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1 IntrodutionAgent-based omputing is fast emerging as a new paradigm for engineering omplex,distributed systems [16, 34℄. An important aspet of this trend is the use of agentarhitetures as a means of delivering agent-based funtionality (f. work on agentprogramming languages [20, 29, 32℄). In this ontext, an arhiteture an be viewedas a separation of onerns|it identi�es the main funtions that ultimately give riseto the agent's behaviour and de�nes the interdependenies that exist between them.As agent arhitetures beome more widely used, there is an inreasing demand forunambiguous spei�ations of them and there is a greater need to verify implementa-tions of them. To this end, a range of tehniques have been used to formally speifyagent arhitetures (eg Conurrent MetateM [9, 33℄, DESIRE [5, 30℄ and Z [7℄). How-ever, these tehniques typially fall short in at least one of the following ways: (i) theypresribe a partiular means of performing the separation of onerns and limit thetype of inter-relationships that an be expressed between the resulting omponents;(ii) they o�er no expliit strutures for modelling the omponents of an arhitetureor the relationships between them; (iii) they leave a gap between the spei�ation ofan arhiteture and its implementation.To retify these shortomings, we have proposed [24℄ the use of multi-ontextsystems [13℄ as a means of speifying and implementing agent arhitetures. Multi-ontext systems provide an overarhing framework that allows distint theoretialomponents to be de�ned and interrelated. Suh systems onsist of a set of ontexts,eah of whih an informally be onsidered to be a logi and a set of formulae writtenin that logi, and a set of bridge rules for transferring information between ontexts.Thus, di�erent ontexts an be used to represent di�erent omponents of the arhi-teture and the interations between these omponents an be spei�ed by meansof the bridge rules between the ontexts. We believe multi-ontext systems are wellsuited to speifying and modelling agent arhitetures for two main types of reason:(i) from a software engineering perspetive they support modular deomposition andenapsulation; and (ii) from a logial modelling perspetive they provide an eÆientmeans of speifying and exeuting omplex logis. Eah of these broad areas will nowbe dealt with in turn.Let us �rst onsider the advantages from a software engineering perspetive.Firstly, multi-ontext systems support the development of modular arhitetures.Eah arhitetural omponent|be it a funtional omponent (responsible for assess-ing the agent's urrent situation, say) or a data struture omponent (the agent'sbeliefs, say)|an be represented as a separate ontext. The links between the om-ponents an then be made expliit by writing bridge rules to link the ontexts. Thisability to diretly support omponent deomposition and omponent interation of-fers a lean route from the high level spei�ation of the arhiteture through to itsdetailed design. Moreover, this basi philosophy an be applied no matter how thearhitetural omponents are deomposed or how many arhitetural omponents ex-ist. Seondly, sine multi-ontext systems enapsulate arhitetural omponents andenable exible interrelationships to be spei�ed, they are ideally suited to supportingre-use (both of designs and implementations). Thus, ontexts that represent par-tiular aspets of the arhiteture an be pakaged as software omponents (in theomponent-ware sense [28℄) or they an be used as the basis for speialisation of new2



ontexts (inheritane in the objet-oriented sense [4℄).Moving onto the logial modelling perspetive, there are four main advantages ofadopting a multi-ontext approah. The �rst is an extension of the software engineer-ing advantages whih spei�ally applies to logial systems. By breaking the logialdesription of an agent into a set of ontexts, eah of whih holds a set of related for-mulae, we e�etively get a form of many-sorted logi (all the formulae in one ontextare a single sort) with the onomitant advantages of salability and eÆieny. Theseond advantage follows on from this. Using multi-ontext systems makes it possibleto build agents whih use several di�erent logis in a way that keeps the logis neatlyseparated (all the formulae in one logi are gathered together in one ontext). Thiseither makes it possible to inrease the representational power of logial agents (om-pared with those whih use a single logi) or simplify agents oneptually (omparedwith those whih use several logis in one global ontext). This latter advantage isillustrated in [24℄ where we use multi-ontext systems to simplify the onstrution ofa belief/desire/intention (BDI) agent.Both of the above advantages apply to any logial agent built using multi-ontextsystems. The remaining two advantages apply to spei� types of logial agent|those whih reason about their mental attitudes and those of other agents. The �rstis that multi-ontext systems make it possible [13℄ to build agents whih reason in away whih onforms to the use of modal logis like KD45 (the standard modal logifor handling belief) while working within the omputationally simpler frameworkof standard prediate logi. Thus the use of multi-ontext systems makes it easyto diretly exeute agent spei�ations where those spei�ations deal with modalnotions. Again this is illustrated in [24℄. The �nal advantage is related to this.Agents whih reason about beliefs are often onfronted with the problem of modellingthe beliefs of other agents, and this an be hard, espeially when those other agentsreason about beliefs in a di�erent way (beause, for instane, they use a di�erentlogi). Multi-ontext systems provide a neat solution to this problem [3, 6℄.When the software engineering and the logial modelling perspetives are om-bined, it an be seen that the multi-ontext approah o�ers a lear path from spei�-ation through to implementation. By providing a lear set of mappings from oneptto design, and from design to implementation, the multi-ontext approah o�ers a wayof takling the gap that urrently exists between the theory and the pratie of agent-based systems. While the work desribed here falls some way short of bridging thegap, it does show the way in whih suh a bridge might be built. To some extentthe advantages of multi-ontext systems were explored in [24℄. However, this paperextends the former by further re�ning the approah, extending the representation andproviding additional support for building omplex agents. In partiular we introduethree new ideas. The �rst is that of grouping ontexts together into modules, givinganother level of abstration in de�ning agent arhitetures. The seond is the ideaof bridge rules whih delete formulae from ertain ontexts (as opposed to just intro-duing them), an idea whih allows the modelling of onsumable resoures. The thirdidea is that of introduing a time-delay into the exeution of a bridge rule in orderto allow inter-ontext synhronisation. In addition to these three things we also givesome details of the implementation of a system for exeuting multi-ontext agents.The remainder of this paper is strutured in the following manner. Setion 2introdues the ideas of multi-ontext systems on whih our approah is founded.3



