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1 IntroductionOne of the greatest challenges for computer science is building computer systems that canwork together. The integration of automated systems has always been a challenge, but ascomputers have become more sophisticated, the demands for coordination and cooperationhave become more critical. It is not only basic level components such as printers, disks, andCPUs, but also high-level complex systems that need to coordinate and cooperate.Examples of such intelligent systems include: automated agents that monitor electric-ity transformation networks [32]; teams of robotic systems acting in hostile environments[5]; computational agents that facilitate distributed design and engineering [54]; distributedtransportation and planning systems [56, 25]; intelligent agents that negotiate over meetingscheduling options on behalf of people for whom they work [67]; and Internet agents thatcollaborate to provide updated information to their users. In these environments, even whencoordination is not required, cooperation may improve the performance of the individualagents or the overall behavior of the system they form.Problems of coordination and cooperation are not unique to computer systems, but existat multiple levels of activity in a wide range of populations. People pursue their own goalsthrough communication and cooperation with other people or machines. Animals interact(with limited language), cooperate with each other, and form communities. Particles interactwith each other and compose di�erent types of material and phases of matter. Althoughmost computers currently act in multicomputer environments, the interaction among them isgenerally restricted, and they interact under strict rules. Negotiation or other sophisticatedinteractions rarely occur among computers. In general, the levels of negotiation, bidding,voting, and other sophisticated interactions that characterize natural coordinating systemsare absent.Recent research in Distributed Arti�cial Intelligent (DAI) aims to increase the power,e�ciency, and exibility of intelligent automated systems (agents) by developing sophisti-cated techniques for communication and cooperation among them. In my research, I haveaddressed the challenge of building coordinated and collaborated intelligent agents by com-bining AI techniques with methods and techniques from various �elds that study multi-entitybehavior.I argue that an interdisciplinary approach is bene�cial for the development of coordinatedand cooperative intelligent agents. Because these �elds, which study multi-entity behavior,are not concerned with agent design, one might think what they are not relevant for DAI.Our experience is quite the contrary. It is true that these �elds do not solve AI problems,but they have thought about a wide range of issues that are important to the design ofintelligent agents, and they provide techniques, sometimes with proven properties or methodsfor proving properties that are useful to adopt for designing agents. DAI researchers stillhave a lot of work left in order to adapt these methods for their needs; however, they donot need to start from scratch. In this paper, we show by example the advantages and thechallenges of building on other work.The amount of work done in the related �elds is overwhelming. Thus, a major challenge intaking an interdisciplinary approach is determining which technique to use. There are severalparameters that inuence the choice of the appropriate techniques for a DAI application:1



1. The level of cooperation among the agents: cooperative agents which worktoward satisfying the same goal vs. agents which are self-motivated and try to maximizetheir own bene�ts1. There are intermediary cases where self-motivated agents jointogether to work toward a joint goal.2. Regulations and protocols: environments where the designers of the agents canagree on regulations and protocols for the agents' interaction vs. situations with nopre-de�ned regulations and protocols.3. Number of agents: a very large number of agents (hundred or more) vs. a few agentswhich communicate and coordinate their actions.4. Type of agents: systems of automated agents vs. systems composed of people andautomated agents.5. Communication and computation costs: the availability and cost of communica-tion among the agents and their computation capabilities and costs.Any DAI task can be characterized according to these dimensions. This characterizationguides the choice of the multi-entity technique that can be applied to the speci�c task.Consider the development of automated agents for buying and selling items on the Web,such as clothes and furniture. Suppose there are several enterprises, each with several kindsof goods which they sell to users or to other enterprises. Each enterprise has intelligentseller and buyer agents. The job of the seller agent is to sell the enterprise's goods to otherenterprises through their buyer agents or to users. The job of a buyer agent is to obtainfrom other enterprises the goods that are missing from the stock of its enterprise. Severaldi�erent DAI problems may arise in such a framework: (A) In the interaction between twoautomated agents belonging to di�erent enterprises, the agents are self-motivated, but maybene�t from cooperation. The designers of the agents may agree upon regulations for theinteraction, the number of agents of each interaction is limited, and they can communicateand have computation capabilities. (B) A seller agent of an enterprise may try to sell somegoods to a person. In this case, the person will prefer a non-structured interaction, and it ismore di�cult to set regulations and protocols for the interaction in advance. (C) Two agentsof the same enterprise may work together toward the same goal: increasing the bene�ts totheir enterprise. In this case, the agents are cooperative, regulations and protocols can be setin advance, the number of agents is limited, they are automated, and they can communicate.In each of these three cases, there is a di�erent multi-entity technique that should be applied.In this paper, we will examine di�erent DAI tasks and will discuss the application ofgame-theoretic techniques (Section 2), physics models (Section 3), operations research meth-ods (Section 4), and informal models of cooperation and coordination (Section 5) to DAIenvironments.1Research in DAI is divided into two basic classes: Distributed Problem Solving (DPS) and Multi-AgentSystems (MA) [6]. Cooperative agents belong to the DPS class, while self-motivated agents belong to theMA class. 2



