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tIn the area of agent-based 
omputing there are many proposals for spe
i�
 system ar
hite
-tures, and a number of proposals for general approa
hes to building agents. As yet, however,there are 
omparatively few attempts to relate these together, and even fewer attempts toprovide methodologies whi
h relate designs to ar
hite
tures and then to exe
utable agents.This paper provides a �rst attempt to address this short
oming. We propose a generalmethod of spe
ifying logi
-based agents, whi
h is based on the use of multi-
ontext systems,and give examples of its use. The resulting spe
i�
ations 
an be dire
tly exe
uted, and wedis
uss an implementation whi
h makes this dire
t exe
ution possible.�This is a revised and expanded version of a paper whi
h appeared at the 6th InternationalWorkshop on Agent Theories, Ar
hite
tures and Languages [25℄.
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1 Introdu
tionAgent-based 
omputing is fast emerging as a new paradigm for engineering 
omplex,distributed systems [16, 34℄. An important aspe
t of this trend is the use of agentar
hite
tures as a means of delivering agent-based fun
tionality (
f. work on agentprogramming languages [20, 29, 32℄). In this 
ontext, an ar
hite
ture 
an be viewedas a separation of 
on
erns|it identi�es the main fun
tions that ultimately give riseto the agent's behaviour and de�nes the interdependen
ies that exist between them.As agent ar
hite
tures be
ome more widely used, there is an in
reasing demand forunambiguous spe
i�
ations of them and there is a greater need to verify implementa-tions of them. To this end, a range of te
hniques have been used to formally spe
ifyagent ar
hite
tures (eg Con
urrent MetateM [9, 33℄, DESIRE [5, 30℄ and Z [7℄). How-ever, these te
hniques typi
ally fall short in at least one of the following ways: (i) theypres
ribe a parti
ular means of performing the separation of 
on
erns and limit thetype of inter-relationships that 
an be expressed between the resulting 
omponents;(ii) they o�er no expli
it stru
tures for modelling the 
omponents of an ar
hite
tureor the relationships between them; (iii) they leave a gap between the spe
i�
ation ofan ar
hite
ture and its implementation.To re
tify these short
omings, we have proposed [24℄ the use of multi-
ontextsystems [13℄ as a means of spe
ifying and implementing agent ar
hite
tures. Multi-
ontext systems provide an overar
hing framework that allows distin
t theoreti
al
omponents to be de�ned and interrelated. Su
h systems 
onsist of a set of 
ontexts,ea
h of whi
h 
an informally be 
onsidered to be a logi
 and a set of formulae writtenin that logi
, and a set of bridge rules for transferring information between 
ontexts.Thus, di�erent 
ontexts 
an be used to represent di�erent 
omponents of the ar
hi-te
ture and the intera
tions between these 
omponents 
an be spe
i�ed by meansof the bridge rules between the 
ontexts. We believe multi-
ontext systems are wellsuited to spe
ifying and modelling agent ar
hite
tures for two main types of reason:(i) from a software engineering perspe
tive they support modular de
omposition anden
apsulation; and (ii) from a logi
al modelling perspe
tive they provide an eÆ
ientmeans of spe
ifying and exe
uting 
omplex logi
s. Ea
h of these broad areas will nowbe dealt with in turn.Let us �rst 
onsider the advantages from a software engineering perspe
tive.Firstly, multi-
ontext systems support the development of modular ar
hite
tures.Ea
h ar
hite
tural 
omponent|be it a fun
tional 
omponent (responsible for assess-ing the agent's 
urrent situation, say) or a data stru
ture 
omponent (the agent'sbeliefs, say)|
an be represented as a separate 
ontext. The links between the 
om-ponents 
an then be made expli
it by writing bridge rules to link the 
ontexts. Thisability to dire
tly support 
omponent de
omposition and 
omponent intera
tion of-fers a 
lean route from the high level spe
i�
ation of the ar
hite
ture through to itsdetailed design. Moreover, this basi
 philosophy 
an be applied no matter how thear
hite
tural 
omponents are de
omposed or how many ar
hite
tural 
omponents ex-ist. Se
ondly, sin
e multi-
ontext systems en
apsulate ar
hite
tural 
omponents andenable 
exible interrelationships to be spe
i�ed, they are ideally suited to supportingre-use (both of designs and implementations). Thus, 
ontexts that represent par-ti
ular aspe
ts of the ar
hite
ture 
an be pa
kaged as software 
omponents (in the
omponent-ware sense [28℄) or they 
an be used as the basis for spe
ialisation of new2




ontexts (inheritan
e in the obje
t-oriented sense [4℄).Moving onto the logi
al modelling perspe
tive, there are four main advantages ofadopting a multi-
ontext approa
h. The �rst is an extension of the software engineer-ing advantages whi
h spe
i�
ally applies to logi
al systems. By breaking the logi
aldes
ription of an agent into a set of 
ontexts, ea
h of whi
h holds a set of related for-mulae, we e�e
tively get a form of many-sorted logi
 (all the formulae in one 
ontextare a single sort) with the 
on
omitant advantages of s
alability and eÆ
ien
y. These
ond advantage follows on from this. Using multi-
ontext systems makes it possibleto build agents whi
h use several di�erent logi
s in a way that keeps the logi
s neatlyseparated (all the formulae in one logi
 are gathered together in one 
ontext). Thiseither makes it possible to in
rease the representational power of logi
al agents (
om-pared with those whi
h use a single logi
) or simplify agents 
on
eptually (
omparedwith those whi
h use several logi
s in one global 
ontext). This latter advantage isillustrated in [24℄ where we use multi-
ontext systems to simplify the 
onstru
tion ofa belief/desire/intention (BDI) agent.Both of the above advantages apply to any logi
al agent built using multi-
ontextsystems. The remaining two advantages apply to spe
i�
 types of logi
al agent|those whi
h reason about their mental attitudes and those of other agents. The �rstis that multi-
ontext systems make it possible [13℄ to build agents whi
h reason in away whi
h 
onforms to the use of modal logi
s like KD45 (the standard modal logi
for handling belief) while working within the 
omputationally simpler frameworkof standard predi
ate logi
. Thus the use of multi-
ontext systems makes it easyto dire
tly exe
ute agent spe
i�
ations where those spe
i�
ations deal with modalnotions. Again this is illustrated in [24℄. The �nal advantage is related to this.Agents whi
h reason about beliefs are often 
onfronted with the problem of modellingthe beliefs of other agents, and this 
an be hard, espe
ially when those other agentsreason about beliefs in a di�erent way (be
ause, for instan
e, they use a di�erentlogi
). Multi-
ontext systems provide a neat solution to this problem [3, 6℄.When the software engineering and the logi
al modelling perspe
tives are 
om-bined, it 
an be seen that the multi-
ontext approa
h o�ers a 
lear path from spe
i�-
ation through to implementation. By providing a 
lear set of mappings from 
on
eptto design, and from design to implementation, the multi-
ontext approa
h o�ers a wayof ta
kling the gap that 
urrently exists between the theory and the pra
ti
e of agent-based systems. While the work des
ribed here falls some way short of bridging thegap, it does show the way in whi
h su
h a bridge might be built. To some extentthe advantages of multi-
ontext systems were explored in [24℄. However, this paperextends the former by further re�ning the approa
h, extending the representation andproviding additional support for building 
omplex agents. In parti
ular we introdu
ethree new ideas. The �rst is that of grouping 
ontexts together into modules, givinganother level of abstra
tion in de�ning agent ar
hite
tures. The se
ond is the ideaof bridge rules whi
h delete formulae from 
ertain 
ontexts (as opposed to just intro-du
ing them), an idea whi
h allows the modelling of 
onsumable resour
es. The thirdidea is that of introdu
ing a time-delay into the exe
ution of a bridge rule in orderto allow inter-
ontext syn
hronisation. In addition to these three things we also givesome details of the implementation of a system for exe
uting multi-
ontext agents.The remainder of this paper is stru
tured in the following manner. Se
tion 2introdu
es the ideas of multi-
ontext systems on whi
h our approa
h is founded.3