Setion 3 explains how we have extended the use of multi-ontext systems to betterhandle systems of high omplexity. Setion 4 then illustrates our approah usinga spei� agent arhiteture and a spei� exemplar senario, and Setion 5 extendsthis example to inlude inter-agent ommuniation. Setion 6 desribes our prototypeimplementation, and Setion 7 ompares our approah to other proposals in more orless the same vein. Finally Setion 8 draws some onlusions and disusses the futurediretion of this work.2 Multi-ontext agentsAs disussed above, we believe that the use of multi-ontext systems o�ers a numberof advantages when engineering agent arhitetures. However, multi-ontext systemsare not a panaea. We believe that they are most appropriate when building agentswhih are logi-based and are therefore largely deliberative. Whether suh agents arethe best solution depends on the task the agent is to perform. See [35℄ for a disussionof the relative merits of logi-based and non logi-based approahes to speifying andbuilding agent arhitetures.2.1 The basi modelUsing a multi-ontext approah, an agent arhiteture onsists of four basi types ofomponent. These omponents were �rst identi�ed in the ontext of building theoremprovers for modal logi [13℄, before being identi�ed as a methodology for onstrutingagent arhitetures [21℄ where full detail of the omponents an be found. In brief,the omponents are the following:� Units : Strutural entities representing the main omponents of the arhiteture.� Logis : Delarative languages, eah with a set of axioms and a number of rulesof inferene. Eah unit has a single logi assoiated with it.� Theories : Sets of formulae written in the logi assoiated with a unit.� Bridge rules : Rules of inferene whih relate formulae in di�erent units.Units represent the various omponents of the arhiteture. They ontain the bulk ofan agent's problem solving knowledge, and this knowledge is enoded in the spei�theory that the unit enapsulates. In general, the nature of the units will vary betweenarhitetures. For example, a BDI agent may have units whih represent theoriesof beliefs, desires and intentions (as in [24℄), whereas an arhiteture based on afuntional separation of onerns may have units whih enode theories of ooperation,situation assessment and plan exeution. In either ase, eah unit has a suitable logiassoiated with it. Thus the belief unit of a BDI agent has a logi of belief assoiatedwith it, and the intention unit has a logi of intention. The logi assoiated witheah unit provides the language in whih the information in that unit is enoded, andthe bridge rules provide the mehanism by whih information is transferred betweenunits. 4



Bridge rules an be understood as rules of inferene with premises and onlusionsin di�erent units. For instane: u1 :  ; u2 : 'u3 : �means that formula � may be dedued in unit u3 if formulae  and ' are dedued inunits u1 and u2 respetively.When used as a means of speifying agent arhitetures [21, 24℄, all the elementsof the model, both units and bridge rules, are taken to work onurrently. In pratiethis means that the exeution of eah unit is a non-terminating, dedutive proess(for more detail on how this is ahieved, see Setion 6). The bridge rules ontinuouslyexamine the theories of the units that appear in their premises for new sets of formulaethat math them. This means that all the units are always ready to reat to anyhange (external or internal) and that there are no entral ontrol elements.2.2 The extended modelThe model as outlined above is that introdued in [21℄ and used in [24℄. However, thismodel has proved de�ient in a ouple of ways, both onneted to the dynamis of rea-soning. In partiular we have found it useful to extend the basi idea of multi-ontextsystems by assoiating two ontrol elements with the bridge rules: onsumption andtime-outs. A onsuming ondition means the bridge rule removes the formula fromthe theory whih ontains the premise (remember that a theory is onsidered to be aset of formulae). Thus in bridge rules with onsuming onditions, formulae \move"between units. To distinguish between a onsuming ondition and a non-onsumingondition, we will use the notation ui >  for onsuming and ui :  for non-onsumingonditions. Thus: u1 >  ; u2 : 'u3 : �means that when the bridge rule is exeuted,  is removed from u1 but ' is notremoved from u2.Consuming onditions inrease expressiveness in the ommuniation between units.With this faility, we an model the movement of a formula from one theory to an-other (from one unit to another), hanges in the theory of one unit that ause theremoval of a formula from another one, and so on. This mehanism also makes itpossible to model the onept of state sine having a onrete formula in one unitor another might represent a di�erent agent state. For example, later in the paperwe use the presene of a formula in a partiular unit to indiate the availability of aresoure.A time-out in a bridge rule means there is a delay between the instant in time atwhih the onditions of the bridge rule are satis�ed and the e�etive ativation of therule. A time-out is denoted by a label on the right of the rule; for instane:u1 :  u2 : ' [t ℄means that t units of time after the theory in unit u1 gets formula  , the theory in unitu2 will be extended by formula '. If during this time period formula  is removed fromthe theory in unit u1, this rule will not be applied. In a similar way to onsuming5