2 The Application of Game-Theoretic Techniques toMulti-Agent EnvironmentsResearchers in DAI have considered problems related to task allocation and resource sharingwhere the agents are self motivated, as in the following examples: situations where airplanesbelonging to di�erent airlines need to share the limited resources of the same airport, and itis necessary to �nd a mechanism that will give priority to planes with less fuel on board [61];an electronic market populated with automated agents which represent di�erent enterprisesand buy and sell (e.g., [8, 17, 74]); transportation centers that deliver packages and maycooperate to reduce expenses [64]; information servers that form coalitions for answeringqueries [36]; and intelligent agents that negotiate over meeting scheduling options on behalfof people for whom they work [67]. Using the �ve criteria presented in the introduction tocharacterize these examples, we observe that in these examples the agents are self-motivatedand try to maximize their own bene�ts. The designers of the agents may agree in advanceon regulations and protocols for the agents' interaction. In each interaction the number ofagents is usually small (less than a dozen agents); there are only automated agents whichcan communicate and have computational capabilities.In such situations we recommend the application of game-theoretic techniques. Gametheory studies mathematical models of conict and cooperation between people. The modelsof game theory are highly abstract representations of classes of real life situations thatinvolve individuals who have di�erent goals or preferences [49]. The active entity in allgame-theoretic models is a player. Game-theoretic models are divided into two main types:\noncooperative" models, in which the sets of possible actions of individual players areprimitives, and \cooperative" models, in which the sets of possible joint actions of groups ofplayers are primitive [53].The abstract models of game theory can be used as a basis for the agents' interactionprotocols, when the designers of the agents agree to use them. Automated agents in a DAIframework can be modeled by players of game-theoretic models. Since it is assumed ingame theory that the players are self-motivated, so should the agents be in the environmentswhere these techniques are applied. DAI addresses both situations in which each individualagent acts by itself (e.g., [61, 67, 17]), thus calling for the application of noncooperativemodels, and situations in which tasks require that groups of agents work together (e.g.,[64, 36]), thus calling for cooperative models. In the �rst case, game-theoretic models areappropriate when there is only a handful of agents, and, in the second case, game theorymay be applied to a few dozens of agents. The use of game-theoretic techniques requiressubstantial computations, and, communication capabilities are also usually needed. Theexamples described in the beginning of the section, as well as other situations that satisfythese criteria, are cases where applying game-theoretic techniques by DAI researchers shouldbe considered. We have applied both noncooperative and cooperative game-theoretic modelsto DAI situations. We briey describe these attempts here.3



2.1 Use of a StrategicModel of Negotiation for Resource Sharingand Task DistributionWe �rst consider situations where a small number of self-motivated agents need to share re-sources or can bene�t from task distribution. In these situations, inter-agent cooperation canbe enhanced using negotiation strategies that enable agents to communicate their respectivedesires and to compromise in order to reach mutually bene�cial agreements.The game-theoretic strategic approach to the bargaining problem2 provides a useful foun-dation for designing such capabilities in systems. In this approach, agents' negotiating ma-neuvers are moves in a noncooperative game, and the rationality assumption of the negotia-tors [30] is expressed by using the Nash Equilibrium concept3. Our main goal in this researchwas to de�ne an acceptable protocol for the interactions among the agents and to identifystrategies for the agents participating in the negotiation. These methods are applicable inthe following example.Example 1 Data Allocation in Multi-Agent EnvironmentsThere is a set of several (more than two) information servers in the environment which areconnected by a communication network. Each server is located in a di�erent geographicalarea and receives queries from clients in its area. In response to a client's query, a server sendsback information stored locally or information stored in another server, which it retrievesfrom that server4. The information is clustered in datasets5.When a set of new datasets arrives, each new dataset has to be allocated to one of theservers by mutual agreement among all of them. However, each server has its own interestsand wants to maximize its own utility, and thus the servers may be in conict concerningwhere to locate the new datasets. Furthermore, the servers have no common interest andno central controller which can be used to resolve such conicts. We propose that theseconicts will be resolved via negotiations. In particular, we propose a strategic negotiationmodel that takes into account the passage of time during the negotiation process itself inorder to solve this problem.Our negotiation protocol is a process that may include several iterations. We assume thatservers can take actions in the negotiation only at certain times in the set T ime = f0; 1; 2:::gthat are �xed in advance and ordered (randomly). In each period t 2 T ime, if the negotiationhas not terminated earlier, a server whose turn it is to make an o�er at time t, will suggesta possible allocation for all the datasets considered, and each of the other servers may eitheraccept the o�er or reject it or opt out of the negotiation. If an o�er is accepted by all theagents, then the negotiation ends, and this o�er is implemented. If at least one of the agentsopts out, then the negotiation ends. If no server has opted out, but at least one of the servershas rejected the o�er, the negotiation proceeds to period t+1, and the next server makes acounter-o�er, the other servers respond, and so on.2Introductory books on game theory that discuss approaches to bargaining include [47, 49, 21, 53].3A pair of strategies (�; � ) is a Nash Equilibrium if, given � , no strategy of Agent 1 results in an outcomethat Agent 1 prefers to the outcome generated by (�; � ), and similarly for Agent 2, given �.4A speci�c example of such a distributed knowledge system is the Data and Information System compo-nent of the Earth Observing System (EOSDIS) of NASA [50]. It is a distributed system which supports thearchiving and distribution of data at multiple and independent data centers.5A dataset corresponds to a cluster in information retrieval, and to a �le in the �le allocation problem.4



Using this negotiation mechanism, we showed that the servers have simple and stablenegotiation strategies that result in e�cient agreements without delays. We have provedthat our methods yield better results than the static allocation policy currently used fordata allocation for servers in distributed systems.The main question is, in general, what is the advantage to using game-theoretic modelsfor such problems, and what must be done in order to adapt them to DAI environments.The strategic bargaining theory provides general frameworks for modeling negotiation, butto apply them to the design of agents, we needed to address �ve problems: choosing a strate-gic bargaining model which is applicable for the speci�c DAI problem; matching the DAIscenarios with the game-theoretic de�nitions of the chosen model; identifying equilibriumstrategies; developing low complexity techniques for searching for appropriate strategies; andproviding utility functions.For example, for the data allocation problem described in Example 1, we have chosenRubinstein's model of Alternative O�ers [62]6. The main property of this model is thatit takes into consideration the passage of time during the negotiation. This is useful forenvironments of example 1 since for a server participating in the negotiation process, thetime when an agreement is reached is very important7. The model of Alternative O�ersprovides formal de�nitions of players, possible agreements, the protocol of alternative o�ers,and the notion of strategies. In order to apply these concepts to the data allocation problem,we had to match the world state and formal de�nitions and modify them. For example, in thedata allocation scenario, a player is a server and an agreement is a distribution of datasetsto information servers.Game theory proposes di�erent notions of equilibria that capture di�erent aspects of sta-bility. Given speci�c assumptions about the environments, game theory researchers identifystrategies that are in equilibrium. In order to address the third need mentioned above, whenapplying game-theoretic techniques to DAI environments, we formalized the assumptionsthat are appropriate for our environments. For example, in the data allocation scenario, allagents sustain a loss over time, there is a �nite (but large) set of agreements, and there aresome agreements which are better for all agents than opting out of the negotiations. In mostof the cases, these assumptions are di�erent from the assumptions that are considered ingame theory, and therefore we needed to identify the equilibrium strategies under the DAIassumptions.The third problem mentioned above arises in DAI situations where the designer of thesystem cannot provide the automated agent with a negotiation strategy in advance. Forexample, in the data allocation scenario, �nding possible dataset allocations can be done onlyafter the speci�cations of the datasets are known to the agents and thus cannot be suppliedin advance by the designers. Construction of the strategies which are in equilibrium can relyon theorems proven in advance, but can be done only when the set of possible agreementscan be de�ned. For such situations, there is a need to develop low complexity computational6See [52] for a detailed review of the bargaining game of Alternative O�ers.7There are two reasons for this. First, there is the cost of communication and computation time spenton the negotiation. Second, there is the loss of unused information: until an agreement is reached, newdocuments cannot be used. Thus, the servers wish to reach an agreement as soon as possible, since theyreceive payment for answering queries. 5



