slides).

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 5

Lecture 2 An Introduction to Multiagent Systems

Reactivity
• If a program’s environment is guaranteed to be fixed, the

program need never worry about its own success or failure —
program just executes blindly.
Example of fixed environment: compiler.

• The real world is not like that: things change, information is
incomplete.
Many (most?) interesting environments are dynamic.

• Software is hard to build for dynamic domains: program must
take into account possibility of failure — ask itself whether it is
worth executing!

• A reactive system is one that maintains an ongoing interaction
with its environment, and responds to changes that occur in it (in
time for the response to be useful).

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 6

Lecture 2 An Introduction to Multiagent Systems

Proactiveness

• Reacting to an environment is easy (e.g., stimulus→ response
rules).

• But we generally want agents to do things for us.

• Hence goal directed behaviour.

• Pro-activeness = generating and attempting to achieve goals; not
driven solely by events; taking the initiative.

• Also: recognising opportunities.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 7

Lecture 2 An Introduction to Multiagent Systems

Social Ability

• The real world is a multi-agent environment: we cannot go
around attempting to achieve goals without taking others into
account.

• Some goals can only be achieved with the cooperation of others.

• Similarly for many computer environments (for example, the
Internet).

• Social ability in agents is the ability to interact with other agents
(and possibly humans) via some kind of agent-communication
language, and perhaps cooperate with others.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 8

Lecture 2 An Introduction to Multiagent Systems

Other Properties of Agency Sometimes Discussed
• Mobility:

The ability of an agent to move. For software agents this
movement is around an electronic network.
• Veracity:

Whether an agent will knowingly communicate false information.
• Benevolence:

Whether agents have conflicting goals, and thus whether they
are inherently helpful.
• Rationality:

Whether an agent will act in order to achieve its goals, and will
not deliberately act so as to prevent its goals being achieved.
• Learning/adaption:

Whether agents improve performance over time.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 9

Lecture 2 An Introduction to Multiagent Systems

Agents and Objects

• Are agents just objects by another name?

• Object:

– encapsulates some state;
– communicates via message passing;
– has methods, corresponding to operations that may be

performed on this state.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 10

Lecture 2 An Introduction to Multiagent Systems

• Main differences:

– Agents are autonomous:
agents embody stronger notion of autonomy than objects, and
in particular, they decide for themselves whether or not to
perform an action on request from another agent;

– Agents are smart:
capable of flexible (reactive, pro-active, social) behavior, and
the standard object model has nothing to say about such
types of behavior;

– Agents are active:
a multi-agent system is inherently multi-threaded, in that each
agent is assumed to have at least one thread of active control.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 11

Lecture 2 An Introduction to Multiagent Systems

Objects do it for free. . .

• Agents do it because they want to;

• Agents do it for money.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 12

Lecture 2 An Introduction to Multiagent Systems

Properties of Environments

• Since agents are in close contact with their environment, the
properties of the environment affect agents.

– Also have a big effect on those of us who build agents.

• Common to categorise environments along some different
dimensions.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 13

Lecture 2 An Introduction to Multiagent Systems

Fully observable versus partially observable

• A fully observable environment is one in which the agent can
obtain complete, accurate, up-to-date information about the
environment’s state.

• Such an environment is also called accessible.

• Most moderately complex environments (including, for example,
the everyday physical world and the Internet) are only partially
observable.

• Such environments are also known as non-accessible

• The more observable an environment is, the simpler it is to build
agents to operate in it.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 14

Lecture 2 An Introduction to Multiagent Systems

Deterministic versus non-deterministic

• A deterministic environment is one in which any action has a
single guaranteed effect — there is no uncertainty about the
state that will result from performing an action.

• The physical world can to all intents and purposes be regarded
as non-deterministic.

• We’ll follow Russell and Norvig in calling environments stochastic
if we quantify the non-determinism using probability theory.

• Non-deterministic environments present greater problems for the
agent designer.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 15

Lecture 2 An Introduction to Multiagent Systems

Episodic versus sequential .

• In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios.

• An example of an episodic environment would be an assembly
line where an agent had to spot defective parts.

• Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to
perform based only on the current episode — it need not reason
about the interactions between this and future episodes.

• Environments that are not episodic are called either non-episodic
or sequential. Here the current decision affects future decisions.