onditions, time-outs inrease expressiveness in the ommuniation between units.This is important when ations performed by bridge rules need to be retrated if aspei� event does not happen after a given period of time. In partiular, it enablesus to represent situations where silene during a period of time may mean failure (inthis ase the bridge rules an then be used to re-establish a previous state).Both of these extensions to the standard multi-ontext system inur a ost. Thisis that inluding them in the model means that the model departs somewhat from�rst order prediate alulus, and so does not have a fully-de�ned semantis. Weare urrently looking at using linear logi, in whih individual propositions an onlybe used one in any given proof, as a means of giving a semantis to onsumingonditions, and various temporal logis (suh as those surveyed in [31℄) as a means ofgiving a semantis to time-outs. As Gabbay [11℄ disusses, resoure logis like linearlogi are aptured naturally in systems of argumentation1, and it is also natural toonsider extending the prediates we use to have expliit temporal arguments.It should be noted that the use of onsuming onditions is related to the problemof ontration in belief revision. In both, the removal of formulae from a logialtheory means that dedutions based upon those formulae beome invalid and mustbe retrated. Sine systems of argumentation expliitly reord the formulae used inevery dedution, it is oneptually simple (if omputationally omplex in general) toidentify those dedutions invalidated by the onsumption of given formulae2. When,as is the ase in the examples onsidered here, the theories from whih formulae areretrated are small and involve few dedutions, establishing the e�ets of onsumptionneed not be too diÆult.3 Modular agentsUsing units and bridge rules as the only strutural elements is umbersome whenbuilding omplex agents (as an be seen from the model we developed in [24℄). As theomplexity of the agent inreases, it rapidly beomes very diÆult to deal with theneessary number of units and their interonnetions using bridge rules alone. Addingnew apabilities to the agent beomes a omplex task in itself. To solve this problemwe suggest adding another level of abstration to the model|the module. Essentiallywe group related units into modules and separate interonnetions into those insidemodules and those between modules. This abstration is, of ourse, one of the mainoneptual advantages of objet orientation [4℄.1To be more preise Gabbay disusses how labelled dedutive systems an be used to apturelinear logi, but the neessary features of labelled dedutive systems are shared with systems ofargumentation2A naive proedure for doing this in the general ase would be to hek that every formula inevery argument is still present in the theory, labelling those arguments whih rely on formulae nowmissing from the theory as invalid. For n arguments eah of whih inludes m formulae in its groundsthis would involve heking at most mn formulae (assuming no dupliation). For a theory whihontains N formulae, this would, in the worst ase (where eah of the m formulae in the grounds ofthe argument inluded only formulae from the theory rather than dedutions from them), involveheking that eah of the mn formulae were present in the N . The worst ase omplexity of thissearh would be Nnm.
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Figure 1: Module inter-onnetion (from a's perspetive only). The bridge rules areenlosed in retangles.3.1 Introduing modulesA module is a set of units and bridge rules that together model a partiular apabilityor faet of an agent. For example, planning agents must be apable of managingresoures, and suh an agent might have a module modeling this ability. Similarly,suh an agent might have a module for generating plans, a module for handlingommuniation, and so on. Note that urrently we do not allow modules to be nestedinside one another, largely beause we have not yet found it neessary to do so.However, in the same way that in objet-oriented approahes it is useful to allowobjets to be nested inside other objets, it seems likely that we will need to developa means of handling nested hierahies of modules in order to build more omplexagents than we are urrently onstruting.Eah module must have a ommuniation unit. This unit is the module's uniquepoint of ontat with the other modules and it knows what kind of messages its modulean deal with. All of an agent's ommuniation units are inter-onneted with theothers using multiast bridge rules (MBRs) as in Figure 1. This �gure shows threeMBRs (the retangles in the middle of the diagram) eah of whih has a single premise7
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Figure 2: A pitorial explanation of the bus metaphorin module a and a single onlusion in the modules n1 and n2. The use of broadastommuniation within the agent was hosen for onveniene and simpliity|it islearly not an essential part of the approah. It does, however, enhane the plug andplay approah we are aiming for sine when broadast is used it is not neessary toalter the message handling within an agent when modules are added or removed.Note that under this sheme all modules reeive all messages, even those messagesthat are not speially for them. This obviates the need for a entral ontrol mehanismwhih routes messages or hooses whih modules should respond to requests fromother modules. With this type of onnetion, adding or removing a module doesn'ta�et the others (in a strutural sense). We an see this ommuniation net as a busonneting all modules and �ring a MBR is the same as putting a message onto thisbus. There are as many kinds of messages running along this bus as there are MBRs(see Figure 2).Sine the MBRs send messages to more than one module, a single message anprovoke more than one answer and, hene, ontraditory information may appear.There are many possible ways of dealing with this problem, and here we onsider oneof them whih we have found useful as an example. We assoiate a weight, whihwe all a \degree of importane", with eah message. This value is drawn from theinterval [0; 1℄, where maximum importane is 1 and minimum is 0, and assigned tothe message by the ommuniation unit of the module that sends it out. Thesedegrees of importane an be used to resolve ontraditory messages, for instane bypreferring the message with highest degree of importane. The degrees of importaneare disussed further in the next setion.Obviously, the use of modules does not solve every problem assoiated with alteringthe struture of an agent. For instane, if the only module whih an perform a giventask is removed, the agent will no longer be able to perform this task. Similarly, ifone module depends on another module to do something and the seond is removed,8



the �rst module beomes useless. However, the use of modules does simplify dealingwith these kinds of interdependenies by reduing the number of omponents whoseinterdependenies have to be onsidered.3.2 Messages between modulesWe start with a set AN of agent names and a set MN of module names. Ouronvention is that agent names are upper ase letters, and module names are lowerase letters. An inter-module message has the form:I (S ;R; ';G ; !)where� I is an illoutionary partile that spei�es the kind of message. In this paperwe use the illoutions Ask and Answer .� S and R both have the form A[=m℄�. As elsewhere we use BNF syntax, sothat A[=m℄� means A followed by one or more ourrenes of =m. A 2 ANor A = Self (Self refers to the agent that owns the module) and m 2 MNor m = all (all denotes all the modules within that agent). S reets who issending the message and R indiates to whom it is direted. Thus a messagewith S = Self =a and R = Self =all indiates a message from module a of theagent to all other modules of the agent.� G is a reord of the derivation of '. It has the form: ff�1 ` '1g : : :f�n ` 'nggwhere � is a set of formulae and 'i is a formula with 'n = '.� ! 2 [0; 1℄ is the degree of importane assoiated with the message.Note that G is exatly the set of grounds of the argument for ' [24℄. Where the agentdoes not need to be able to justify its statements, this omponent of the message anbe disarded. Note that, as argued by Gabbay [11℄ this approah is a generalisation oflassial logi|there is nothing to stop the same approah being used when messagesare just formulae in lassial logi.A typial intra-agent message for an agent B would thus be:ask(Self =a;Self =all ;Give(B ;A;Nail);G1; 0:5)meaning that module a of an agent B is asking all the other modules in B whetherB should give an agent alled \A" a nail. The reason for doing this is G1 and theweight a puts on this request is 0.5. Currently we treat the weights of the messagesas normalised possibility measures [8℄, interpreting them as the degree to whih themodule sending believes that other modules should take the ontent of the messageto be important. Beause of the possibilisti semantis we ombine the disjuntivesupport for not(Give(B ;A;Nail)) using max as is the ase for possibility measures[8℄. The advantage of using possibility theory to underpin the degrees of importane,as opposed to developing some new measure from srath, is that it allows us toexploit the large body of work on possibility theory to solve problems arising from9