techniques for searching for appropriate strategies by the automated negotiators. The issueof the complexity involved in �nding strategies is not discussed in the game theory literature.Another issue that is rarely discussed in game theory is the source of a utility functionor a set of preferences that is needed for any decision-making. In game theory, one aspect ofa de�nition of a game is the players' utility functions or preferences, and it is assumed thateach player knows its utility function (and has some knowledge of the utility function of itsopponents). A designer of an automated agent is required to provide the agents with a utilityfunction or a preference relation. Without doing so, the game-theoretic techniques cannotbe used for automated agents. In the data allocation scenario, we have developed a complexutility function which takes into consideration factors such as storage costs, retrieval costs,distances between servers, etc. Only then can we apply game-theoretic techniques.More details on our work on the strategic model of negotiation and the de�nition of utilityfunctions can be found in [45, 44, 39, 65]. In the process of developing and specifying thestrategic model of negotiation, we have examined bilateral negotiations, as well as multi-agentenvironments (more than two agents), single encounters and multiple encounters, situationscharacterized both by complete and incomplete information, and the di�ering impact oftime on the payo�s of the participants [45, 39]. Recently, we have also considered problemswhere there are two attributes to the agreements [65]. While some combinations of thesefactors can result in minor delays in reaching an agreement, the model nevertheless revealsan important capacity for reaching agreement in early periods of the negotiation8.2.2 The Game Theory Approach to Coalition FormationBy creating coalitions that allow them to share resources and cooperate on task execution,autonomous agents may be able to increase their bene�ts. Cooperative game-theoretic mod-els can be used to do this for self-motivated agents, each of which has tasks it must ful�lland resources it needs to complete these tasks. Although the agents can act and reach goalsby themselves, it may be advantageous to join together.For example, taxi drivers may own di�erent types of cabs and therefore may have di�erentcosts, di�erent transportation capabilities, and di�erent resulting payo�s. Each taxi driverwould like to increase his own bene�ts, but it may be in the driver's interest to cooperateand form coalitions in order to achieve greater and more complex transportation capabilities.Game-theoretic coalition formation theories can be used in the development of automatedagents that represent these drivers as they form coalitions.Game theory [51, 57, 28, 34, 11] provides a good framework with concepts of a coalitionand coalitional value and di�erent notions of stability, but to use it, we have had to addressthree tasks: the development of explicit protocols for interaction among the agents; thedevelopment of algorithms for coalition formation; while simultaneously taking into accountcommunication costs and limited computation time. Most of the work in game theory doesnot treat these issues, but only predicts how the players will distribute the bene�ts, given acoalition con�guration.In [72, 68] we addressed the three tasks mentioned above and presented algorithms for8In [44], it was shown how the strategic model can be used in applications such as a hostage crisissimulations. 6



coalition formation and payo� distribution in general environments. We focused on a lowcomplexity Kernel-oriented [12] coalition formation algorithm. The properties of this algo-rithmwere examined via simulations. These have shown that the model increases the bene�tsof the agents within a reasonable time period, and more coalition formations provide morebene�ts to the agents.3 Applying Classical Mechanics to Large Scale AgentSystemsThere are situations where cooperation among a large number of agents (hundred or more)is needed. For example, the World Wide Web (WWW) consists of millions of users and isstill growing. Another example is the employment of hundreds of simple, inexpensive au-tonomous mobile devices to achieve military and civilian goals in ground, air, and underwaterenvironments [22]. In such situations [31, 73], the agents work together toward satisfying alarge set of joint goals, and the designers of the agents can agree in advance on regulationsand protocols for the agents' interaction.The negotiation and coalition formation methods presented in the previous section aresuitable for environments with a relatively small number of agents. But, in very largeagent-communities, these negotiation methods are typically too computationally complexand time-consuming. Furthermore, with hundreds of agents, direct communication connec-tions between all of the agents may be impossible or too costly to establish.Physical models of particle-dynamics have proved useful in such settings. They usemathematical formulation either to describe or to predict the properties and evolution ofdi�erent states of matter. In particular, we developed e�cient techniques for cooperationamong hundreds of agents by adopting methods of classical mechanics used by physicists totackle the problem of �nding the properties of interaction among many particles. Althoughthere are many di�erences between particles and computational systems, we have shownthat the classical mechanics approach yields a model that enables feasible cooperation invery large agent-systems; the approach has a low computational complexity, which is crucialfor the functioning of such systems. We have applied the classical mechanics-based methodsto the following freight transportation example [16, 75, 63].Example 2 Freight transportation systemThe system of freight transportation consists of many carriers (e.g., messengers on mo-torcycles) which belong to the same company, operating in a big city. Each carrier has afreight carrying capability that is given in units of volume and has a given location. Thetasks that the carriers must ful�ll are freight transportation tasks. We deal here with freight(e.g., packages) that should be moved from various locations to other locations. There aremany freight transportation tasks to perform, and the carriers would like to perform themas soon as possible, while at the same time minimizing the company's expenses.In the above example and in the other DAI environments that we consider, there is a largeset of agents and a large set of goals they need to satisfy. Each agent has capabilities andshould move toward satisfying goals. The �rst step in applying the classical mechanics model7