Se
tion 3 explains how we have extended the use of multi-
ontext systems to betterhandle systems of high 
omplexity. Se
tion 4 then illustrates our approa
h usinga spe
i�
 agent ar
hite
ture and a spe
i�
 exemplar s
enario, and Se
tion 5 extendsthis example to in
lude inter-agent 
ommuni
ation. Se
tion 6 des
ribes our prototypeimplementation, and Se
tion 7 
ompares our approa
h to other proposals in more orless the same vein. Finally Se
tion 8 draws some 
on
lusions and dis
usses the futuredire
tion of this work.2 Multi-
ontext agentsAs dis
ussed above, we believe that the use of multi-
ontext systems o�ers a numberof advantages when engineering agent ar
hite
tures. However, multi-
ontext systemsare not a pana
ea. We believe that they are most appropriate when building agentswhi
h are logi
-based and are therefore largely deliberative. Whether su
h agents arethe best solution depends on the task the agent is to perform. See [35℄ for a dis
ussionof the relative merits of logi
-based and non logi
-based approa
hes to spe
ifying andbuilding agent ar
hite
tures.2.1 The basi
 modelUsing a multi-
ontext approa
h, an agent ar
hite
ture 
onsists of four basi
 types of
omponent. These 
omponents were �rst identi�ed in the 
ontext of building theoremprovers for modal logi
 [13℄, before being identi�ed as a methodology for 
onstru
tingagent ar
hite
tures [21℄ where full detail of the 
omponents 
an be found. In brief,the 
omponents are the following:� Units : Stru
tural entities representing the main 
omponents of the ar
hite
ture.� Logi
s : De
larative languages, ea
h with a set of axioms and a number of rulesof inferen
e. Ea
h unit has a single logi
 asso
iated with it.� Theories : Sets of formulae written in the logi
 asso
iated with a unit.� Bridge rules : Rules of inferen
e whi
h relate formulae in di�erent units.Units represent the various 
omponents of the ar
hite
ture. They 
ontain the bulk ofan agent's problem solving knowledge, and this knowledge is en
oded in the spe
i�
theory that the unit en
apsulates. In general, the nature of the units will vary betweenar
hite
tures. For example, a BDI agent may have units whi
h represent theoriesof beliefs, desires and intentions (as in [24℄), whereas an ar
hite
ture based on afun
tional separation of 
on
erns may have units whi
h en
ode theories of 
ooperation,situation assessment and plan exe
ution. In either 
ase, ea
h unit has a suitable logi
asso
iated with it. Thus the belief unit of a BDI agent has a logi
 of belief asso
iatedwith it, and the intention unit has a logi
 of intention. The logi
 asso
iated withea
h unit provides the language in whi
h the information in that unit is en
oded, andthe bridge rules provide the me
hanism by whi
h information is transferred betweenunits. 4



Bridge rules 
an be understood as rules of inferen
e with premises and 
on
lusionsin di�erent units. For instan
e: u1 :  ; u2 : 'u3 : �means that formula � may be dedu
ed in unit u3 if formulae  and ' are dedu
ed inunits u1 and u2 respe
tively.When used as a means of spe
ifying agent ar
hite
tures [21, 24℄, all the elementsof the model, both units and bridge rules, are taken to work 
on
urrently. In pra
ti
ethis means that the exe
ution of ea
h unit is a non-terminating, dedu
tive pro
ess(for more detail on how this is a
hieved, see Se
tion 6). The bridge rules 
ontinuouslyexamine the theories of the units that appear in their premises for new sets of formulaethat mat
h them. This means that all the units are always ready to rea
t to any
hange (external or internal) and that there are no 
entral 
ontrol elements.2.2 The extended modelThe model as outlined above is that introdu
ed in [21℄ and used in [24℄. However, thismodel has proved de�
ient in a 
ouple of ways, both 
onne
ted to the dynami
s of rea-soning. In parti
ular we have found it useful to extend the basi
 idea of multi-
ontextsystems by asso
iating two 
ontrol elements with the bridge rules: 
onsumption andtime-outs. A 
onsuming 
ondition means the bridge rule removes the formula fromthe theory whi
h 
ontains the premise (remember that a theory is 
onsidered to be aset of formulae). Thus in bridge rules with 
onsuming 
onditions, formulae \move"between units. To distinguish between a 
onsuming 
ondition and a non-
onsuming
ondition, we will use the notation ui >  for 
onsuming and ui :  for non-
onsuming
onditions. Thus: u1 >  ; u2 : 'u3 : �means that when the bridge rule is exe
uted,  is removed from u1 but ' is notremoved from u2.Consuming 
onditions in
rease expressiveness in the 
ommuni
ation between units.With this fa
ility, we 
an model the movement of a formula from one theory to an-other (from one unit to another), 
hanges in the theory of one unit that 
ause theremoval of a formula from another one, and so on. This me
hanism also makes itpossible to model the 
on
ept of state sin
e having a 
on
rete formula in one unitor another might represent a di�erent agent state. For example, later in the paperwe use the presen
e of a formula in a parti
ular unit to indi
ate the availability of aresour
e.A time-out in a bridge rule means there is a delay between the instant in time atwhi
h the 
onditions of the bridge rule are satis�ed and the e�e
tive a
tivation of therule. A time-out is denoted by a label on the right of the rule; for instan
e:u1 :  u2 : ' [t ℄means that t units of time after the theory in unit u1 gets formula  , the theory in unitu2 will be extended by formula '. If during this time period formula  is removed fromthe theory in unit u1, this rule will not be applied. In a similar way to 
onsuming5




onditions, time-outs in
rease expressiveness in the 
ommuni
ation between units.This is important when a
tions performed by bridge rules need to be retra
ted if aspe
i�
 event does not happen after a given period of time. In parti
ular, it enablesus to represent situations where silen
e during a period of time may mean failure (inthis 
ase the bridge rules 
an then be used to re-establish a previous state).Both of these extensions to the standard multi-
ontext system in
ur a 
ost. Thisis that in
luding them in the model means that the model departs somewhat from�rst order predi
ate 
al
ulus, and so does not have a fully-de�ned semanti
s. Weare 
urrently looking at using linear logi
, in whi
h individual propositions 
an onlybe used on
e in any given proof, as a means of giving a semanti
s to 
onsuming
onditions, and various temporal logi
s (su
h as those surveyed in [31℄) as a means ofgiving a semanti
s to time-outs. As Gabbay [11℄ dis
usses, resour
e logi
s like linearlogi
 are 
aptured naturally in systems of argumentation1, and it is also natural to
onsider extending the predi
ates we use to have expli
it temporal arguments.It should be noted that the use of 
onsuming 
onditions is related to the problemof 
ontra
tion in belief revision. In both, the removal of formulae from a logi
altheory means that dedu
tions based upon those formulae be
ome invalid and mustbe retra
ted. Sin
e systems of argumentation expli
itly re
ord the formulae used inevery dedu
tion, it is 
on
eptually simple (if 
omputationally 
omplex in general) toidentify those dedu
tions invalidated by the 
onsumption of given formulae2. When,as is the 
ase in the examples 
onsidered here, the theories from whi
h formulae areretra
ted are small and involve few dedu
tions, establishing the e�e
ts of 
onsumptionneed not be too diÆ
ult.3 Modular agentsUsing units and bridge rules as the only stru
tural elements is 
umbersome whenbuilding 
omplex agents (as 
an be seen from the model we developed in [24℄). As the
omplexity of the agent in
reases, it rapidly be
omes very diÆ
ult to deal with thene
essary number of units and their inter
onne
tions using bridge rules alone. Addingnew 
apabilities to the agent be
omes a 
omplex task in itself. To solve this problemwe suggest adding another level of abstra
tion to the model|the module. Essentiallywe group related units into modules and separate inter
onne
tions into those insidemodules and those between modules. This abstra
tion is, of 
ourse, one of the main
on
eptual advantages of obje
t orientation [4℄.1To be more pre
ise Gabbay dis
usses how labelled dedu
tive systems 
an be used to 
apturelinear logi
, but the ne
essary features of labelled dedu
tive systems are shared with systems ofargumentation2A naive pro
edure for doing this in the general 
ase would be to 
he
k that every formula inevery argument is still present in the theory, labelling those arguments whi
h rely on formulae nowmissing from the theory as invalid. For n arguments ea
h of whi
h in
ludes m formulae in its groundsthis would involve 
he
king at most mn formulae (assuming no dupli
ation). For a theory whi
h
ontains N formulae, this would, in the worst 
ase (where ea
h of the m formulae in the grounds ofthe argument in
luded only formulae from the theory rather than dedu
tions from them), involve
he
king that ea
h of the mn formulae were present in the N . The worst 
ase 
omplexity of thissear
h would be Nnm.
6



MODULE - a

com.
unit

MODULE - n1

com.
unit

MODULE - n2

com.
unit

a: ϕ 

n1:ϕ,n2:ϕ

a: φ 

n1:φ,n2:φ

a: ψ 

 n1:ψ,n2:ψ

Figure 1: Module inter-
onne
tion (from a's perspe
tive only). The bridge rules areen
losed in re
tangles.3.1 Introdu
ing modulesA module is a set of units and bridge rules that together model a parti
ular 
apabilityor fa
et of an agent. For example, planning agents must be 
apable of managingresour
es, and su
h an agent might have a module modeling this ability. Similarly,su
h an agent might have a module for generating plans, a module for handling
ommuni
ation, and so on. Note that 
urrently we do not allow modules to be nestedinside one another, largely be
ause we have not yet found it ne
essary to do so.However, in the same way that in obje
t-oriented approa
hes it is useful to allowobje
ts to be nested inside other obje
ts, it seems likely that we will need to developa means of handling nested hiera
hies of modules in order to build more 
omplexagents than we are 
urrently 
onstru
ting.Ea
h module must have a 
ommuni
ation unit. This unit is the module's uniquepoint of 
onta
t with the other modules and it knows what kind of messages its module
an deal with. All of an agent's 
ommuni
ation units are inter-
onne
ted with theothers using multi
ast bridge rules (MBRs) as in Figure 1. This �gure shows threeMBRs (the re
tangles in the middle of the diagram) ea
h of whi
h has a single premise7



com.
unit

com.
unit

com.
unit

MODULE - A

MODULE - N1

MODULE - Nn

...