the use of intra-agent messages. Thus, beause in possibility theory it is perfetlyaeptable for a proposition and its negation to have a degree of possibility of 1 (itjust indiates that the opinion about the proposition is equally balaned) we ansidestep some of the problems whih would our if we were, for example, usingprobability theory to underpin the degrees (a probability of 1 for a proposition andits negation would represent a ontradition). It is also aeptable for a message tohave a degree of possibility of 0; this means that its negation is believed to be ofmaximum importane.There are three points whih need to be made about these messages. Firstly,the degrees of importane in the message, based as they are in possibility theory,have a ommon meaning aross all modules. The fat that di�erent modules assigndi�erent degrees is not beause they mean di�erent things, but beause the variousmodules have di�erent views of the world. Thus the degrees of possibility they assignrepresent di�erent preferenes, as for example disussed in [1℄. Seondly, althoughthe di�erent modules an use di�erent languages, the ontent of the messages passedmust be a ommon set of terms, a ommuniation language of sorts, whih are giventhe same meaning by all modules. In the interests of generality, we don't speify suha language, leaving that to the designer of the agents, but in later setions we givea set of prediates whih we have used for this task. Finally, beause the modulesan use di�erent logis, it maybe that one module annot understand the reord ofthe derivation provided by another. In our work we have side-stepped this issue fornow by using one ommon logi, as in the examples we give later. However, weare working on argumentation frameworks in whih the inferene rules are expliitlydenoted (so that the derivations may be traed) and themselves form the basis ofdisussion between modules (so that those aeptable derivations may be identi�ed)[19℄. Indeed, the roots of this work are present in [24℄.The messages we have disussed so far are those whih are passed around theagent itself in order to exhange information between the modules whih ompose it.Our approah also admits the more ommon idea of messages between agents. Suhinter-agent messages have the same basi form, but they have two minor di�erenes:� S and R are agent names (i.e. S ;R 2 AN ), no modules are spei�ed.� there is no degree of importane (beause it is internal to a partiular agent|however inter-agent messages ould be augmented with a degree of belief [22℄whih ould be based upon the weight of the relevant intra-agent messages.)Thus, a message from B to A o�ering the Nail mentioned above would have the form:inform(A;B ;Give(B ;A;Nail);G2)As in the ase of intra-agent messages, the ontent of inter-agent messages must bewritten in some ommuniation language whih has a ommon meaning aross allagents to whom the ommuniation is sent. One again we do not presribe suh alanguage, though we do give an example of one we have used later in the paper.With this mahinery in plae, we are in a position to speify realisti agent arhi-tetures. 10
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Figure 3: The modules in the agent4 Speifying a simple agentThis setion gives a spei�ation of a simple agent using the approah outlined above.The agent in question is a simple version of the home improvement agents �rst dis-ussed in [23℄, whih is supposed to roam the authors' homes making small hangesto their environment. In partiular the agent we disuss here attempts to hang pi-tures. As mentioned, the agent is rather simpler than those originally introdued,the simpli�ation being intended to �lter out unneessary detail that might onfusethe reader. As a result, ompared with the more omplex versions of the home im-provement agents desribed in [24℄, the agent is not quite solipsisti (sine it hassome awareness of its environment) but it is ertainly autisti (sine it has no meh-anisms for interating with other agents). Subsequent setions build upon this baside�nition to produe more sophistiated agents.4.1 A high-level desriptionThe basi struture of the agent is that of Figure 3. There are three modules onnetedby multiast bridge rules. These are the plan library (PL), the resoure manager (RM),and the goal manager (GM). Broadly speaking, the plan library stores plans for thetasks that the agent knows how to omplete, the resoure manager keeps trak of theresoures available to the agent, and the goal manager relates the goals of the agentto the seletion of appropriate plans.There are two types of illoution whih get passed along the multiast bridge rules.These are the following:� Ask: a request to another module.� Answer: an answer to an inter-module request.Thus all the modules an do is to make requests on one another and answer those re-quests. We also need to de�ne the prediates whih form the ontent of suh messages.Given a set of agent names AN , and with AN 0 = AN [ fSelfg.� goal(X ): X is a string desribing an ation. This denotes the fat that theagent has the goal X . 11