to DAI is the match between particles and their properties, agents and their capabilities,and goals and their properties. The next step is to identify the state of matter for modelinga community of agents and goals. The mathematical formulation that is used by physicistseither to describe or to predict the properties and evolution of particles in these states ofmatter serve as the basis for the development of algorithms for the agents. However, severalmodi�cations of the classical mechanics model are necessary to provide an e�cient algorithmfor automated agents.In the physical world, mutual attraction between particles causes motion. The reactionof a particle to the �eld of potential will yield a change in its coordinates and energies. Thechange in the state of the particle is a result of the inuence of the potential. For DAI, theagents calculate the attraction and move according to the results of these calculations. Thatmeans, in our model, that each agent calculates the e�ect of the potential �eld on itself bysolving a set of di�erential equations. According to the results of these calculations, it movesto a new state in the goal-domain. If it reaches a goal, it will proceed to a goal-satisfactionprocess. In cases where too many agents �t the requirements of the same goal, some areprevented from reaching the goal, through the property of mutual rejection between dynamicparticles. We model the goal-satisfaction process by a collision of dynamic particles withstatic particles. Because the properties of particle collisions are di�erent from the propertiesof goal-satisfaction, several adjustments were made to develop e�cient algorithms for agentsystems.For example, in the freight transportation system of Example 2 each piece of freight ismodeled by a static particle and each carrier is modeled by a dynamic particle, since carriersmove toward the task's location. The volume of carriers' freight carrying capabilities andthe volume of each piece of freight are modeled by particle masses, and their locations byparticle locations.The interaction between a carrier and a piece of freight is modeled by the mutual potentialfunction of the modeling particles. It is calculated with respect to the distance between them.The potential functions derivatives yield forces which act on a dynamic particle and directit. That is, the advancement towards a piece of freight is modeled by the movement of adynamic particle towards a static particle. Repulsion between two dynamic particles whichmodel two di�erent carriers will inuence the freight-task distribution among the carriersand will prevent two carriers from proceeding to a piece of freight which can be moved byone carrier. The performance of a freight-transportation task is modeled by the collisionbetween a static particle, which models the task, and a dynamic particle, which models theagent.In [70], we provide a detailed algorithm to be used by a single agent within the system.The algorithm leads to agent-goal allocation, and it converges to a solution where the ful�ll-ment of goals is accomplished either by single agents or by groups of agents via cooperation.The computational complexity is low, and no explicit communication is necessary. In addi-tion to these properties, we have proven that the algorithm we provide performs relativelyclose to the optimum.The physics approach has several advantages. While common DAI algorithms must bechecked for their validity either by a formal proof or by simulations, the models that arebased on physics techniques can rely on theoretical and experimental results that are already8



known from physics. According to these results, one can predict the evolution of the modeledagent-system, since it will evolve in the same manner as a corresponding physical system.The local interactions, which enable one to derive the global behavior of the system, assure alow computational complexity of the model. In very large-scale agent-systems, this approachprovides a model that promises emergent cooperative goal-satisfaction activity. In addition,the properties of the system as a whole can be analyzed, using concepts from statisticalmechanics. The employment of such concepts enables us to derive the properties of a systemthrough the properties of its components.4 Applying Operations Research TechniquesMany DAI researchers have considered situations of cooperative automated agents: for exam-ple, several workstations working together on ful�lling tasks [48], multi-agent for integrationof design, manufacturing and shop oor control activities [4], and cooperative shipping com-panies [18]. In such situations, all the agents work together toward the satisfaction of a jointgoal; the designer of the automated agents can develop, in advance, protocols for cooperationbetween the agents; the number of agents is not large; and the agents can communicate andhave computation capabilities.We recommend, in such situations, the consideration of operations research techniques.Researchers in operations research seek to determine how best to design and operate anorganizational system, usually under conditions of scarce resources [76].Autonomous agents working in DPS environments can be considered as an organizationalsystem, and thus algorithms that were developed for human organizations in operationsresearch may be applied to DAI environments. This is suitable for environments with a fewdozen agents with large computation capabilities, because the computational complexity ofthe operations research techniques is usually high, and their e�ciency decreases with thesize of the organization to which they are applied.We have applied operations research techniques which were developed for the set cov-ering and set partitioning problems for coalition formation in DPS environments [69, 71].Given a set of agents and a set of tasks which they have to satisfy, we consider situationswhere each task should be attached to a group of agents which will perform the task. Anexample is a transportation company, similar to the example in the previous section. Thecompany supplies transportation services via a number of trucks, lift trucks, cranes, boats,and planes. The drivers belong to a cooperative and share the bene�ts equally, and thustry to maximize the overall bene�ts of the company. There may be occasions in which onevehicle cannot perform a given transportation task by itself. In such cases, cooperation isnecessary. Therefore, several drivers will form groups, and each group will ful�ll a trans-portation task cooperatively. If the transportation company has many drivers, a distributedtask allocation mechanism may be advantageous.As we mentioned above, task allocation among agents may be approached as a problem ofassigning groups of agents to tasks, and, therefore, the partition of the agents into subgroupsbecomes the main issue, and our problem becomes similar to the Set Partitioning Problem(SPP). Set partitioning entails the partition of a set into subsets, and the set partitioning9