• Driving a car is sequential.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 16

Lecture 2 An Introduction to Multiagent Systems

Static vs dynamic .

• A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the agent.

• A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond the
agent’s control.

• The physical world is a highly dynamic environment.

• One reason an environment may be dynamic is the presence of
other agents.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 17

Lecture 2 An Introduction to Multiagent Systems

Discrete vs continuous .

• An environment is discrete if there are a fixed, finite number of
actions and percepts in it.

• The textbook gives credits Russell and Norvig with using a chess
game as an example of a discrete environment, and taxi driving
as an example of a continuous one.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 18

Lecture 2 An Introduction to Multiagent Systems

Agents as Intentional Systems

• When explaining human activity, it is often useful to make
statements such as the following:

Janine took her umbrella because she
believed it was going to rain.

Michael worked hard because he
wanted to possess a PhD.

• These statements make use of a folk psychology, by which
human behaviour is predicted and explained through the
attribution of attitudes, such as believing and wanting (as in the
above examples), hoping, fearing, and so on.

• The attitudes employed in such folk psychological descriptions
are called the intentional notions.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 19

Lecture 2 An Introduction to Multiagent Systems

• The philosopher Daniel Dennett coined the term intentional
system to describe entities ‘whose behaviour can be predicted
by the method of attributing belief, desires and rational acumen’.

• Dennett identifies different ‘grades’ of intentional system:

‘A first-order intentional system has beliefs and desires
(etc.) but no beliefs and desires about beliefs and desires.
. . . A second-order intentional system is more
sophisticated; it has beliefs and desires (and no doubt
other intentional states) about beliefs and desires (and
other intentional states) — both those of others and its
own’.

• Is it legitimate or useful to attribute beliefs, desires, and so on, to
computer systems?

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 20

Lecture 2 An Introduction to Multiagent Systems

• McCarthy argued that there are occasions when the intentional
stance is appropriate:

‘To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a
machine is legitimate when such an ascription expresses the same information
about the machine that it expresses about a person. It is useful when the
ascription helps us understand the structure of the machine, its past or future
behaviour, or how to repair or improve it. It is perhaps never logically required
even for humans, but expressing reasonably briefly what is actually known about
the state of the machine in a particular situation may require mental qualities or
qualities isomorphic to them. Theories of belief, knowledge and wanting can be
constructed for machines in a simpler setting than for humans, and later applied
to humans. Ascription of mental qualities is most straightforward for machines of
known structure such as thermostats and computer operating systems, but is
most useful when applied to entities whose structure is incompletely known’.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 21

Lecture 2 An Introduction to Multiagent Systems

• What objects can be described by the intentional stance?

• As it turns out, more or less anything can. . . consider a light
switch:

‘It is perfectly coherent to treat a light switch as a (very
cooperative) agent with the capability of transmitting
current at will, who invariably transmits current when it
believes that we want it transmitted and not otherwise;
flicking the switch is simply our way of communicating our
desires’. (Yoav Shoham)

• But most adults would find such a description absurd!
Why is this?

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 22

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 23

Lecture 2 An Introduction to Multiagent Systems

• The answer seems to be that while the intentional stance
description is consistent,

. . . it does not buy us anything, since we essentially
understand the mechanism sufficiently to have a simpler,
mechanistic description of its behaviour. (Yoav Shoham)

• Put crudely, the more we know about a system, the less we need
to rely on animistic, intentional explanations of its behaviour.

• But with very complex systems, a mechanistic, explanation of its
behaviour may not be practicable.

• As computer systems become ever more complex, we need
more powerful abstractions and metaphors to explain their
operation — low level explanations become impractical.
The intentional stance is such an abstraction.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 24

Lecture 2 An Introduction to Multiagent Systems

• The intentional notions are thus abstraction tools, which provide
us with a convenient and familiar way of describing, explaining,
and predicting the behaviour of complex systems.

• Remember: most important developments in computing are
based on new abstractions:

– procedural abstraction;
– abstract data types;
– objects.

Agents, and agents as intentional systems, represent a further,
and increasingly powerful abstraction.

• So agent theorists start from the (strong) view of agents as
intentional systems: one whose simplest consistent description
requires the intentional stance.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 25

Lecture 2 An Introduction to Multiagent Systems

• This intentional stance is an abstraction tool — a convenient way
of talking about complex systems, which allows us to predict and
explain their behaviour without having to understand how the
mechanism actually works.