S

CU

GET_PLAN

Figure 4: The plan library module� have(X ;Z ): X 2 AN 0 is the name of an agent (here always instantiated to Self ,the agent's name for itself, but a variable sine the agent is aware that otheragents may own things), and Z is the name of an objet. This denotes AgentX has possession of Z .Note that in the rest of the paper we adopt a Prolog-like notation in whih the upperase letters X ;Y ;Z ;P are taken to be variables.As an be seen from the above, the ontent of the messages is relatively simple,referring to goals that the agent has, and resoures it possesses. Thus a typialmessage would be a request from the goal manager as to whether the agent possessesa plan to ahieve the goal of possessing a hammer:ask(Self =GM ;Self =all ; goal(have(Self ; hammer)); fg)Note that in this message, as in all messages in the remainder of this paper, we ignorethe weight in the interests of larity. Suh a request might be generated when the goalmanager is trying to asertain if the agent an ful�ll a possible plan whih involvesusing a hammer.4.2 Spei�ations of the modulesHaving identi�ed the struture of the agent in terms of modules, the next stage in thespei�ation is to detail the internal struture of the modules in terms of the unitsthey ontain, and the bridge rules onneting those units. The struture of the planlibrary module is given in Figure 4. In this diagram, units are represented as irles,and bridge rules as retangles. Arrows into bridge rules indiate units whih holdthe anteedents of the bridge rules, and arrows out indiate the units whih hold theonsequents. The two units in the plan library module are:� The ommuniation unit (CU): the unit whih handles ommuniation withother units.� The plan repository (S): a unit whih holds a set of plans.12
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Figure 5: The resoure manager moduleThe bridge rule onneting these units is:GET PLAN = CU > ask(Self =Sender ;Self =Reeiver ; goal(Z ); fg),S : plan(Z ;P)CU : answer(Self =PL;Self =Sender ; goal(Z ); fPg)where the prediate plan(Z ;P) denotes the fat that P , taken to be a onjuntion ofterms, is a plan to ahieve the goal Z 3.When the ommuniation unit sees a message on the inter-module bus askingabout the feasibility of the agent ahieving a goal, then, if there is a plan to ahievethat goal in the plan repository, that plan is sent to the module whih asked theoriginal question. Note that the bridge rule has a onsuming ondition|this is toensure that the question is only answered one.The struture of the resoure manager module is given in Figure 5. The two unitsin this module are:� The ommuniation unit (CU).� The resoure respository (R): a unit whih holds the set of resoures availableto the agent.The bridge rule onneting the two units is the following:ALLOCATE = CU > ask(Self =Sender ; Self =Reeiver ; goal(have(X ;Z )); fg),R > resoure(Z ; free)CU : answer(Self =RM ; Self =Sender ; have(X ;Z ); fg),R : resoure(Z ; alloated)where the resoure(Z ; alloated) denotes the fat that the resoure Z is in use, andresoure(Z ; free) denotes the fat that the resoure Z is not in use.3Though here we take a rather relaxed view of what onstitutes a plan|our \plans" are littlemore than a set of pre-onditions for ahieving the goal.13
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Figure 6: The goal manager moduleWhen the ommuniation unit sees a message on the inter-module bus asking if theagent has a resoure, then, if that resoure is in the resoure repository and is urrentlyfree, the formula reording the free resoure is deleted by the onsuming ondition,a new formula reording the fat that the resoure is alloated is written to therepository, and a response is posted on the inter-module bus. Note that designatinga resoure as \alloated" is not the same as onsuming a resoure (whih would bedenoted by the deletion of the resoure), and that one again the bridge rule deletesthe original message from the ommuniation unit.The goal manager is rather more omplex than either of the previous moduleswe have disussed, as is immediately lear from Figure 6 whih shows the units itontains, and the bridge rules whih onnet them. These units are:� The ommuniation unit (CU).� The plan list unit (P): this ontains a list of plans the exeution of whih isurrently being monitored.� The goal manager unit (G): this is the heart of the module, and ensures thatthe neessary sub-goaling is arried out.� The resoure list module (R): this ontains a list of the resoures being used aspart of plans whih are urrently being exeuted.14



The bridge rules relating these units are as follows. The �rst two bridge rules handleinoming information from the ommuniation unit:RESOURCE = CU > answer(Self =RM ;Self =GM ; have(Self ;Z ); fg)R : ZPLAN = CU > answer(Self =PL;Self =GM ; goal(Z ); fPg)P : plan(Z ;P)The �rst of these, RESOURCE, looks for messages from the resoure manager reportingthat the agent has possession of some resoure. When suh a message arrives, thegoal manager adds a formula representing the resoure to its resoure list module.The seond bridge rule PLAN does muh the same for messages from the plan libraryreporting the existene of a plan|suh plans are written to the plan library. Thereis also a bridge rule ASK whih generates messages for other modules:
ASK = G : goal(X ),G : not(done(X )),R : not(X );P : not(plan(X ;Z ))G : not(done(ask(X )));CU : ask(Self =G ;Self =all ; goal(X ); fg),G : done(ask(X ))If the agent has the goal to ahieve X , and X has not been ahieved, nor is X anavailable resoure (and therefore in the R unit), nor is there a plan to ahieve X ,and X has not already been requested from other modules, then X is requested fromother modules and this request is reorded. The remaining bridge rules are:MONITOR = G : goal(X ),R : not(X ),P : plan(X ;P)G : monitor(X ;P)DONE = G : goal(X ),R : XG : done(X )The MONITOR bridge rule takes a goal X and, if there is no resoure to ahieve Xbut there is a plan to obtain the resoure, adds the formula monitor(X ;P) to theG unit, whih has the e�et of beginnning the searh for the resoures to arry outthe plan. The DONE bridge rule identi�es that a goal X has been ahieved when asuitable resoure has been alloated.4.3 Spei�ations of the unitsHaving identi�ed the individual units within eah module, and the bridge rules whihonnet the units, the next stage of the spei�ation is to identify the logis presentwithin the various units, and the theories whih are written in those logis. For thisagent most of the units are simple ontainers for atomi formulae. In ontrast, the G15