......

Figure 2: A pi
torial explanation of the bus metaphorin module a and a single 
on
lusion in the modules n1 and n2. The use of broad
ast
ommuni
ation within the agent was 
hosen for 
onvenien
e and simpli
ity|it is
learly not an essential part of the approa
h. It does, however, enhan
e the plug andplay approa
h we are aiming for sin
e when broad
ast is used it is not ne
essary toalter the message handling within an agent when modules are added or removed.Note that under this s
heme all modules re
eive all messages, even those messagesthat are not spe
ially for them. This obviates the need for a 
entral 
ontrol me
hanismwhi
h routes messages or 
hooses whi
h modules should respond to requests fromother modules. With this type of 
onne
tion, adding or removing a module doesn'ta�e
t the others (in a stru
tural sense). We 
an see this 
ommuni
ation net as a bus
onne
ting all modules and �ring a MBR is the same as putting a message onto thisbus. There are as many kinds of messages running along this bus as there are MBRs(see Figure 2).Sin
e the MBRs send messages to more than one module, a single message 
anprovoke more than one answer and, hen
e, 
ontradi
tory information may appear.There are many possible ways of dealing with this problem, and here we 
onsider oneof them whi
h we have found useful as an example. We asso
iate a weight, whi
hwe 
all a \degree of importan
e", with ea
h message. This value is drawn from theinterval [0; 1℄, where maximum importan
e is 1 and minimum is 0, and assigned tothe message by the 
ommuni
ation unit of the module that sends it out. Thesedegrees of importan
e 
an be used to resolve 
ontradi
tory messages, for instan
e bypreferring the message with highest degree of importan
e. The degrees of importan
eare dis
ussed further in the next se
tion.Obviously, the use of modules does not solve every problem asso
iated with alteringthe stru
ture of an agent. For instan
e, if the only module whi
h 
an perform a giventask is removed, the agent will no longer be able to perform this task. Similarly, ifone module depends on another module to do something and the se
ond is removed,8



the �rst module be
omes useless. However, the use of modules does simplify dealingwith these kinds of interdependen
ies by redu
ing the number of 
omponents whoseinterdependen
ies have to be 
onsidered.3.2 Messages between modulesWe start with a set AN of agent names and a set MN of module names. Our
onvention is that agent names are upper 
ase letters, and module names are lower
ase letters. An inter-module message has the form:I (S ;R; ';G ; !)where� I is an illo
utionary parti
le that spe
i�es the kind of message. In this paperwe use the illo
utions Ask and Answer .� S and R both have the form A[=m℄�. As elsewhere we use BNF syntax, sothat A[=m℄� means A followed by one or more o

urren
es of =m. A 2 ANor A = Self (Self refers to the agent that owns the module) and m 2 MNor m = all (all denotes all the modules within that agent). S re
e
ts who issending the message and R indi
ates to whom it is dire
ted. Thus a messagewith S = Self =a and R = Self =all indi
ates a message from module a of theagent to all other modules of the agent.� G is a re
ord of the derivation of '. It has the form: ff�1 ` '1g : : :f�n ` 'nggwhere � is a set of formulae and 'i is a formula with 'n = '.� ! 2 [0; 1℄ is the degree of importan
e asso
iated with the message.Note that G is exa
tly the set of grounds of the argument for ' [24℄. Where the agentdoes not need to be able to justify its statements, this 
omponent of the message 
anbe dis
arded. Note that, as argued by Gabbay [11℄ this approa
h is a generalisation of
lassi
al logi
|there is nothing to stop the same approa
h being used when messagesare just formulae in 
lassi
al logi
.A typi
al intra-agent message for an agent B would thus be:ask(Self =a;Self =all ;Give(B ;A;Nail);G1; 0:5)meaning that module a of an agent B is asking all the other modules in B whetherB should give an agent 
alled \A" a nail. The reason for doing this is G1 and theweight a puts on this request is 0.5. Currently we treat the weights of the messagesas normalised possibility measures [8℄, interpreting them as the degree to whi
h themodule sending believes that other modules should take the 
ontent of the messageto be important. Be
ause of the possibilisti
 semanti
s we 
ombine the disjun
tivesupport for not(Give(B ;A;Nail)) using max as is the 
ase for possibility measures[8℄. The advantage of using possibility theory to underpin the degrees of importan
e,as opposed to developing some new measure from s
rat
h, is that it allows us toexploit the large body of work on possibility theory to solve problems arising from9



the use of intra-agent messages. Thus, be
ause in possibility theory it is perfe
tlya

eptable for a proposition and its negation to have a degree of possibility of 1 (itjust indi
ates that the opinion about the proposition is equally balan
ed) we 
ansidestep some of the problems whi
h would o

ur if we were, for example, usingprobability theory to underpin the degrees (a probability of 1 for a proposition andits negation would represent a 
ontradi
tion). It is also a

eptable for a message tohave a degree of possibility of 0; this means that its negation is believed to be ofmaximum importan
e.There are three points whi
h need to be made about these messages. Firstly,the degrees of importan
e in the message, based as they are in possibility theory,have a 
ommon meaning a
ross all modules. The fa
t that di�erent modules assigndi�erent degrees is not be
ause they mean di�erent things, but be
ause the variousmodules have di�erent views of the world. Thus the degrees of possibility they assignrepresent di�erent preferen
es, as for example dis
ussed in [1℄. Se
ondly, althoughthe di�erent modules 
an use di�erent languages, the 
ontent of the messages passedmust be a 
ommon set of terms, a 
ommuni
ation language of sorts, whi
h are giventhe same meaning by all modules. In the interests of generality, we don't spe
ify su
ha language, leaving that to the designer of the agents, but in later se
tions we givea set of predi
ates whi
h we have used for this task. Finally, be
ause the modules
an use di�erent logi
s, it maybe that one module 
annot understand the re
ord ofthe derivation provided by another. In our work we have side-stepped this issue fornow by using one 
ommon logi
, as in the examples we give later. However, weare working on argumentation frameworks in whi
h the inferen
e rules are expli
itlydenoted (so that the derivations may be tra
ed) and themselves form the basis ofdis
ussion between modules (so that those a