problem is �nding such a partition that has a minimal cost9. The SPP has been dealtwith widely in the context of NP-hard problems [23], and approximation algorithms weredeveloped in operations research [24, 2, 3, 9, 10]. Among them we can �nd the algorithm ofChvatal [10], which has a logarithmic ratio bound10.The details of the algorithm that we developed, which is based on the operations researchmethods for the SPP is speci�ed in [69]. Although the general task allocation problem iscomputationally exponential, the algorithm above is polynomial and yields results which areclose to the optimal results and bounded by a logarithmic ratio bound. Another advantageof the algorithm, which is crucial in the case of a distributed system, is the distribution ofthe algorithm. We distribute the calculations in a natural way. That is, the distribution isan outcome of the algorithm characteristics, since each agent performs mostly those calcula-tions that are required for its own actions during the process. In addition, our distributionmethod prevents most of the possibly overlapping calculations, thus saving unnecessary com-putational operations.The algorithm is an anytime algorithm. If halted before normal termination, it stillprovides the systemwith several coalitions that have already formed. Since the �rst coalitionsto be formed are the better ones, the results, when halted, are still of good quality. Theanytime property of such an algorithm is important for dynamic environments, wherein thetime-period for negotiation and coalition formation processes may be changed during theprocess.In another paper [55], we considered the problem of distributed dynamic task allocationby a set of cooperative agents. We modeled the agents, using a stochastic closed queueingnetwork, which is a well known operations research technique.In both cases, we have developed polynomial algorithms that provide near optimal results.From our experience, we realized that in order to apply operations research techniques toDAI, there are several steps that must be taken. First, there is the need to �nd a problemthat was considered in operations research which is close to the DAI problem and to makea detailed match between the problems. For example, in the coalition formation problemdescribed above, we realized that it is close to the SPP or SCP problems. Then, there is theneed to adjust the operations research algorithm to the DAI environment. In particular, mostof the operations research algorithms are centralized, and, since we deal with autonomousagents, we seek distributed algorithms. In addition, there is the need to develop utilityfunctions that can be used by the agents. In operations research it is assumed that costfunction is provided as part of the problem (as in game theory). In our model, we need toprovide the agents with e�cient techniques to calculate them (see also [64]). For example,in [69, 71] we had to develop the cost function and coalitional values in the context of taskallocation and to provide a distributed algorithm to compute them. This notion of coalitionalvalue is di�erent from the notion of game-theoretic coalitional value, since here the valuedepends on the coalitional con�guration and on the task allocation.Although adjusting the operations research techniques to DAI situations required somee�ort, we determined that the bene�ts from using these well-developed methods, and tech-9Coalition formation where coalitions may overlap can be approached as a Set Covering Problem (SCP).10An approximation algorithm for a problem has a ratio bound �(n) if �(n) is smaller than the ratiobetween the optimal cost and the approximated cost.10



niques for evaluating them, may help in reaching e�cient algorithms for the DAI environ-ment.5 The application of informal models of behavioraland social sciences to automated agentsThere are situations where automated agents need to interact with other agents in non-structured environments; for example, an information server which works to form a multi-media document for answering a complex query of a user, agents that help train people innegotiation [44], and agents that sell goods on the World Wide Web [8]. In such situations,the agents are self-motivated, and usually the automated agents need to interact with people.The number of agents in the environment is not large, and communication is possible.In such situations, we found that formalizing and implementing informal models of be-havioral and social sciences can be bene�cial. Behavioral and social sciences study humancooperation and coordination and develop frameworks and models of organizations and com-munities (e.g., [60, 20, 59, 46]). In non-structured and unpredictable environments, heuristicsfor cooperation and coordination among automated agents, based on successful human co-operation and interaction techniques, may be useful.We have applied informal models to di�erent types of environments, and we will discussone of them below. Applying informal models to DAI can be done in two ways: (a) using theinformal models as motivation for the development of heuristics for the cooperative activitiesof the automated agents; (b) formalizing the informal models (e.g., using logic) and thenapplying them to a DAI environment. In both cases, there is a need to carry out simulationsin order to evaluate the performance of the techniques, since the informal models usuallydo not formally analyze the behavior of the systems. The main advantage in using thesemodels is that we build upon experience and expertise that were developed over the years inthe speci�c type of interactions, rather than starting from scratch and using only our ownexperience. Our success in the developments of speci�c applications, in particular automatednegotiators [41, 42], supports this claim.There are two main approaches in the social sciences to the development of theoremsrelating to negotiation. The �rst approach which we used in Sections 2.1, is the formaltheory of bargaining. This formal game-theoretic approach provides clear analyses of varioussituations and precise results concerning the strategy a negotiator should choose. However,it requires making restrictive assumptions, and the agents need to follow strict negotiationprotocols which are not possible in some real world environments.The second approach, which we refer to as the negotiation guides approach, comprisesinformal theories which attempt to identify possible strategies for a negotiator and to assisthim in achieving good results (see, for example, [19, 13, 35, 33, 29]). These negotiationguides do not accept the strong restrictions and assumptions presented in the game-theoreticmodels. Applying these methods to DAI is more di�cult than using the �rst approach, sincethere is no formal theory nor strategies that can be used. However, these methods can beused in domains where people interact with each other and with automated agents, andsituations where automated agents interact in environments without pre de�ned regulations.11



These informal models can serve as guides for the development of negotiation heuristics [41]or as a basis for the development of a logical model of negotiation [42].In [37, 41], we developed a general structure for a self-motivated Negotiating AutomatedAgent acting in environments where cooperation between the agents may be bene�cial, butwhere conicts among the agents can arise. There are no strict regulations and protocols forthe negotiation, there is no mediator, and central controllers do not exist. Thus agreementsare not enforced, and agents may break their promises. The agents have incomplete infor-mation concerning the other agents' goals and tasks, and an agent can provide the otheragents with false information.As a testbed, a speci�c domain was chosen, the Diplomacy game, which is rich enoughto include most aspects of negotiation11. Given a (restricted version of) natural languagewhich covers this domain, our agent, Diplomat, was confronted with human agents and evendemonstrated an advantage over its human negotiation partners.The framework of Diplomat consists of �ve modules: the Prime Minister, that directsthe Diplomat's activities; the Ministry of Defense, that is responsible for the planning;the Foreign O�ce, that negotiates with the other players; the Headquarters that executesthe basic tasks of Diplomat; and the Intelligence Agency, that is responsible for collectinginformation about the environment and the other players. These modules are implementedby a dynamic set of local-agents that work together, communicate, and exchange messagesto achieve the common general tasks of Diplomat.In the design of Diplomat and in choosing the negotiation heuristics it uses, we useddi�erent general informal negotiation guides. For example, as we mentioned above, Diplomatconsists of di�erent modules for planning { i.e., the Ministry of Defense { and negotiations {i.e., the Foreign O�ce. The development of di�erent modules for negotiation and planning isa characteristic of a good negotiator, according to Fisher and Ury's model [19]. They suggestthat a good negotiator should do much \inventing," that is, �nd out new ideas that are notalready among the negotiation issues. The separation of the planning and negotiation intotwo modules enables the Ministry of Defense to �nd as many solutions to the problem aspossible, without taking into account whether or not they are acceptable to the other side.The ideas will not be conveyed to the other side until the Foreign O�ce decides to do so.Therefore, their consideration by the Ministry of Defense can do no harm.There are several heuristics that Diplomat uses to decide how to make suggestions toanother agent. For example, when considering a cooperation agreement with another agent,Diplomat designs several possible strategies and compares them to choose the strategy thatwill be a basis for the agreement. Since a negotiator wants to \win," one may suspect thatthe only criterion that will guide him while comparing and choosing between strategies willbe his own bene�ts derived from the strategies. However, as has been suggested by theliterature on human negotiation, this is not the case. The reason for that phenomena is thatin order for the agreement to last, it should be bene�cial to all parties involved. Otherwise,a neglected partner may be tempted to reach a more appealing agreement, even withoutinforming the negotiator. For that same reason, the other partner should be convinced11Diplomacy is a board game marketed by Avalon Hill Company and played on the map of Europe duringthe years just prior to World War I. Coalitions and agreements among the players signi�cantly a�ect thecourse of the game. 12