unit ontains a theory whih ontrols the exeution of plans. The relevant formulaeare: monitor(X ;P) ! assert subgoals(P)monitor(X ;P) ! prove(P)monitor(X ;P) ^ proved(P) ! done(X )assert subgoals( î Yi ) ! î goal(Yi )prove(X ^ î Yi) ^ done(X ) ! prove( î Yi)î done(Yi ) ! proved( î Yi )The monitor prediate fores all the onjunts whih make up its �rst argument to begoals (whih will be monitored in turn), and kiks o� the \proof" of the plan whihis its seond argument4. This plan will be a onjuntion of ations, and as eah is\done" (a state of a�airs ahieved through the alloation of resoures by other bridgerules), the proof of the next onjunt is sought. When all have been \proved", therelevant goal is marked as ompleted.The spei�ation as presented so far is generi|it is akin to a lass desriptionfor a lass of autisti home improvement agents. To get a spei� agent we haveto \program" it by giving it information about its initial state. For our partiularexample there is little suh information, and we only need to add formulae to threeunits. The plan repository holds a plan for hanging pitures using hammers and nails:S : plan(hangPiture(X );have(X ; piture) ^ have(X ;nail) ^ have(X ; hammer))Of ourse, this is a very rudimentary plan, whih only onsists of the basi resouresneeded to ahieve the goal of hanging a piture. The resoure repository holds theinformation that the agent has a piture, nail and a hammer:R : resoure(piture; free)R : resoure(nail ; free)R : resoure(hammer ; free)Finally, the goal manager ontains the fat that the agent has the goal of hanging apiture: G : goal(hangPiture(Self ))With this information, the spei�ation is omplete.
16



ask(Self =GM ;Self =all ; goal(hangPiture(Self )); fg) (GM1)answer(Self =PL;Self =GM ; goal(hangPiture(Self ));fhave(Self ; piture) ^ have(Self ;nail) ^ have(Self ; hammer)g) (PL1)ask(Self =GM ;Self =all ; goal(have(Self ; piture)); fg) (GM2)ask(Self =GM ;Self =all ; goal(have(Self ;nail)); fg) (GM3)answer(Self =RM ;Self =GM ; have(Self ; piture); fg) (RM1)ask(Self =GM ;Self =all ; goal(have(Self ; hammer)); fg) (GM4)answer(Self =RM ;Self =GM ; have(Self ;nail); fg) (RM2)answer(Self =RM ;Self =GM ; have(Self ; hammer); fg) (RM3)Table 1: The inter-module messages
GM

PL

RM

GM1

GM1 PL1

PL1 GM2

GM2

GM3 GM4

RM1

RM1

GM3 RM2 GM4

RM2

RM3

RM3

Figure 7: An exeution trae for the agent4.4 The agent in ationWhen the agent is instantiated with this information and exeuted, we get the fol-lowing behaviour. The goal manager unit, whih has the goal of hanging a piture,does not have the resoures to hang the piture, and has no information on how toobtain them. It therefore �res the ASK bridge rule to ask other modules for input,sending message GM1 (detailed in Table 1). When this message reahes the planlibrary, the bridge rule GET PLAN is �red, returning a plan (PL1). This triggers thebridge rule PLAN in the goal manager, adding the plan to its P unit. This additionauses the MONITOR bridge rule to �re. This, along with the theory in the G unit,auses the goal manager to realise that it needs a piture, hammer and nail, and toask for these (GM2, GM3, GM4). As eah of these messages reahes the resouremanager, they ause the ALLOCATE rule to �re, identifying the resoures as beingalloated, and generating messages bak to the goal manager (RM1, RM2, RM3).These resoures ause the RESOURCE bridge rule in the goal manager to �re andthe resoures to be added to the resoure list, R. The addition of the resoues is allthat is required to omplete the plan of hanging a piture, and the bridge rule DONE�res, adding the formulae done(have(Self ; piture)), done(have(Self ; hammer)) anddone(have(Self ;nail)) to the G unit. The theory in G then ompletes exeution.The messages passed between modules are represented in pitorial form in Fig-ure 7|eah row in the diagram identi�es one module, time runs from left to right,and the diagonal lines represent the transfer of messages between modules.4Given our relaxed view of planning, this \proof" onsists of showing the pre-onditions of theplan an be met. 17
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managerFigure 8: The modules in the agent5 Speifying more omplex agentsThis setion gives a spei�ation of a pair of agents whih build upon those in theprevious setion. Indeed the agents introdued here are strit extensions of those inthe previous setion, ontaining all the omponents (down to the level of individualunits) of the autisti agents and other omponents besides. The main extension is toredue the autism of the model by giving eah agent mehanisms for interating withother agents. The resulting agents are thus intermediate in omplexity between thatdesribed in the previous setion and that desribed in [24℄. In omparison with thelatter, the main simpli�ation is the absene of mehanisms for argumentation.5.1 A high-level desriptionThe basi struture of the agent is that of Figure 8. There are four modules onnetedby multiast bridge rules. These are the plan library (PL), the resoure manager (RM),the goal manager (GM) and the soial manager (SM). The �rst three modules arryout the same basi funtions as their namesakes in Setion 4. The soial managerhandles interations with other agents.The intra-agent messages are exatly the same as for the autisti agent, but thereare also two types of inter-agent message, whih broadly orrespond to the ask andanswer messages. These are:� Request: a request to another agent.� Reply: an answer to an inter-agent request.As in the previous setion these illoutions are the only ations available to the agents.Thus the agents an talk about passing resoures between themselves, but we provideno mehanisms for atually passing the resoures.The only new prediate whih these agents employ is:� give(X ;Y ;Z ): X 2 AN 0 and Y 2 AN 0 are agent names, and Z is a stringdesribing a resoure. This denotes X giving Z to Y .and this is used in onjuntion with the request and reply message types to buildinter-agent messages, whih are of the form:request(A;B ; give(B ;A;nail); fg)18
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Figure 9: The resoure manager moduleIn this example, A requests that B gives a nail to A. In the following:reply(B ;A; give(B ;A;nail); fg)B replies to A that B will give the nail to A.5.2 Spei�ations of the modulesOne again, having deided on the overall struture of the agent, we have to speifythe internal struture of the individual modules. The plan library module and thegoal manager module have exatly the same struture as in the simple agent (seeSetion 4.2) and are not repeated here.As an be seen by omparing Figure 5 with Figure 9, the resoure manager ofour new agents is onsiderably more omplex than that in Setion 4. This resouremanager ontains an extra unit INF whih holds information about the resourespossessed by agents in ontrast with the R unit whih simply reords whether resouresare free or alloated|this is a ompliation introdued by moving from one agent toseveral. Beause the autisti agent does not deal with any external entities, anyresoures it onsiders belong to it, and any resoures whih do not belong to it do notexist as far as it is onerned. The soial agents, in ontrast, need to onsider twoaspets to every resoure|whether or not it is free, and who has ontrol over it. TheR unit deals with the former, and the INF unit with the latter.Clearly with more units we have more bridge rules. Of those in Figure 9, only theALLOCATE rule is familiar from the autisti agent:ALLOCATE = CU > ask(Self =Sender ; Self =Reeiver ; goal(have(X ;Z )); fPg),R > resoure(Z ; free)CU : answer(Self =RM ; Self =Sender ; have(X ;Z ); fg),R : resoure(Z ; alloated)19