eptable derivations may be identi�ed)[19℄. Indeed, the roots of this work are present in [24℄.The messages we have dis
ussed so far are those whi
h are passed around theagent itself in order to ex
hange information between the modules whi
h 
ompose it.Our approa
h also admits the more 
ommon idea of messages between agents. Su
hinter-agent messages have the same basi
 form, but they have two minor di�eren
es:� S and R are agent names (i.e. S ;R 2 AN ), no modules are spe
i�ed.� there is no degree of importan
e (be
ause it is internal to a parti
ular agent|however inter-agent messages 
ould be augmented with a degree of belief [22℄whi
h 
ould be based upon the weight of the relevant intra-agent messages.)Thus, a message from B to A o�ering the Nail mentioned above would have the form:inform(A;B ;Give(B ;A;Nail);G2)As in the 
ase of intra-agent messages, the 
ontent of inter-agent messages must bewritten in some 
ommuni
ation language whi
h has a 
ommon meaning a
ross allagents to whom the 
ommuni
ation is sent. On
e again we do not pres
ribe su
h alanguage, though we do give an example of one we have used later in the paper.With this ma
hinery in pla
e, we are in a position to spe
ify realisti
 agent ar
hi-te
tures. 10
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Figure 3: The modules in the agent4 Spe
ifying a simple agentThis se
tion gives a spe
i�
ation of a simple agent using the approa
h outlined above.The agent in question is a simple version of the home improvement agents �rst dis-
ussed in [23℄, whi
h is supposed to roam the authors' homes making small 
hangesto their environment. In parti
ular the agent we dis
uss here attempts to hang pi
-tures. As mentioned, the agent is rather simpler than those originally introdu
ed,the simpli�
ation being intended to �lter out unne
essary detail that might 
onfusethe reader. As a result, 
ompared with the more 
omplex versions of the home im-provement agents des
ribed in [24℄, the agent is not quite solipsisti
 (sin
e it hassome awareness of its environment) but it is 
ertainly autisti
 (sin
e it has no me
h-anisms for intera
ting with other agents). Subsequent se
tions build upon this basi
de�nition to produ
e more sophisti
ated agents.4.1 A high-level des
riptionThe basi
 stru
ture of the agent is that of Figure 3. There are three modules 
onne
tedby multi
ast bridge rules. These are the plan library (PL), the resour
e manager (RM),and the goal manager (GM). Broadly speaking, the plan library stores plans for thetasks that the agent knows how to 
omplete, the resour
e manager keeps tra
k of theresour
es available to the agent, and the goal manager relates the goals of the agentto the sele
tion of appropriate plans.There are two types of illo
ution whi
h get passed along the multi
ast bridge rules.These are the following:� Ask: a request to another module.� Answer: an answer to an inter-module request.Thus all the modules 
an do is to make requests on one another and answer those re-quests. We also need to de�ne the predi
ates whi
h form the 
ontent of su
h messages.Given a set of agent names AN , and with AN 0 = AN [ fSelfg.� goal(X ): X is a string des
ribing an a
tion. This denotes the fa
t that theagent has the goal X . 11
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Figure 4: The plan library module� have(X ;Z ): X 2 AN 0 is the name of an agent (here always instantiated to Self ,the agent's name for itself, but a variable sin
e the agent is aware that otheragents may own things), and Z is the name of an obje
t. This denotes AgentX has possession of Z .Note that in the rest of the paper we adopt a Prolog-like notation in whi
h the upper
ase letters X ;Y ;Z ;P are taken to be variables.As 
an be seen from the above, the 
ontent of the messages is relatively simple,referring to goals that the agent has, and resour
es it possesses. Thus a typi
almessage would be a request from the goal manager as to whether the agent possessesa plan to a
hieve the goal of possessing a hammer:ask(Self =GM ;Self =all ; goal(have(Self ; hammer)); fg)Note that in this message, as in all messages in the remainder of this paper, we ignorethe weight in the interests of 
larity. Su
h a request might be generated when the goalmanager is trying to as
ertain if the agent 
an ful�ll a possible plan whi
h involvesusing a hammer.4.2 Spe
i�
ations of the modulesHaving identi�ed the stru
ture of the agent in terms of modules, the next stage in thespe
i�
ation is to detail the internal stru
ture of the modules in terms of the unitsthey 
ontain, and the bridge rules 
onne
ting those units. The stru
ture of the planlibrary module is given in Figure 4. In this diagram, units are represented as 
ir
les,and bridge rules as re
tangles. Arrows into bridge rules indi
ate units whi
h holdthe ante
edents of the bridge rules, and arrows out indi
ate the units whi
h hold the
onsequents. The two units in the plan library module are:� The 
ommuni
ation unit (CU): the unit whi
h handles 
ommuni
ation withother units.� The plan repository (S): a unit whi
h holds a set of plans.12
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Figure 5: The resour
e manager moduleThe bridge rule 
onne
ting these units is:GET PLAN = CU > ask(Self =Sender ;Self =Re
eiver ; goal(Z ); fg),S : plan(Z ;P)CU : answer(Self =PL;Self =Sender ; goal(Z ); fPg)where the predi
ate plan(Z ;P) denotes the fa
t that P , taken to be a 
onjun
tion ofterms, is a plan to a
hieve the goal Z 3.When the 
ommuni
ation unit sees a message on the inter-module bus askingabout the feasibility of the agent a
hieving a goal, then, if there is a plan to a
hievethat goal in the plan repository, that plan is sent to the module whi
h asked theoriginal question. Note that the bridge rule has a 
onsuming 
ondition|this is toensure that the question is only answered on
e.The stru
ture of the resour
e manager module is given in Figure 5. The two unitsin this module are:� The 
ommuni
ation unit (CU).� The resour
e respository (R): a unit whi
h holds the set of resour
es availableto the agent.The bridge rule 
onne
ting the two units is the following:ALLOCATE = CU > ask(Self =Sender ; Self =Re
eiver ; goal(have(X ;Z )); fg),R > resour
e(Z ; free)CU : answer(Self =RM ; Self =Sender ; have(X ;Z ); fg),R : resour
e(Z ; allo
ated)where the resour
e(Z ; allo
ated) denotes the fa
t that the resour
e Z is in use, andresour
e(Z ; free) denotes the fa
t that the resour
e Z is not in use.3Though here we take a rather relaxed view of what 
onstitutes a plan|our \plans" are littlemore than a set of pre-
onditions for a
hieving the goal.13
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Figure 6: The goal manager moduleWhen the 
ommuni
ation unit sees a message on the inter-module bus asking if theagent has a resour
e, then, if that resour
e is in the resour
e repository and is 
urrentlyfree, the formula re
ording the free resour
e is deleted by the 
onsuming 
ondition,a new formula re
ording the fa
t that the resour
e is allo
ated is written to therepository, and a response is posted on the inter-module bus. Note that designatinga resour
e as \allo
ated" is not the same as 
onsuming a resour
e (whi
h would bedenoted by the deletion of the resour
e), and that on
e again the bridge rule deletesthe original message from the 
ommuni
ation unit.The goal manager is rather more 
omplex than either of the previous moduleswe have dis
ussed, as is immediately 
lear from Figure 6 whi
h shows the units it
ontains, and the bridge rules whi
h 
onne
t them. These units are:� The 
ommuni
ation unit (CU).� The plan list unit (P): this 
ontains a list of plans the exe
ution of whi
h is
urrently being monitored.� The goal manager unit (G): this is the heart of the module, and ensures thatthe ne
essary sub-goaling is 
arried out.� The resour
e list module (R): this 
ontains a list of the resour
es being used aspart of plans whi
h are 
urrently being exe
uted.14



The bridge rules relating these units are as follows. The �rst two bridge rules handlein
oming information from the 
ommuni
ation unit:RESOURCE = CU > answer(Self =RM ;Self =GM ; have(Self ;Z ); fg)R : ZPLAN = CU > answer(Self =PL;Self =GM ; goal(Z ); fPg)P : plan(Z ;P)The �rst of these, RESOURCE, looks for messages from the resour
e manager reportingthat the agent has possession of some resour
e. When su
h a message arrives, thegoal manager adds a formula representing the resour
e to its resour
e list module.The se
ond bridge rule PLAN does mu
h the same for messages from the plan libraryreporting the existen
e of a plan|su
h plans are written to the plan library. Thereis also a bridge rule ASK whi
h generates messages for other modules:
ASK = G : goal(X ),G : not(done(X )),R : not(X );P : not(plan(X ;Z ))G : not(done(ask(X )));CU : ask(Self =G ;Self =all ; goal(X ); fg),G : done(ask(X ))If the agent has the goal to a
hieve X , and X has not been a
hieved, nor is X anavailable resour
e (and therefore in the R unit), nor is there a plan to a
hieve X ,and X has not already been requested from other modules, then X is requested fromother modules and this request is re
orded. The remaining bridge rules are:MONITOR = G : goal(X ),R : not(X ),P : plan(X ;P)G : monitor(X ;P)DONE = G : goal(X ),R : XG : done(X )The MONITOR bridge rule takes a goal X and, if there is no resour
e to a
hieve Xbut there is a plan to obtain the resour
e, adds the formula monitor(X ;P) to theG unit, whi
h has the e�e
t of beginnning the sear
h for the resour
es to 
arry outthe plan. The DONE bridge rule identi�es that a goal X has been a
hieved when asuitable resour
e has been allo
ated.4.3 Spe
i�
ations of the unitsHaving identi�ed the individual units within ea
h module, and the bridge rules whi
h
onne
t the units, the next stage of the spe
i�
ation is to identify the logi
s presentwithin the various units, and the theories whi
h are written in those logi
s. For thisagent most of the units are simple 
ontainers for atomi
 formulae. In 
ontrast, the G15