that the agreement is pro�table to Diplomat (see [19]); otherwise he will suspect that thenegotiator will later break the agreement.In order to test Diplomat, we arranged several Diplomacy games, and our �ndings (see[41]) show that Diplomat played well in the games in which it participated. We believethat its success is due to the integration of the heuristic techniques we developed for theconstruction of negotiator agents and well developed informal theories of negotiation12.6 ConclusionsIn this paper we argue that applying multi-entity techniques, such as game theory andphysics, to DAI, is bene�cial. We described several attempts to apply methodologies fromdiverse �elds to DAI problems. A summary of the multi-entity techniques that we used andtheir application in DAI is given in Figure 1. The last column uses the parameters presentedin the introduction to characterize the problems that we considered. For example, we appliedgame theory in environments where the agents are automated and self-motivated, but it ispossible that the agents will follow some agreed-upon protocols (Sections 2.1 and 2.2). Wedemonstrated that classical mechanics models are useful for task distribution in very largesets of cooperative agents (Section 3). We applied operations research techniques such asqueueing networks for task distribution among a relatively small set of cooperative agents(Section 4). We used the less formal social science models of cooperation when there wereno strict protocols for the cooperation (Section 5), or when communication was not possible([15, 43]). Further, we demonstrated that ideas drawn from philosophy can be the basis forthe development of SharedPlans among agents ([27, 26]).There are two main aspects of a multi-entity environment that determine its usefulness toa DAI problem and its e�ect on the amount of work required for the adaptation of techniquesdeveloped for it to the DAI problems. The �rst criterion is the similarity between the entitiesand the automated agents. The second criterion is the level of formalization that is used byresearchers of the multi-entity domains.For example, people are more similar to automated agents than are particles. Therefore,in all the multi-entity techniques that were developed for humans environments, it wasn'tdi�cult to match the entities in the environment and the participants in the multi-agentdomains. For example, it is clear that players in game-theoretic frameworks can model au-tomated agents. It is less clear which types of particles in the classical mechanics frameworkserve as models for agents and that collisions are a good way to model goal-satisfaction.The second criterion has to do with the fact that we need to provide our automatedagents with formal and well-designed algorithms. With respect to this, it is easier to usetechniques from formal multi-entity models than techniques that were not formalized by12We have applied other informal models to DAI situations. In [42], we developed a formal logic thatforms a basis for the development of a formal axiomatization system and the implementation of a logic-based negotiator [14] based on persuasion models [1].In [27, 26], we have applied philosophical informal models of cooperative activity [7] for situations whereteams composed of people and computers plan and work together toward satisfying a shared goal.In [15, 43], we used the notion of focal point introduced by Schelling [66, 58], for multi-agent cooperationwithout communication. 13



their developers. For example, even though people and automated agents have much incommon, with respect to cooperation, it is quite di�cult to develop an algorithm for agentcooperation based on the informal ideas, procedures, and rules that are presented by socialscientists and philosophers. Much e�ort is required to formalize these procedures and rulesand to produce an implementable algorithm for the automated agents. On the other hand,after going through the process of modeling a community of agents using a classical mechanicsframework, the usage of the formal techniques of classical mechanics is not so di�cult. Thereis a need to modify the formal procedures and to adjust them to the multi-agent requirement,but there is no need to create the formal procedure from scratch.7 AcknowledgmentsI would like to thank the many people who, over the years, have collaborated with me:C. Baral, E. Blake, P. Bonatti, E. Ephrati, A. Evenchik, D. Etherington, M. Fenster, B.Grosz, M. Harris, J. Hendler, K. Holley, J. Horty, D. Lehmann, G. Lemel, M. Magidor,J. Minker, M. Nirkh, D. Perlis, T. Plotkin, J. Rosenschein, A. Schwartz, O. Shehory, Y.Shoham, S. Subrahmanian, K. Sycara, B. Thomas, J. Wilkenfeld, and G. Zlotkin. Our jointwork inuenced my thinking on cooperation and coordination.I would like to thank Barbara Grosz, Martha Pollack, Jonathan Wilkenfeld, Onn Shehoryand Orna Schechter, each of whom also provided help and support while I was preparing theComputers and Thought lecture and this paper. Special thanks to Dr. Shifra Hochberg foreditorial assistance.This work was supported by the NSF under Grants No. IRI-9423967 and IRI-9311988and the Israeli Ministry of Science, Grants No. 6288 and 4210.References[1] H. Abelson. Persuasion. Springer Pub. Co., New York, 1959.[2] E. Balas and M. Padberg. On the set covering problem. Operations Research, 20:1152{1161, 1972.[3] E. Balas and M. Padberg. On the set covering problem: An algorithm for set partition-ing. Operations Research, 23:74{90, 1975.[4] S. Balasubramanian and D. Norrie. A multi-agent intelligent design system integratingmanufacturing and shop-oor control. In Proc. of the First International Conferenceon Multiagent Systems, pages 3{9, California, USA, 1995.[5] T. Balch and R. C. Arkin. Motor schema-based formation control for multiagent robotteams. In Proc. of the First International Conference on Multiagent Systems, pages10{16, California, USA, 1995. 14