where resoure(Z ; alloated) denotes the fat that the resoure Z is in use, andresoure(Z ; free) denotes the fat that the resoure Z is not in use. This rule will beused if the agent is dealing with its own need for a resoure that it owns, as in thease of the autisti agent.Beause we now have two agents, the resoure that one agent requires may beowned by another agent, and this situation is where the INF unit omes into play.There are four bridge rules whih relate this unit to R and CU. The �rst of these isC INF ID, whih plaes knowledge about whih agent has whih resoure into INF asa result of an inform message:C INF ID = CU > inform(U ;V ; have(X ;Z ); fW g)INF : have(X ;Z )The name indiates that the rule is a kind of identity rule between the CU and INFunits. Beause in this model resoures belong to just one agent, there is a ontradi-tion if a resoure is thought to belong two agents at one. The CONSISTENCE ruleensures that this situation does not our by ensuring that the agent doesn't thinkanother agent has a resoure have(X ;Z ) when in fat the agent has the resoure itselfresoure(Z ; free). CONSISTENCE = INF > have(X ;Z ),R : resoure(Z ; free)The bridge rule works by deteting that the resoure Z is reorded both as being freeand being owned by agent X , and simultaneously deleting the reord of the fat thatZ is owned by X using a deleting ondition. The rule will be �red when, for example,Agent A knows that B has some resoure, but is then presented with the informationthat the resoure is now free beause B has given it up. Without the bridge rule, Awould ontinue to believe that B has the resoure. Beause the purpose of this bridgerule is to delete the have(X ;Z ), and this is ahieved by its anteedents, there is noonsequent, making the rule unlike others in the agent (and subsequently stressingthe operational nature of our use of bridge rules). If one wanted to not only removethe have(X ;Z ), but also onlude that not(have(X ;Z )) was subsequently the ase,the appropriate rule would be:CONSISTENCE2 = INF > have(X ;Z ),R : resoure(Z ; free)INF : not(have(X ;Z ))If an agent requires a resoure it does not have, the ASK OUT bridge rule allows itto request the resoure from another agent, and the GIVE rule makes it possible toaept a resoure it is given:ASK OUT = CU : ask(Self =Sender ; Self =Reeiver ; goal(have(X ;Z ); fPg),R : not(resoure(Z ; free)), INF : have(Y ;Z )CU : ask(Self =RM ; Self =SM ; give(Y ;X ;Z ; fPg))GIVE = CU > ask(Self =RM ; Self =SM ; give(X ;Y ;Z ); fPg),CU > answer(Self =SM ; Self =RM ; give(X ;Y ;Z ); fQg)R : resoure(Z ; free)The �nal resoure-related situation an agent may be in is when it has a resoure thatanother agent requires. This situation is handled by the ALLOCATE2 bridge rule,20
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Figure 10: The soial manager modulewhih hands over a resoure if it is free and the soial manager tells it to, updatingthe INF unit with information about where the resoure is:ALLOCATE2 = CU > ask(Self =SM ; Self =Reeiver ; give(Self ;Y ;Z ); fPg),R > resoure(Z ; free)CU : answer(Self =RM ; Self =SM ; give(Self ;Y ;Z ); fPg),INF : have(Y ;Z )This ompletes the desription of the resoure manager.The �nal module in the new agents is the soial manager. As an be seen fromFigure 10, here the soial manager onsists of a single ommuniation unit CU. Aswell as being onneted to the agent's internal modules via multi-ast bridge rules, thesoial manager module is also onneted to the orresponding module of the agent'saquaintanes via an \interagent" whih handles the transfer of messages betweenagents (see Setion 6). This passes request and reply on to the ommuniation unit ofthe module to whih they are addressed. The generation of these messages is arriedout by the theory in the ommuniation unit.5.3 Spei�ations of the unitsSo far we have desribed the modules whih make up the new agents, and for eahmodule we have identi�ed both the units whih omposed them and the onnetionsneessary between the units. The next step is to deide what the internal strutureof the units will be|whih formulae and theories they will ontain, and whih logisthose theories will be written in. One again, there are not many units whih inludemore than just a few atomi formulae. One of these is the unit G of the goal managerwhih ontains the same theory as in the autisti agent (see Setion 4.3):The other unit whih ontains more than just atomi formulae is the CU unit inthe soial manager, whih ontains:ask(Self =Sender ;Self =SM ; give(X ;Self ;Z ); fg)!request(Self ;X ; give(X ;Self ;Z ); fg)reply(X ;Self ; give(X ; self ;Z ); fg) 21