• Much of computer science is about finding abstraction
mechanisms . . .

So why not use the intentional stance as an abstraction
tool in computing — to explain, understand, and, crucially,
program computer systems?

• Other 3 points in favour of this idea . . .

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 26

Lecture 2 An Introduction to Multiagent Systems

Characterising Agents

• It provides us with a familiar, non-technical way of understanding
and explaining agents.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 27

Lecture 2 An Introduction to Multiagent Systems

Nested Representations

• It gives us the potential to specify systems that include
representations of other systems.

• It is widely accepted that such nested representations are
essential for agents that must cooperate with other agents.

• “If you think that Agent B knows x, then move to location L”.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 28

Lecture 2 An Introduction to Multiagent Systems

North By Northwest

• Eve Kendell knows that Roger Thornhill is working for the FBI.
Eve believes that Philip Vandamm suspects that she is helping
Roger. This, in turn, leads Eve to believe that Philip thinks she is
working for the FBI (which is true). By pretending to shoot Roger,
Eve hopes to convince Philip that she is not working for the FBI.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 29

Lecture 2 An Introduction to Multiagent Systems

Post-Declarative Systems

• In procedural programming, we say exactly what a system
should do;

• In declarative programming, we state something that we want to
achieve, give the system general info about the relationships
between objects, and let a built-in control mechanism (e.g.,
goal-directed theorem proving) figure out what to do;

• With agents, we give a very abstract specification of the system,
and let the control mechanism figure out what to do, knowing that
it will act in accordance with some built-in theory of agency.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 30

Lecture 2 An Introduction to Multiagent Systems

Abstract Architectures for Agents
• Assume the world may be in any of a finite set E of discrete,

instantaneous states:

E = {e, e′, . . .}.

• Agents are assumed to have a repertoire of possible actions
available to them, which transform the state of the world.

Ac = {α, α′, . . .}

• Actions can be non-deterministic, but only one state ever results
from and action.

• A run, r, of an agent in an environment is a sequence of
interleaved world states and actions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ · · · αu−1−→ eu

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 31

Lecture 2 An Introduction to Multiagent Systems

• When actions are deterministic each state has only one possible
successor.

• A run would look something like the following:

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 32

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 33

Lecture 2 An Introduction to Multiagent Systems

North!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 34

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 35

Lecture 2 An Introduction to Multiagent Systems

North!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 36

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 37

Lecture 2 An Introduction to Multiagent Systems

East!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 38

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 39

Lecture 2 An Introduction to Multiagent Systems

North!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 40

Lecture 2 An Introduction to Multiagent Systems

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 41

Lecture 2 An Introduction to Multiagent Systems

• Which we might picture as so:

North!

North!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 42

Lecture 2 An Introduction to Multiagent Systems

• When actions are non-deterministic a run (or trajectory) is the
same, but the set of possible runs is more complex.

North!

North!

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 43

Lecture 2 An Introduction to Multiagent Systems

• In fact it is more complex still, because all of the runs we pictured
start from the same state.

• Let:

– R be the set of all such possible finite sequences (over E and
Ac);

– RAc be the subset of these that end with an action; and
– RE be the subset of these that end with a state.

• We will use r, r′, . . . to stand for the members of R
• These sets of runs contain all runs from all starting states.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 44

Lecture 2 An Introduction to Multiagent Systems

Environments

• A state transformer function represents behaviour of the
environment:

τ : RAc → ℘(E)

• Note that environments are. . .

– history dependent.
– non-deterministic.

• If τ (r) = ∅, there are no possible successor states to r, so we say
the run has ended. (“Game over.”)

• An environment Env is then a triple Env = 〈E, e0, τ〉 where E is set
of states, e0 ∈ E is initial state; and τ is state transformer function.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 45

Lecture 2 An Introduction to Multiagent Systems

Agents

• We can think of an agent as being a function which maps runs to
actions:

Ag : RE → Ac

• Thus an agent makes a decision about what action to perform
based on the history of the system that it has witnessed to date.

• Let AG be the set of all agents.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 46

Lecture 2 An Introduction to Multiagent Systems

Systems

• A system is a pair containing an agent and an environment.

• Any system will have associated with it a set of possible runs; we
denote the set of runs of agent Ag in environment Env by
R(Ag,Env).