Multi-entity techniques DAI Papers CharacterizationGame TheoryStrategic bargaining Negotiation for Task Distribution [45, 44] SMA, s#, R&P,models & Resource Allocation in MA [39] AUTO, COMUTheories of Coalition formation in MA [72, 68] SMA, m#, R&P,coalition formation AUTO, COMUPrinciple-agent Contracting tasks in MA [40, 38] SMA, s#, R&P,models AUTO,COMUPhysicsClassical mechanics Goal satisfaction in very CA, l#, R&Plarge DPS environments [70] AUTOOperations ResearchSPP & SCP Coalition formation in DPS [69, 71] CA, m#,R&PAUTO,COMUQueueing networks Task allocation in DPS [55] CA, m#,R&PAUTO,COMUBehavioral Sciences:Negotiation guides Diplomatic Negotiation [37, 41] SMA, m#,AUTO&PE, COMUPersuasion models Argumentation [42, 14] SMA, s#,(logic) AUTO&PE,COMUFocal points Cooperation without [15, 43] CA, m# AUTO,(logic & decision theory) communication R&PPhilosophy Collaborative Plans [27, 26] CA&SMA, m#,(logic) AUTO&PE, COMUFigure 1: Summary of multi-entity techniques and their application in DAI. In the last col-umn, SMA stands for self motivated agents, and CA indicates cooperative agents which worktoward satisfying the same goal (see Section 1). R&P indicates that the designers can agreeon regulations and protocols for agents interaction. s#, m# and l# stands for environmentswith small (handful), medium (few dozen), or large number (hundreds) of agents, respec-tively. AUTO indicates environments with only automated agents, and AUTO&PE standsfor systems composed of people and automated agents. That communication is possible isindicated by COMU. 15



[6] A. H. Bond and L. Gasser. An analysis of problems and research in DAI. In A. H.Bond and L. Gasser, editors, Readings in Distributed Arti�cial Intelligence, pages 3{35.Morgan Kaufmann Publishers, Inc., San Mateo, California, 1988.[7] Micahel E. Bratman. Shared cooperative activity. The Philosophical Review, 101:327{341, 1992.[8] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling goods.In The First International Conference on the Practical Application of Intelligent Agentsand Multi Agents Technology, pages 75{90, London, 1996.[9] N. Christo�des and S. Korman. A computational survey of methods for the set coveringproblem. Mathematics of Operations Research, 21(5):591{599, 1975.[10] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of OperationsResearch, 4(3):233{235, 1979.[11] M. S. Y. Chwe. Farsighted coalitional stability. Journal of Economic Theory, 63:299{325, 1994.[12] M. Davis and M. Maschler. The kernel of a cooperative game. Naval Research LogisticsQuarterly, 12:223{259, 1965.[13] D. Druckman. Negotiations. Sage Publications, 1977.[14] A. Evenchik. Inference system for argumentation in negotiation between automaticagents. M.Sc. thesis, Dept. of Mathematics and Computer Science, Bar-Ilan University,1995.[15] M. Fenster, S. Kraus, and J. Rosenschein. Coordination without communication: Ex-perimental validation of focal point techniques. In Proc. of the First InternationalConference on Multiagent Systems, pages 102{116, California, USA, 1995.[16] K. Fischer and N. Kuhn. A DAI approach to modeling the transportation domain.Technical Report RR 93-25, Deutsches Forschungszentrum f�ur k�unstliche intelligenzGMBh, 1993.[17] K. Fischer, J. P. M�uller, I. Heimig, and A. Scheer. Intelligent agents in virtual enter-prises. In The First International Conference on the Practical Application of IntelligentAgents and Multi Agents Technology, London, 1996.[18] K. Fischer, J. P. M�uller, M. Pischel, and D. Schier. A model for cooperative transporta-tion scheduling. In Proc. of the First International Conference on Multiagent Systems,pages 109{116, California, USA, 1995.[19] R. Fisher and W. Ury. Getting To Yes: Negotiating Agreement Without Giving In.Houghton Mi�in, Boston, 1981. 16



[20] R. C. Ford, R. B. Armandi, and C. P. Heaton. Organization Theory: an IntegrativeApproach. Harper and Row, New York, 1988.[21] D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, Ma, 1991.[22] D. W. Gage. Command control for many-robot systems. Unmanned Systems, Fall:28{34,1992.[23] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theoryof NP-completeness. W. H. Freedman and Company, New York, 1979.[24] R. S. Gar�nkel and G. L. Nemhouser. The set-partitioning problem: set covering withequality constraints. Operations Research, 17:848{856, 1969.[25] L. Glicoe, R. Staats, and M. Huhns. A multi-agent environment for department ofdefense distribution. In IJCAI95 Workshop on Intelligent Systems, 1995.[26] B. Grosz and S. Kraus. Collaborative plans for group activities. In IJCAI-93, pages367{373, Chambery, France, 1993.[27] B. J. Grosz and S. Kraus. Collaborative plans for complex group activities. Arti�cialIntelligence Journal, 86(2):269{357, 1996.[28] S. Guiasu and M. Malitza. Coalition and Connection in Games. Pergamon Press, 1980.[29] Lavinia Hall, editor. Negotiation: Strategies for Mutual Gain. Sage, 1993.[30] J. C. Harsanyi. Rational Behavior and Bargaining Equilibrium in Games and SocialSituations. Cambridge University Press, 1977.[31] Tad Hogg. Social dilemmas in computational ecosystems. In Chris S. Mellish, editor,Proceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence,pages 711{718, San Mateo, 1995. Morgan Kaufmann.[32] Nick R. Jennings. Controlling cooperative problem solving in industrial multi-agentsystems using joint intentions. Arti�cial Intelligence Journal, 75(2):1{46, 1995.[33] R. Johnson. Negotiation basics. Sage, 1993.[34] J. P. Kahan and A. Rapoport. Theories of Coalition Formation. Lawrence ErlbaumAssociates, Hillsdale, New Jersey, 1984.[35] C.L Karrass. The Negotiating Game: How to Get What You Want. Thomas CrowellCompany, NY, 1970.[36] M. Klusch and O. Shehory. A polynomial kernel-oriented coalition formation algorithmfor rational information agents. In Proc. of ICMAS-96, Kyoto, Japan, 1996.[37] S. Kraus. Planning and Communication in a Multi-Agent Environment. PhD thesis,Hebrew University, Jerusalem, 1988. (Written largely in Hebrew).17