unit 
ontains a theory whi
h 
ontrols the exe
ution of plans. The relevant formulaeare: monitor(X ;P) ! assert subgoals(P)monitor(X ;P) ! prove(P)monitor(X ;P) ^ proved(P) ! done(X )assert subgoals( î Yi ) ! î goal(Yi )prove(X ^ î Yi) ^ done(X ) ! prove( î Yi)î done(Yi ) ! proved( î Yi )The monitor predi
ate for
es all the 
onjun
ts whi
h make up its �rst argument to begoals (whi
h will be monitored in turn), and ki
ks o� the \proof" of the plan whi
his its se
ond argument4. This plan will be a 
onjun
tion of a
tions, and as ea
h is\done" (a state of a�airs a
hieved through the allo
ation of resour
es by other bridgerules), the proof of the next 
onjun
t is sought. When all have been \proved", therelevant goal is marked as 
ompleted.The spe
i�
ation as presented so far is generi
|it is akin to a 
lass des
riptionfor a 
lass of autisti
 home improvement agents. To get a spe
i�
 agent we haveto \program" it by giving it information about its initial state. For our parti
ularexample there is little su
h information, and we only need to add formulae to threeunits. The plan repository holds a plan for hanging pi
tures using hammers and nails:S : plan(hangPi
ture(X );have(X ; pi
ture) ^ have(X ;nail) ^ have(X ; hammer))Of 
ourse, this is a very rudimentary plan, whi
h only 
onsists of the basi
 resour
esneeded to a
hieve the goal of hanging a pi
ture. The resour
e repository holds theinformation that the agent has a pi
ture, nail and a hammer:R : resour
e(pi
ture; free)R : resour
e(nail ; free)R : resour
e(hammer ; free)Finally, the goal manager 
ontains the fa
t that the agent has the goal of hanging api
ture: G : goal(hangPi
ture(Self ))With this information, the spe
i�
ation is 
omplete.
16



ask(Self =GM ;Self =all ; goal(hangPi
ture(Self )); fg) (GM1)answer(Self =PL;Self =GM ; goal(hangPi
ture(Self ));fhave(Self ; pi
ture) ^ have(Self ;nail) ^ have(Self ; hammer)g) (PL1)ask(Self =GM ;Self =all ; goal(have(Self ; pi
ture)); fg) (GM2)ask(Self =GM ;Self =all ; goal(have(Self ;nail)); fg) (GM3)answer(Self =RM ;Self =GM ; have(Self ; pi
ture); fg) (RM1)ask(Self =GM ;Self =all ; goal(have(Self ; hammer)); fg) (GM4)answer(Self =RM ;Self =GM ; have(Self ;nail); fg) (RM2)answer(Self =RM ;Self =GM ; have(Self ; hammer); fg) (RM3)Table 1: The inter-module messages
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Figure 7: An exe
ution tra
e for the agent4.4 The agent in a
tionWhen the agent is instantiated with this information and exe
uted, we get the fol-lowing behaviour. The goal manager unit, whi
h has the goal of hanging a pi
ture,does not have the resour
es to hang the pi
ture, and has no information on how toobtain them. It therefore �res the ASK bridge rule to ask other modules for input,sending message GM1 (detailed in Table 1). When this message rea
hes the planlibrary, the bridge rule GET PLAN is �red, returning a plan (PL1). This triggers thebridge rule PLAN in the goal manager, adding the plan to its P unit. This addition
auses the MONITOR bridge rule to �re. This, along with the theory in the G unit,
auses the goal manager to realise that it needs a pi
ture, hammer and nail, and toask for these (GM2, GM3, GM4). As ea
h of these messages rea
hes the resour
emanager, they 
ause the ALLOCATE rule to �re, identifying the resour
es as beingallo
ated, and generating messages ba
k to the goal manager (RM1, RM2, RM3).These resour
es 
ause the RESOURCE bridge rule in the goal manager to �re andthe resour
es to be added to the resour
e list, R. The addition of the resou
es is allthat is required to 
omplete the plan of hanging a pi
ture, and the bridge rule DONE�res, adding the formulae done(have(Self ; pi
ture)), done(have(Self ; hammer)) anddone(have(Self ;nail)) to the G unit. The theory in G then 
ompletes exe
ution.The messages passed between modules are represented in pi
torial form in Fig-ure 7|ea
h row in the diagram identi�es one module, time runs from left to right,and the diagonal lines represent the transfer of messages between modules.4Given our relaxed view of planning, this \proof" 
onsists of showing the pre-
onditions of theplan 
an be met. 17
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Figure 8: The modules in the agent5 Spe
ifying more 
omplex agentsThis se
tion gives a spe
i�
ation of a pair of agents whi
h build upon those in theprevious se
tion. Indeed the agents introdu
ed here are stri
t extensions of those inthe previous se
tion, 
ontaining all the 
omponents (down to the level of individualunits) of the autisti
 agents and other 
omponents besides. The main extension is toredu
e the autism of the model by giving ea
h agent me
hanisms for intera
ting withother agents. The resulting agents are thus intermediate in 
omplexity between thatdes
ribed in the previous se
tion and that des
ribed in [24℄. In 
omparison with thelatter, the main simpli�
ation is the absen
e of me
hanisms for argumentation.5.1 A high-level des
riptionThe basi
 stru
ture of the agent is that of Figure 8. There are four modules 
onne
tedby multi
ast bridge rules. These are the plan library (PL), the resour
e manager (RM),the goal manager (GM) and the so
ial manager (SM). The �rst three modules 
arryout the same basi
 fun
tions as their namesakes in Se
tion 4. The so
ial managerhandles intera
tions with other agents.The intra-agent messages are exa
tly the same as for the autisti
 agent, but thereare also two types of inter-agent message, whi
h broadly 
orrespond to the ask andanswer messages. These are:� Request: a request to another agent.� Reply: an answer to an inter-agent request.As in the previous se
tion these illo
utions are the only a
tions available to the agents.Thus the agents 
an talk about passing resour
es between themselves, but we provideno me
hanisms for a
tually passing the resour
es.The only new predi
ate whi
h these agents employ is:� give(X ;Y ;Z ): X 2 AN 0 and Y 2 AN 0 are agent names, and Z is a stringdes
ribing a resour
e. This denotes X giving Z to Y .and this is used in 
onjun
tion with the request and reply message types to buildinter-agent messages, whi
h are of the form:request(A;B ; give(B ;A;nail); fg)18
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Figure 9: The resour
e manager moduleIn this example, A requests that B gives a nail to A. In the following:reply(B ;A; give(B ;A;nail); fg)B replies to A that B will give the nail to A.5.2 Spe
i�
ations of the modulesOn
e again, having de
ided on the overall stru
ture of the agent, we have to spe
ifythe internal stru
ture of the individual modules. The plan library module and thegoal manager module have exa
tly the same stru
ture as in the simple agent (seeSe
tion 4.2) and are not repeated here.As 
an be seen by 
omparing Figure 5 with Figure 9, the resour
e manager ofour new agents is 
onsiderably more 
omplex than that in Se
tion 4. This resour
emanager 
ontains an extra unit INF whi
h holds information about the resour
espossessed by agents in 
ontrast with the R unit whi
h simply re
ords whether resour
esare free or allo
ated|this is a 
ompli
ation introdu
ed by moving from one agent toseveral. Be
ause the autisti
 agent does not deal with any external entities, anyresour
es it 
onsiders belong to it, and any resour
es whi
h do not belong to it do notexist as far as it is 
on
erned. The so
ial agents, in 
ontrast, need to 
onsider twoaspe
ts to every resour
e|whether or not it is free, and who has 
ontrol over it. TheR unit deals with the former, and the INF unit with the latter.Clearly with more units we have more bridge rules. Of those in Figure 9, only theALLOCATE rule is familiar from the autisti
 agent:ALLOCATE = CU > ask(Self =Sender ; Self =Re
eiver ; goal(have(X ;Z )); fPg),R > resour
e(Z ; free)CU : answer(Self =RM ; Self =Sender ; have(X ;Z ); fg),R : resour
e(Z ; allo
ated)19



where resour
e(Z ; allo
ated) denotes the fa
t that the resour
e Z is in use, andresour
e(Z ; free) denotes the fa
t that the resour
e Z is not in use. This rule will beused if the agent is dealing with its own need for a resour
e that it owns, as in the
ase of the autisti
 agent.Be
ause we now have two agents, the resour
e that one agent requires may beowned by another agent, and this situation is where the INF unit 
omes into play.There are four bridge rules whi
h relate this unit to R and CU. The �rst of these isC INF ID, whi
h pla
es knowledge about whi
h agent has whi
h resour
e into INF asa result of an inform message:C INF ID = CU > inform(U ;V ; have(X ;Z ); fW g)INF : have(X ;Z )The name indi
ates that the rule is a kind of identity rule between the CU and INFunits. Be
ause in this model resour
es belong to just one agent, there is a 
ontradi
-tion if a resour
e is thought to belong two agents at on
e. The CONSISTENCE ruleensures that this situation does not o