• Assume R(Ag,Env) contains only runs that have ended.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 47

Lecture 2 An Introduction to Multiagent Systems

• Formally, a sequence

(e0, α0, e1, α1, e2, . . .)

represents a run of an agent Ag in environment Env = 〈E, e0, τ〉 if:

1. e0 is the initial state of Env
2. α0 = Ag(e0); and
3. for u > 0,

eu ∈ τ ((e0, α0, . . . , αu−1)) and
αu = Ag((e0, α0, . . . , eu))

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 48

Lecture 2 An Introduction to Multiagent Systems

• Why do we bother with all this notation?

• Well, it allows us to get a precise handle on some ideas about
agents.

• For example, we can tell when two agents are the same.

• Of course, there are different meanings for “same”. Here is one
specific one.

• Two agents are said to be behaviorally equivalent with respect to
Env iff R(Ag1,Env) = R(Ag2,Env).

• We won’t be able to tell two such agents apart by watching what
they do.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 49

Lecture 2 An Introduction to Multiagent Systems

Purely Reactive Agents

• Some agents decide what to do without reference to their history
— they base their decision making entirely on the present, with
no reference at all to the past.

• We call such agents purely reactive:

action : E → Ac

• A thermostat is a purely reactive agent.

action(e) =

off if e = temperature OK
on otherwise.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 50

Lecture 2 An Introduction to Multiagent Systems

Agents with State

action

state

percepts

actions

see

next

Environment

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 51

Lecture 2 An Introduction to Multiagent Systems

• The see function is the agent’s ability to observe its environment,
whereas the action function represents the agent’s decision
making process.

• Output of the see function is a percept :

see : E → Per

which maps environment states to percepts.

• The agent has some internal data structure, which is typically
used to record information about the environment state and
history.

• Let I be the set of all internal states of the agent.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 52

Lecture 2 An Introduction to Multiagent Systems

• The action-selection function action is now defined as a mapping

action : I → Ac

from internal states to actions.

• An additional function next is introduced, which maps an internal
state and percept to an internal state:

next : I × Per → I

• This says how the agent updates its view of the world when it
gets a new percept.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 53

Lecture 2 An Introduction to Multiagent Systems

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept
see(e).

3. Internal state of the agent is then updated via next function,
becoming next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).
This action is then performed.

5. Goto (2).

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 54

Lecture 2 An Introduction to Multiagent Systems

Tasks for Agents

• We build agents in order to carry out tasks for us.

• The task must be specified by us. . .

• But we want to tell agents what to do without telling them how to
do it.

• How can we make this happen.

• One idea: associated rewards with states that we want agents to
bring about.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 55

Lecture 2 An Introduction to Multiagent Systems

Utility Functions

• We associate utilities with individual states — the task of the
agent is then to bring about states that maximise utility.

• A task specification is then a function

u : E → IR

which associates a real number with every environment state.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 56

Lecture 2 An Introduction to Multiagent Systems

• But what is the value of a run. . .

– minimum utility of state on run?
– maximum utility of state on run?
– sum of utilities of states on run?
– average?

• Disadvantage: difficult to specify a long term view when
assigning utilities to individual states.

• One possibility: a discount for states later on. This is what we do
in reinforcement learning.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 57

Lecture 2 An Introduction to Multiagent Systems

Utilities over Runs

• Another possibility: assigns a utility not to individual states, but to
runs themselves:

u : R → IR

• Such an approach takes an inherently long term view.

• Other variations: incorporate probabilities of different states
emerging.

• To see where utilities might come from, let’s look at an example.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 58

Lecture 2 An Introduction to Multiagent Systems

Utility in the Tileworld

• Simulated two dimensional grid environment on which there are
agents, tiles, obstacles, and holes.

• An agent can move in four directions, up, down, left, or right, and
if it is located next to a tile, it can push it.

• Holes have to be filled up with tiles by the agent. An agent
scores points by filling holes with tiles, with the aim being to fill as
many holes as possible.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 59

Lecture 2 An Introduction to Multiagent Systems

• The agent starts to push a tile towards the hole.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 60

Lecture 2 An Introduction to Multiagent Systems

• The hole disappears. . .

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 61

Lecture 2 An Introduction to Multiagent Systems

• A more convenient hole appears . . .

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 62

Lecture 2 An Introduction to Multiagent Systems

• TILEWORLD changes with the random appearance and
disappearance of holes.