[38] S. Kraus. Agents contracting tasks in non-collaborative environments. In Proc. ofAAAI-93, pages 243{248, Washington, D.C., 1993.[39] S. Kraus. Beliefs, time and incomplete information in multiple encounter negotiationsamong autonomous agents. Annals of Mathematics and Arti�cial Intelligence, 1996. InPress.[40] S. Kraus. An overview of incentive contracting. Arti�cial Intelligence Journal,83(2):297{346, 1996.[41] S. Kraus and D. Lehmann. Designing and building a negotiating automated agent.Computational Intelligence, 11(1):132{171, 1995.[42] S. Kraus, N. Nirkhe, and K. P. Sycara. Reaching agreements through argumentation:a logical model. In Proc. of DAI-93, 1993.[43] S. Kraus and J. S. Rosenschein. The role of representation in interaction: Discoveringfocal points among alternative solutions. In E. Werner and Y. Demazeau, editors,Decentralized Arti�cial Intelligence, Volume 3, pages 147{165, Germany, 1992. ElsevierScience Publishers.[44] S. Kraus and J. Wilkenfeld. A strategic negotiations model with applications to aninternational crisis. IEEE Transaction on Systems Man and Cybernetics, 23(1):313|323, 1993.[45] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent negotiation under time constraints.Arti�cial Intelligence, 75(2):297{345, 1995.[46] W. A. Kraus. Collaboration in Organizations: Alternatives to Hierarchy. Human Sci-ences Pr., New York, 1984.[47] R. D. Luce and H. Rai�a. Games and Decisions. John Wiley and Sons, 1957.[48] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Enterprise: A marketliketask schedule for distributed computing environments. In B. A. Huberman, editor, TheEcology of Computation, pages 177{205. North Holland, 1988.[49] R. Myerson. Game Theory. Harvard University, 1991.[50] NASA. EOSDIS Home Page. http://www-v0ims.gsfc.nasa.gov/v0ims/index.html, 1996.[51] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.Princeton University Press, Princeton, N.J., 1947.[52] M. J. Osborne and A. Rubinstein. Bargaining and Markets. Academic Press Inc., SanDiego, California, 1990.[53] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge,Massachusetts, 1994. 18



[54] C. Petrie, M. Cutlosky, and H. Park. Design space navigation as a collaborative aid. InProceedings of the Third International Conference on Arti�cial Intelligence in Design,Lausanne, 1994.[55] T. Plotkin and S. Kraus. A queueing network approach to distributed task allocationfor cooperative agents. submitted, 1996.[56] M. Pollack, T. Znati, E. Ephrati, D. Joslin, S. Lauzac, A. Nunes, N. Onder, Y. Ronen,and S. Ur. The dipart project. In Proceedings of ARPI Annual Meeting, Tucson, AZ,1994.[57] A. Rapoport. N-Person Game Theory. University of Michigan, 1970.[58] E. Rasmusen. Games and Information. Basil Blackwell Ltd., Cambridge, MA, 1989.[59] M. I. Reed. The Sociology of Organisations: Themes, Perspectives and Prospects. Har-vester Wheatsheaf, New York, 1992.[60] S. P. Robbins. Organization theory. Prentice Hall, 1990.[61] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions forAutomated Negotiation Among Computers. MIT Press, Boston, 1994.[62] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97{109,1982.[63] T. Sandholm. An implementation of the contract net protocol based on marginal costcalculations. In Proc. of AAAI-93, pages 256{262, 1993.[64] T. W. Sandholm and V. R. Lesser. Coalition formation among bounded rational agents.Arti�cial Intelligence, this volume, 1997. Special issue on Principles of Multi-AgentSystems.[65] O. Schechter. Sharing resources through negotiation in multi-agent environments. Mas-ter's thesis, Bar-Ilan University, Ramat-Gan, Israel, November 1996.[66] Thomas C. Schelling. The Strategy of Conict. Oxford University Press, New York,1963.[67] Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting scheduling.Group Decision and Negotiation Support Systems, 1996. to appear.[68] O. Shehory and S. Kraus. Coalition formation among autonomous agents: Strategies andcomplexity. In From Reactions to Cognition, pages 57{72. Springer Verlag Publishers,1995.[69] O. Shehory and S. Kraus. Task allocation via coalition formation among autonomousagents. In Proc. of IJCAI95, pages 655{661, Montreal, Canada, 1995.19



[70] O. Shehory and S. Kraus. Emergent cooperative goal-satisfaction in large scaleautomated-agent systems. In Proceedings of ECAI-96, pages 544{548, 1996.[71] O. Shehory and S. Kraus. Formation of overlapping coalitions for precedence-orderedtask-execution among autonomous agents. In Proc. of ICMAS-96, pages 330{337, 1996.[72] O. Shehory and S. Kraus. A kernel-oriented model for coalition-formation in generalenvironments: Implementation and results. In Proceedings of AAAI-96, pages 134{140,1996.[73] Y. Shoham and M. Tennenholtz. On the emergent of social conventions: Modeling,analysis, and simulations. Arti�cial Intelligence, this volume, 1997. Special issue onPrinciples of Multi-Agent Systems.[74] M. B. Tsvetovatyy and M. Gini. Toward a virtual marketplace: Architectures andstrategis. In The �rst International Conference on the Practical Application of Intelli-gent Agents and Multi Agents Technology, pages 597{614, London, 1996.[75] M. Wellman. A market-oriented programming environment and its application to dis-tributed multicommodity ow problems. Journal of Arti�cial Intelligence Research,1:1{23, 1993.[76] W. L. Winston. Operations Research: Applications and Algorithms. PWS-Kent Pub-lishing Company, Boston, 1987.

20