ur by ensuring that the agent doesn't thinkanother agent has a resour
e have(X ;Z ) when in fa
t the agent has the resour
e itselfresour
e(Z ; free). CONSISTENCE = INF > have(X ;Z ),R : resour
e(Z ; free)The bridge rule works by dete
ting that the resour
e Z is re
orded both as being freeand being owned by agent X , and simultaneously deleting the re
ord of the fa
t thatZ is owned by X using a deleting 
ondition. The rule will be �red when, for example,Agent A knows that B has some resour
e, but is then presented with the informationthat the resour
e is now free be
ause B has given it up. Without the bridge rule, Awould 
ontinue to believe that B has the resour
e. Be
ause the purpose of this bridgerule is to delete the have(X ;Z ), and this is a
hieved by its ante
edents, there is no
onsequent, making the rule unlike others in the agent (and subsequently stressingthe operational nature of our use of bridge rules). If one wanted to not only removethe have(X ;Z ), but also 
on
lude that not(have(X ;Z )) was subsequently the 
ase,the appropriate rule would be:CONSISTENCE2 = INF > have(X ;Z ),R : resour
e(Z ; free)INF : not(have(X ;Z ))If an agent requires a resour
e it does not have, the ASK OUT bridge rule allows itto request the resour
e from another agent, and the GIVE rule makes it possible toa

ept a resour
e it is given:ASK OUT = CU : ask(Self =Sender ; Self =Re
eiver ; goal(have(X ;Z ); fPg),R : not(resour
e(Z ; free)), INF : have(Y ;Z )CU : ask(Self =RM ; Self =SM ; give(Y ;X ;Z ; fPg))GIVE = CU > ask(Self =RM ; Self =SM ; give(X ;Y ;Z ); fPg),CU > answer(Self =SM ; Self =RM ; give(X ;Y ;Z ); fQg)R : resour
e(Z ; free)The �nal resour
e-related situation an agent may be in is when it has a resour
e thatanother agent requires. This situation is handled by the ALLOCATE2 bridge rule,20
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Figure 10: The so
ial manager modulewhi
h hands over a resour
e if it is free and the so
ial manager tells it to, updatingthe INF unit with information about where the resour
e is:ALLOCATE2 = CU > ask(Self =SM ; Self =Re
eiver ; give(Self ;Y ;Z ); fPg),R > resour
e(Z ; free)CU : answer(Self =RM ; Self =SM ; give(Self ;Y ;Z ); fPg),INF : have(Y ;Z )This 
ompletes the des
ription of the resour
e manager.The �nal module in the new agents is the so
ial manager. As 
an be seen fromFigure 10, here the so
ial manager 
onsists of a single 
ommuni
ation unit CU. Aswell as being 
onne
ted to the agent's internal modules via multi-
ast bridge rules, theso
ial manager module is also 
onne
ted to the 
orresponding module of the agent'saquaintan
es via an \interagent" whi
h handles the transfer of messages betweenagents (see Se
tion 6). This passes request and reply on to the 
ommuni
ation unit ofthe module to whi
h they are addressed. The generation of these messages is 
arriedout by the theory in the 
ommuni
ation unit.5.3 Spe
i�
ations of the unitsSo far we have des
ribed the modules whi
h make up the new agents, and for ea
hmodule we have identi�ed both the units whi
h 
omposed them and the 
onne
tionsne
essary between the units. The next step is to de
ide what the internal stru
tureof the units will be|whi
h formulae and theories they will 
ontain, and whi
h logi
sthose theories will be written in. On
e again, there are not many units whi
h in
ludemore than just a few atomi
 formulae. One of these is the unit G of the goal managerwhi
h 
ontains the same theory as in the autisti
 agent (see Se
tion 4.3):The other unit whi
h 
ontains more than just atomi
 formulae is the CU unit inthe so
ial manager, whi
h 
ontains:ask(Self =Sender ;Self =SM ; give(X ;Self ;Z ); fg)!request(Self ;X ; give(X ;Self ;Z ); fg)reply(X ;Self ; give(X ; self ;Z ); fg) 21



^ ask(Self =Sender ;Self =SM ; give(X ;Self ;Z ); fg)!answer(Self =SM ;Self =Sender ; give(X ;Self ;Z ); fg)request(X ;Self ; give(Self ;X ;Z ); fg)!ask(Self =SM ;Self =RM ; give(Self ;X ;A); fg)answer(Self =Sender ;Self =SM ; give(Self ;X ;Z ); fg)!reply(Self ;X ; give(Self ;X ;Z ); fg)This theory takes 
are of the translation from intra-agent messages to inter-agentmessages. The �rst formula takes an in
oming ask message whi
h 
ontains a requestfor another agent, X to give a resour
e, and 
onverts it into a request illo
ution. These
ond formula handles the reply to that request|if another agent responds positivelyto a request that the agent has previously made, then an answer message is generatedand sent to the orginator of the request. The next two formulae handle responses torequests. The �rst of these takes a request for a resour
e from another agent and turnsit into a message to the resour
e manager. The se
ond takes a positive response, and
onverts that into a reply message. The logi
 used in this unit, as in all the units inthis agent spe
i�
ation, is 
lassi
al �rst order logi
.As in Se
tion 4, the spe
i�
ation up to this point is generi
, de�ning somethinglike a 
lass des
ription for simple non-autisti
 agents. For the parti
ular s
enario wehave in mind, that of two agents whi
h 
o-operate in hanging a pi
ture, it is ne
essaryto instantiate this generi
 des
ription twi
e. The �rst instantiation 
reates an agentA whi
h is virtually the same as the autisti
 agent of Se
tion 4, the only di�eren
ebeing that A does not have the nail ne
essary to hang the pi
ture, knowing insteadthat an agent B has the nail. A's plan repository holds the same plan as that of theautisti
 agent:S : plan(hangPi
ture(X );have(X ; pi
ture) ^ have(X ;nail) ^ have(X ; hammer))A's resour
e repository holds the information that the agent has a pi
ture and ahammer: R : Resour
e(pi
ture; free)R : Resour
e(hammer ; free)while A's INF unit holds the information that B has a nail:INF : have(B ;nail)Finally, A's goal manager 
ontains the fa
t that the agent has the goal of hanging api
ture: G : goal(hangPi
ture(A))This 
ompletes the spe
i�
ation of A. B is mu
h simpler to instantiate, sin
e it is onlyne
essary to program it with the resour
e of a nail, by adding the following formulato its resour
e repository: R : Resour
e(nail ; free)This 
ompletes the spe
i�
ation of the two agents.22