• Utilities are associated over runs, so that more holes filled is a
higher utility.

• Utility function defined as follows:

u(r) =̂
number of holes filled in r

number of holes that appeared in r

• TILEWORLD captures the need for reactivity and for the
advantages of exploiting opportunities.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 63

Lecture 2 An Introduction to Multiagent Systems

Expected Utility

• Write P(r | Ag,Env) to denote probability that run r occurs when
agent Ag is placed in environment Env.

• In a non-deterministic environment, for example, this can be
computed from the probability of each step.

• For a run r = (e0, α0, e1, α1, e2, . . .):

Pr(r | Ag,Env) = Pr(e1, | e0, α0) Pr(e2 | e1, α1) . . .

and clearly:

∑
r∈R(Ag,Env)

P(r | Ag,Env) = 1.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 64

Lecture 2 An Introduction to Multiagent Systems

• The expected utility of agent Ag in environment Env (given P, u),
is then:

EU(Ag,Env) =
∑

r∈R(Ag,Env)
u(r)P(r | Ag,Env).

• That is, for each run we compute the utility and multiply it by the
probability of the run.

• The expected utility is then the sum of all of these.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 65

Lecture 2 An Introduction to Multiagent Systems

An Example

Consider the environment Env1 = 〈E, e0, τ〉 defined as follows:

E = {e0, e1, e2, e3, e4, e5}
τ (e0

α0−→) = {e1, e2}
τ (e0

α1−→) = {e3, e4, e5}

There are two agents possible with respect to this environment:

Ag1(e0) = α0

Ag2(e0) = α1

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 66

Lecture 2 An Introduction to Multiagent Systems

The probabilities of the various runs are as follows:
P(e0

α0−→ e1 | Ag1,Env1) = 0.4

P(e0
α0−→ e2 | Ag1,Env1) = 0.6

P(e0
α1−→ e3 | Ag2,Env1) = 0.1

P(e0
α1−→ e4 | Ag2,Env1) = 0.2

P(e0
α1−→ e5 | Ag2,Env1) = 0.7

Assume the utility function u1 is defined as follows:
u1(e0

α0−→ e1) = 8

u1(e0
α0−→ e2) = 11

u1(e0
α1−→ e3) = 70

u1(e0
α1−→ e4) = 9

u1(e0
α1−→ e5) = 10

What are the expected utilities of the agents for this utility function?

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 67

Lecture 2 An Introduction to Multiagent Systems

Optimal Agents

• The optimal agent Agopt in an environment Env is the one that
maximizes expected utility:

Agopt = arg max
Ag∈AG

EU(Ag,Env) (1)

• Of course, the fact that an agent is optimal does not mean that it
will be best; only that on average, we can expect it to do best.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 68

Lecture 2 An Introduction to Multiagent Systems

Optimal Agents

• To see the difference between these two ideas, recall the Patriots
4th down and 2 against the Colts during the 2009 season.

• Also note that though we can characterise an optimal agent as
the MEU agent, it does not tell us how to build it.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 69

Lecture 2 An Introduction to Multiagent Systems

Bounded Optimal Agents

• Some agents cannot be implemented on some computers

• A function Ag : RE → Ac may need more than available memory
to implement.

• Write AGm to denote the agents that can be implemented on
machine m:

AGm = {Ag | Ag ∈ AG and Ag can be implemented on m}.

• The bounded optimal agent, Agbopt, with respect to m is then. . .

Agbopt = arg max
Ag∈AGm

EU(Ag,Env) (2)

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 70

Lecture 2 An Introduction to Multiagent Systems

Predicate Task Specifications

• A special case of assigning utilities to histories is to assign 0
(false) or 1 (true) to a run.

• If a run is assigned 1, then the agent succeeds on that run,
otherwise it fails.

• Call these predicate task specifications.

• Denote predicate task specification by Ψ:

Ψ : R → {0, 1}

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 71

Lecture 2 An Introduction to Multiagent Systems

Task Environments

• A task environment is a pair 〈Env,Ψ〉, where Env is an
environment, and

Ψ : R → {0, 1}

is a predicate over runs.

• Let T E be the set of all task environments.

• A task environment specifies:

– the properties of the system the agent will inhabit;
– the criteria by which an agent will be judged to have either

failed or succeeded.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 72

Lecture 2 An Introduction to Multiagent Systems

• Write RΨ(Ag,Env) to denote set of all runs of the agent Ag in
environment Env that satisfy Ψ:

RΨ(Ag,Env) = {r | r ∈ R(Ag,Env) and Ψ(r) = 1}.

• We then say that an agent Ag succeeds in task environment
〈Env,Ψ〉 if

RΨ(Ag,Env) = R(Ag,Env)

• In other words, an agent succeeds if every run satisfies the
specification of the agent.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 73

Lecture 2 An Introduction to Multiagent Systems

• We might write this as:

∀r ∈ R(Ag,Env),we haveΨ(r) = 1

• This is a bit pessimistic.

• If the agent fails on a single run, we say it has failed overall.

• A more optimistic idea of success is:

∃r ∈ R(Ag,Env),we haveΨ(r) = 1

which counts an agent as successful as soon as it completes a
single successful run.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 74

Lecture 2 An Introduction to Multiagent Systems

The Probability of Success

• If the environment is non-deterministic, the τ returns a set of
possible states.

• We can define a probability distribution across the set of states.

• Let P(r | Ag,Env) denote probability that run r occurs if agent Ag
is placed in environment Env.

• Then the probability P(Ψ | Ag,Env) that Ψ is satisfied by Ag in Env
would then simply be:

P(Ψ | Ag,Env) =
∑

r∈RΨ(Ag,Env)
P(r | Ag,Env)

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 75

Lecture 2 An Introduction to Multiagent Systems

Achievement & Maintenance Tasks

• The idea of a predicate task specification is admittedly abstract.

• It generalises two common types of tasks: achievement tasks
and maintenance tasks:

1. Achievement tasks Are those of the form “achieve state of
affairs φ”.

2. Maintenance tasks Are those of the form “maintain state of
affairs ψ”.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 76

Lecture 2 An Introduction to Multiagent Systems

• An achievement task is specified by a set G of “good” or “goal”
states: G ⊆ E.

• The agent succeeds if it is guaranteed to bring about at least one
of these states.

• (For now we do not care which one — they are all considered
equally good).

• We can think of the agent playing a game against nature.

• The agent succeeds if it can force the environment into one of
the goal states g ∈ G.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 77

Lecture 2 An Introduction to Multiagent Systems

• A maintenance goal is specified by a set B of “bad” states: B ⊆ E.

• The agent succeeds in a particular environment if it manages to
avoid all states in B — if it never performs actions which result in
any state in B occurring.

• In terms of games, the agent succeeds in a maintenance task if it
ensures that it is never forced into one of the fail states b ∈ B.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 78

Lecture 2 An Introduction to Multiagent Systems

Agent Synthesis
• Agent synthesis is automatic programming.

• The goal is to have a program that will take a task environment,
and from this task environment automatically generate an agent
that succeeds in this environment:

syn : T E → (AG ∪ {⊥}).

(Think of ⊥ as being like null in JAVA.)

• Synthesis algorithm is:

– sound if, whenever it returns an agent, then this agent
succeeds in the task environment that is passed as input; and

– complete if it is guaranteed to return an agent whenever there
exists an agent that will succeed in the task environment
given as input.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 79

Lecture 2 An Introduction to Multiagent Systems

• Synthesis algorithm syn is sound if it satisfies the following
condition:

syn(〈Env,Ψ〉) = Ag implies R(Ag,Env) = RΨ(Ag,Env).

and complete if:

∃Ag ∈ AG s.t. R(Ag,Env) = RΨ(Ag,Env) implies syn(〈Env,Ψ〉) 6= ⊥.

• If syn is sound and complete, it will only output ⊥ for 〈Env,Ψ〉 if
there is no agent that will succeed for 〈Env,Ψ〉.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 80

Lecture 2 An Introduction to Multiagent Systems

Summary

• This lecture has looked in detail at what constitutes an intelligent
agent.

• We looked at the properties of an intelligent agent and the
properties of the environents in which it may operate.

• We introduced the intentional stance and discussed its use.

• We looked at abstract architectures for agents of different kinds;
and

• Finally we discussed what kinds of task an agent might need to
carry out.

• In the next lecture, we will start to look at how one might program
an agent.

c©M. J. Wooldridge, used by permission/Updated by Simon Parsons, Spring 2011 81