Agent Aask(Self =GM ;Self =all ; goal(hangPi
ture(A)); fg) (GM1)answer(Self =PL;Self =GM ; goal(hangPi
ture(A));fhave(A; pi
ture) ^ have(A;nail) ^ have(A; hammer)g) (PL1)ask(Self =GM ;Self =all ; goal(have(A; pi
ture)); fg) (GM2)ask(Self =GM ;Self =all ; goal(have(A;nail)); fg) (GM3)answer(Self =RM ;Self =SM ; give(B ;A;nail); fg) (RM1)ask(Self =GM ;Self =all ; goal(have(A; hammer)); fg) (GM4)request(A;B ; give(B ;A;nail); fg) (SM1)answer(Self =RM ;Self =GM ; have(A; pi
ture); fg) (RM2)answer(Self =RM ;Self =GM ; have(A; hammer); fg) (RM3)answer(Self =SM ;Self =RM ; give(B ;A;nail); fg) (SM2)answer(Self =RM ;Self =GM ; have(A;nail); fg) (RM4)Agent Bask(Self =SM ;Self =RM ; give(B ;A;nail); fg) (SM1)answer(Self =RM ;Self =SM ; give(B ;A;nail); fg) (RM1)reply(B ;A; give(B ;A;nail); fg) (SM2)Table 2: The inter-module messages5.4 The agents in a
tionIf we exe
ute these two agents, they generate and ex
hange the messages in Table 2and Figure 11, whi
h are very similar to those generated by the autisti
 agent. Themain di�eren
e in this 
ase 
on
erns the provision of the nail required to hang thepi
ture. In the 
ase of the autisti
 agent, this nail was the property of the agent andso all the agent had to do to exe
ute its \plan" of owning the nail was to allo
ate it.In this 
ase when Agent A wants the nail it has to request it from B . Lu
kily for A,when B re
eives this request, it immediately agrees.In more detail, the exe
ution pro
eeds as follows. The goal manager unit of AgentA, has the goal of hanging a pi
ture, does not have the resour
es to hang the pi
ture,and has no information on how to obtain them. It therefore �res the ASK bridge ruleto ask other modules for input, sending message GM1 (detailed in Table 1). Whenthis message rea
hes A's plan library, the bridge rule GET PLAN is �red, returninga plan (PL1). This triggers the bridge rule PLAN in the goal manager, adding theplan to its P unit. This addition 
auses the MONITOR bridge rule to �re. This,along with the theory in the G unit, 
auses the goal manager to realise that it needsa pi
ture, hammer and nail, and to ask for these (GM2, GM3, GM4). When GM2and GM4 rea
h the resour
e manager, they 
ause the same sequen
e of events as inthe autisti
 agent, �ring the ALLOCATE rule, generating the messages RM2 and RM3and allowing the goal manager to build part of its plan.The problem, of 
ourse, is with GM3 whi
h is requesting a nail. Sin
e this is nota resour
e that A owns, the ASK OUT rule is �red, generating RM1 whi
h in turn23
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Figure 11: An exe
ution tra
e for the agentssparks o� a
tivity in the so
ial manager resulting in SM1. This request is passedto B , where the so
ial manager generates SM 1. This goes to B 's resour
e manager,triggering the ALLOCATE2 rule and then RM1 whi
h 
on�rms that B is happy to givea nail to A. The message passes ba
k through B 's so
ial manager as SM2, is re
eivedby A's so
ial manager be
oming A's SM2 message. This a
tivates the GIVE rule inA's resour
e manager, whi
h updates its resour
e list �nally allowing it to alo
ate thenail. The message RM4 is sent to the goal manager whi
h now has all the resour
esit requires. Consequently DONE �res, adding the formulae done(have(Self ; pi
ture)),done(have(Self ; hammer)) and done(have(Self ;nail)) to the G unit. The theory in Gthen 
ompletes exe
ution.Both of the examples we have given are of rather simple agents. However, we
an use the framework to spe
ify and exe
ute more 
omplex agents (indeed we havealready done so), so it should not be inferred that the examples given illustrate thelimits of what is possible using this approa
h. The simpli
ity of these examples ispurely for ease of presentation and understanding.6 ImplementationOur aim in this work is to be able to dire
tly exe
ute the kinds of spe
i�
ations de-veloped in previous se
tions. To do this we 
learly need some kind of 
omputationalinfrastru
ture whi
h will make it possible to de�ne units, modules, and their inter-
onne
tions, and then exe
ute the various theories within these 
omponents. Thisse
tion des
ribes our prototype implementation of this infrastru
ture.
24
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Figure 12: How a 
omponent is implemented6.1 Units and bridge rulesTo support the exe
ution of the kinds of spe
i�
ations developed above, we need tobe able to handle two kinds of 
omponent|units, and bridge rules (multi-
ast bridgerules between modules are just bridge rules whi
h 
onne
t every so
ial managers toevery other so
ial manager). We treat both these 
omponents in the same way, givingthem the stru
ture pi
tured in Figure 12. Thus every 
omponent has, at its 
ore, atheorem prover written as a meta-interpreter in Prolog. Thus every unit is just aProlog-based meta-interpreter, as is every bridge rule. Now, be
ause we want theseunits and bridge rules to run 
on
urrently, we wrap the Prolog engine whi
h exe
utesthe meta-interpreter in a Java wrapper and this wrapper is set running in its ownthread (from outside the wrapper it looks just like any other Java obje
t).These 
omponents need to be 
onne
ted, and we want these 
onne
tions to beasyn
hronous. The idea is that ea
h 
omponent runs its meta-interpreter on the
urrent 
ontents of its theory, 
omputes the 
losure of this, outputs the relevantresults, looks at what new input has arrived, updates its theory, and then starts
omputing the 
losure of the theory on
e again. To get this asyn
hroni
ity we provideea
h 
omponent with an input bu�er by using a Java obje
t 
alled bu�er-in. Thisstores in
oming information until the meta-interpreter �nishes running. To ensurethat the right information is sent to the right other 
omponents we provide ea
h
omponent with a Java distributor whi
h provides this routing 
apability.The operating 
y
le of this stru
ture 
an be split in four stages:Update: All a
tions (asserts and retra
ts) that have been a

umulated during25



the inferen
e stage in the bu�er-in obje
t are applied to the working memoryof the relevant Prolog pro
ess through the wrapper 
lass.Inferen
e: A new inferen
e 
y
le is laun
hed in the Prolog engine.Distribution: All formulae dedu
ed during the inferen
e stage are sent to the dis-tributor obje
t as soon as they are dedu
ed.A
tualization: The 
hanges noti�ed during the inferen
e pro
ess, and a

umulatedin the distributor, are transmitted to the bu�er-in obje
ts of the relevant 
om-ponents.The update, inferen
e and distribution stages are 
arried out sequentially in a singleexe
ution thread while the a
tualization stage has its own exe
ution thread to allowthe 
hanges performed during the inferen
e stage (asserts and retra
ts in the Prologengine) to be transmitted to the other 
omponents without delaying the exe
ution ofthe other stages.6.2 From 
omponents to modulesTaking the general stru
ture of a 
omponent, we obtain units and bridge rules byspe
ialization5. Usually, ea
h stru
ture implements a single 
omponent, that is, oneunit, or one bridge rule. There is only one ex
eption to this: if bridge rules Bri andBrj have a 
onsumption 
ondition from the same unit, then they must be pla
edin the same 
omponent. The reason for doing this is to avoid a situation in whi
hseveral bridge rules with a 
ommon 
onsumption 
ondition �re at the same time, andto understand why this might o

ur is it is ne
essary to understand in more detailhow the bridge rules are implemented.In order to redu
e the messages between units and bridge rules, ea
h bridge rulehas a partial image of the units related with it, in the sense that it only has a

ess tothose literals whi
h appear in its ante
endents (sin
e these may easily be indenti�edfrom the bridge rule itself, this is easy to a
hieve). This image is updated when thereis a 
hange in the unit, and the update is via the messages from the unit's distributorto the bridge rule's bu�er-in. Ea
h distributor \knows" whi
h formulae of the theory
ould mat
h the premises of the bridge rules to whi
h it is 
onne
ted, and only thoseformulae will be sent. This implementation is eÆ
ient. However, 
onsumption bridgerules 
an 
ause unwanted in
onsisten
ies between di�erent images of the same unit.It's easy to see the problem with an example. Consider the two bridge rules inFigure 13 (BR1 and BR3) implemented using two di�erent 
omponents and supposez is in Unit2. From this Unit1 dedu
es x . Bridge rules BR3 and BR1 are noti�edabout this 
hange and BR3 is �red. Meanwhile, Unit1 dedu
es r and BR1 is alerted.Unit1 re
eives a message from BR3 telling it to remove x , but by this time BR1 hasalready been sent r and has �red. The solution to this problem is to make thosebridge rules with 
oin
ident 
onsumption 
onditions (in our example BR1 and BR3)share a 
ommon vision of the units related with them (in our example Unit1 andUnit2). In our implementation this is done in
luding those bridge rules into the same5As a result, our approa
h has an even more obje
t-oriented 
avour than might be �rst thought.Not only is everything made up of units and bridge rules, but the units and bridge rules themselvesare basi
ally variations on the same thing. 26
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Figure 13: How a module is implementedstru
ture and passing the update message to that stru
ture just on
e. This ensuresthat only one bridge rule with a 
onsuming 
ondition will respond to a given update,and has proved suÆ
ient for our purposes so far. However, it does not provide aperfe
t solution in that it does not seek to mediate between two bridge rules whi
h
ompete to 
onsume the same literal6.The last thing that needs des
ribing is the timeout manager. This is the entityresponsible for monitoring timeout bridge rules. When the pre
onditions of a bridgerule with a timeout hold, the bridge rule tells the timeout manager. The timeoutmanager has a list with pairs:(htimeri; hbridge rule referen
ei)The timers in the list are initialized to the values in the timeout bridge rules andde
rease syn
hronously. When a timer be
omes 0, the timeout manager informs the
orresponding bridge rule stru
ture that it is authorised to �re if the 
onditions stillhold.These 
omponents 
an then be slotted together to make a module as shown inFigure 13. This shows a module made up of three units|a 
ommuni
ation unit andtwo units named Unit1 and Unit2, three bridge rules|named BR1, BR2 and BR3,6As the implementation stands it 
odes the bridge rules into this 
ommon stru
ture in a givenorder and then passes the message to the rules in that order, thus ensuring that the �rst rule witha 
onsuming 
ondition always has pre
eden
e. One might argue that the message should be passedto a randomly sele
ted bridge rule, but equally one might argue that it is wrong to build agents insu
h a way that several units are 
ompeting for the same literal.27



and a multi
ast bridge rule named MBR. The timeout manager is also depi
ted. Asan example of how the module works, 
onsider the following:0. Unit1 
ontains r. BR1-BR3 have been noti�ed.1. The Prolog engine in Unit1 dedu
es x.2. The distributor in Unit1 is noti�ed about the dedu
tion of x.3. The distributor in Unit1 sends x to the BR1-BR3 bu�er-in.4. The bu�er-in of BR1-BR3 sends x to the Prolog engine5. As a result of �ring BR1, the distributor is noti�ed that y must be added tothe Communi
ation Unit and that x must be removed from Unit1.6. The bu�er-in of Unit1 re
eives a request to remove x and the bu�er-in of theCommuni
ation Unit is noti�ed about y7. x is removed from the Prolog engine of Unit1 and y is added to the Prologengine of the Communi
ation Unit8, 9 and 10. The Prolog engine of BR1-BR3 is noti�ed about the elimination ofx.6.3 From modules to agentsLittle more needs to be added to this pi
ture to get a 
omplete agent. The main ad-dition to a 
olle
tion of modules, ea
h as des
ribed above, is a set of multi
ast bridgerules whi
h 
onne
t modules together. These are implemented in exa
tly the sameway as the intra-module bridge rules. As dis
ussed earlier in the paper, ea
h agentin
ludes a so
ial manager module whi
h, while stru
tured exa
tly like every othermodule, handles the intera
tions with other agents|the detail of this, whi
h 
learly
hanges from agent to agent, is en
oded in the units that make up the so
ial managerand the bridge rules whi
h 
onne
t them. Building so
ial managers with di�erentunits or di�erent theories in the same units makes it possible to implement di�erentso
ial 
onventions sin
e it is these units and theories whi
h de�ne the agent 
ommu-ni
ation proto
ol. The proto
ol we use here is based on that des
ribed in [21, 27℄, andthe inter-agent messages are transferred by autonomous software entities known asinteragents. The interagents we use in our 
urrent implementation are similar to thesystem JIM des
ribed in [17, 18℄, and are built on top of JADE [2℄, an implementa-tion of the mandatory elements 
ontained within the FIPA [10℄ spe
i�
ation for agentinteroperability.The implementation des
ribed here is the beginning of a bridge between spe
-i�
ation and exe
ution. The modular multi-
ontext approa
h gives us a means ofspe
ifying agents. The implementation, as it stands, gives us a means of exe
utingthese spe
i�
ations, albeit on
e the theories in ea
h unit have been translated into aform whi
h 
an be exe
uted on the appropriate Prolog engine, and it is this transla-tion whi
h is the missing se
tion of the bridge. On
e ea
h Prolog engine is equippedwith a suitable meta-interpreter for the logi
 employed by that unit, it will be possibleto take the spe
i�
ation, enter the theory in ea
h unit into the meta-interpreter, anddire
tly exe
ute it. 28



7 Related WorkThere are two main strands of work to whi
h ours is related|work on exe
utableagent ar
hite
tures and work on multi-
ontext systems. As mentioned above, mostprevious work whi
h has produ
ed formal models of agent ar
hite
tures, for exampledMARS [14℄, Agent0 [26℄ and GRATE* [15℄, has failed to 
arry forward the 
larity ofthe spe
i�
ation into the implementation|there is a leap of faith required betweenthe two. Our work, on the other hand, maintains a 
lear link between spe
i�
ationand implementation promising to allow the dire
t exe
ution of the spe
i�
ation asdis
ussed above. This relation to dire
t exe
ution also distinguishes our work fromthat on modelling agents in Z [7℄, sin
e it is not yet possible to dire
tly exe
ute a Zspe
i�
ation7.More dire
tly related to our work is that on DESIRE and Con
urrent MetateM.DESIRE [5, 30℄ is a modelling framework originally 
on
eived as a means of spe
ifying
omplex knowledge-based systems. DESIRE views both the individual agents and theoverall system as a 
ompositional ar
hite
ture. All fun
tionality is designed as a seriesof intera
ting, task-based, hierar
hi
ally stru
tured 
omponents. Though there areseveral di�eren
es, from the point of view of the proposal advo
ated in this paperwe 
an see DESIRE's tasks as modules and information links as bridge rules. Inour approa
h there is no an expli
it task 
ontrol knowledge of the kind found inDESIRE. There are no entities that 
ontrol whi
h units, bridge rules or modulesshould be a
tivated nor when and how they are a
tivated. Also, in DESIRE the
ommuni
ation between tasks is 
arried out by the information links that are wired-in by the design engineer. Our inter-module 
ommuni
ation is organized as a bus andthe independen
e between modules means new ones 
an be added without modifyingthe existing stru
tures. Finally the 
ommuni
ation model in DESIRE is based on aone-to-one 
onne
tion between tasks, in a similar way to that in whi
h we 
onne
tunits inside a module. In 
ontrast, our 
ommuni
ation between modules is based on amulti
ast model. We 
ould, of 
ourse, simulate the kind of 
ontrol found in DESIREby building a 
entral 
ontrolling module, if this were required.Con
urrent MetateM de�nes 
on
urrent semanti
s at the level of single rules [9,33℄. Thus an agent is basi
ally a set of temporal rules whi
h �re when their ante
edentsare satis�ed. Our approa
h does not assume 
on
urren
y within the 
omponents ofunits, rather the units themselves are the 
on
urrent 
omponents of our ar
hite
tures.This means that our model has an inherent 
on
urrent semanti
s at the level of theunits and has no 
entral 
ontrol me
hanism. Though our exemplar uses what isessentially �rst order logi
 (albeit a �rst order logi
 labelled with arguments), we 
oulduse any logi
 we 
hoose|we are not restri
ted to a temporal logi
 as in MetateM.There are also di�eren
es between our work and previous work on using multi-
ontext systems to model agents' beliefs. In the latter [12℄, di�erent units, all 
ontain-ing a belief predi
ate, are used to represent the beliefs of the agent and the beliefs ofall the a
quaintan
es of the agent. The nested beliefs of agents may lead to tree-likestru
tures of su
h units (
alled belief 
ontexts). Su
h stru
tures have then been usedto solve problems like the three wise men [6℄. In our 
ase, however, any nested beliefs7It is possible to animate spe
i�
ations, whi
h makes it possible to see what would happen ifthe spe
i�
ation were exe
uted, but animating agent spe
i�
ations is some way from providingoperational agents of the kind possible using our approa
h.29



would typi
ally be in
luded in a single unit or module. Moreover we provide a more
omprehensive formalisation of an autonomous agent in that we additionally showhow 
apabilities other than that of reasoning about beliefs 
an be in
orporated intothe ar
hite
ture.8 Con
lusions and future workThis paper has proposed a general approa
h to de�ning agent ar
hite
tures whi
hextends the work of [24, 25℄ with the idea of modules and, as a result, links the ap-proa
h more strongly with the software engineering tradition. This approa
h providesa means of stru
turing logi
al spe
i�
ations of agents in a way whi
h makes them di-re
tly exe
utable, and we have des
ribed an implementation whi
h 
an 
arry out thisexe
ution. The approa
h has a number of advantages over other work on de�ningagent ar
hite
tures. Firstly it bridges the gap between the spe
i�
ation of agentsand the programs whi
h implement those spe
i�
ations. Se
ondly, the modularity ofthe approa
h makes it easier to build agents whi
h are 
apable of 
arrying out 
om-plex tasks su
h as distributed planning. From a software engineering point of view,the approa
h leads to ar
hite
tures whi
h are easily expandable, and have re-useable
omponents.From this latter point of view, our approa
h suggests a methodology for buildingagents whi
h has similarities with obje
t-oriented design [4℄. The notion of inheritan
e
an be applied to groups of units and bridge rules, modules and even 
omplete agents.These elements 
ould have a general design whi
h is spe
ialized to di�erent and more
on
rete instan
es by adding units and modules, or by re�ning the theories inside theunits of a generi
 agent template. The development of su
h a methodology is our longterm goal in this work, but the outline of su
h a methodology is, we believe, alreadyvisible in the resuse of the simple autisti
 agents of Se
tion 4 as the basis of the more
omplex agents of Se
tion 5However, before we 
an develop this methodology, there are some open issues toresolve. The �rst thing that we need to do is to extend both the environment forbuilding agents and the range of agents we 
an build. Our aim with the environmentis to turn it into a graphi
al tool for the rapid prototyping of de
larative agents, with alibrary of di�erent units and bridge rules whi
h 
an be 
onne
ted together and editedas required. To be useful this, of 
ourse, requires us to �rst develop spe
i�
ations foragents whi
h have greater 
apabilities than the ones des
ribed in this paper|agentswhi
h are 
apable of a wider range of dialogues, and whi
h have expertise in areasother than home improvement. The se
ond thing we need to do is to ensure thatthe module-based approa
h we have des
ribed s
ales up for more 
omplex agents,something that 
an only be ensured by building su
h agents. Experien
e gained heremight well lead to some modi�
ations in our approa
h, for instan
e allowing nestedhiera
hies of modules. The last thing we need to do is to resolve the question of thesemanti
s of the 
omsuming 
onditions and time-outs in bridge rules. Though last inthe list, this is possibly the most important in terms of ensuring that we 
an buildpre
isely spe
i�ed agents.
30
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