^ ask(Self =Sender ;Self =SM ; give(X ;Self ;Z ); fg)!answer(Self =SM ;Self =Sender ; give(X ;Self ;Z ); fg)request(X ;Self ; give(Self ;X ;Z ); fg)!ask(Self =SM ;Self =RM ; give(Self ;X ;A); fg)answer(Self =Sender ;Self =SM ; give(Self ;X ;Z ); fg)!reply(Self ;X ; give(Self ;X ;Z ); fg)This theory takes are of the translation from intra-agent messages to inter-agentmessages. The �rst formula takes an inoming ask message whih ontains a requestfor another agent, X to give a resoure, and onverts it into a request illoution. Theseond formula handles the reply to that request|if another agent responds positivelyto a request that the agent has previously made, then an answer message is generatedand sent to the orginator of the request. The next two formulae handle responses torequests. The �rst of these takes a request for a resoure from another agent and turnsit into a message to the resoure manager. The seond takes a positive response, andonverts that into a reply message. The logi used in this unit, as in all the units inthis agent spei�ation, is lassial �rst order logi.As in Setion 4, the spei�ation up to this point is generi, de�ning somethinglike a lass desription for simple non-autisti agents. For the partiular senario wehave in mind, that of two agents whih o-operate in hanging a piture, it is neessaryto instantiate this generi desription twie. The �rst instantiation reates an agentA whih is virtually the same as the autisti agent of Setion 4, the only di�erenebeing that A does not have the nail neessary to hang the piture, knowing insteadthat an agent B has the nail. A's plan repository holds the same plan as that of theautisti agent:S : plan(hangPiture(X );have(X ; piture) ^ have(X ;nail) ^ have(X ; hammer))A's resoure repository holds the information that the agent has a piture and ahammer: R : Resoure(piture; free)R : Resoure(hammer ; free)while A's INF unit holds the information that B has a nail:INF : have(B ;nail)Finally, A's goal manager ontains the fat that the agent has the goal of hanging apiture: G : goal(hangPiture(A))This ompletes the spei�ation of A. B is muh simpler to instantiate, sine it is onlyneessary to program it with the resoure of a nail, by adding the following formulato its resoure repository: R : Resoure(nail ; free)This ompletes the spei�ation of the two agents.22



Agent Aask(Self =GM ;Self =all ; goal(hangPiture(A)); fg) (GM1)answer(Self =PL;Self =GM ; goal(hangPiture(A));fhave(A; piture) ^ have(A;nail) ^ have(A; hammer)g) (PL1)ask(Self =GM ;Self =all ; goal(have(A; piture)); fg) (GM2)ask(Self =GM ;Self =all ; goal(have(A;nail)); fg) (GM3)answer(Self =RM ;Self =SM ; give(B ;A;nail); fg) (RM1)ask(Self =GM ;Self =all ; goal(have(A; hammer)); fg) (GM4)request(A;B ; give(B ;A;nail); fg) (SM1)answer(Self =RM ;Self =GM ; have(A; piture); fg) (RM2)answer(Self =RM ;Self =GM ; have(A; hammer); fg) (RM3)answer(Self =SM ;Self =RM ; give(B ;A;nail); fg) (SM2)answer(Self =RM ;Self =GM ; have(A;nail); fg) (RM4)Agent Bask(Self =SM ;Self =RM ; give(B ;A;nail); fg) (SM1)answer(Self =RM ;Self =SM ; give(B ;A;nail); fg) (RM1)reply(B ;A; give(B ;A;nail); fg) (SM2)Table 2: The inter-module messages5.4 The agents in ationIf we exeute these two agents, they generate and exhange the messages in Table 2and Figure 11, whih are very similar to those generated by the autisti agent. Themain di�erene in this ase onerns the provision of the nail required to hang thepiture. In the ase of the autisti agent, this nail was the property of the agent andso all the agent had to do to exeute its \plan" of owning the nail was to alloate it.In this ase when Agent A wants the nail it has to request it from B . Lukily for A,when B reeives this request, it immediately agrees.In more detail, the exeution proeeds as follows. The goal manager unit of AgentA, has the goal of hanging a piture, does not have the resoures to hang the piture,and has no information on how to obtain them. It therefore �res the ASK bridge ruleto ask other modules for input, sending message GM1 (detailed in Table 1). Whenthis message reahes A's plan library, the bridge rule GET PLAN is �red, returninga plan (PL1). This triggers the bridge rule PLAN in the goal manager, adding theplan to its P unit. This addition auses the MONITOR bridge rule to �re. This,along with the theory in the G unit, auses the goal manager to realise that it needsa piture, hammer and nail, and to ask for these (GM2, GM3, GM4). When GM2and GM4 reah the resoure manager, they ause the same sequene of events as inthe autisti agent, �ring the ALLOCATE rule, generating the messages RM2 and RM3and allowing the goal manager to build part of its plan.The problem, of ourse, is with GM3 whih is requesting a nail. Sine this is nota resoure that A owns, the ASK OUT rule is �red, generating RM1 whih in turn23
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Figure 11: An exeution trae for the agentssparks o� ativity in the soial manager resulting in SM1. This request is passedto B , where the soial manager generates SM 1. This goes to B 's resoure manager,triggering the ALLOCATE2 rule and then RM1 whih on�rms that B is happy to givea nail to A. The message passes bak through B 's soial manager as SM2, is reeivedby A's soial manager beoming A's SM2 message. This ativates the GIVE rule inA's resoure manager, whih updates its resoure list �nally allowing it to aloate thenail. The message RM4 is sent to the goal manager whih now has all the resouresit requires. Consequently DONE �res, adding the formulae done(have(Self ; piture)),done(have(Self ; hammer)) and done(have(Self ;nail)) to the G unit. The theory in Gthen ompletes exeution.Both of the examples we have given are of rather simple agents. However, wean use the framework to speify and exeute more omplex agents (indeed we havealready done so), so it should not be inferred that the examples given illustrate thelimits of what is possible using this approah. The simpliity of these examples ispurely for ease of presentation and understanding.6 ImplementationOur aim in this work is to be able to diretly exeute the kinds of spei�ations de-veloped in previous setions. To do this we learly need some kind of omputationalinfrastruture whih will make it possible to de�ne units, modules, and their inter-onnetions, and then exeute the various theories within these omponents. Thissetion desribes our prototype implementation of this infrastruture.
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Figure 12: How a omponent is implemented6.1 Units and bridge rulesTo support the exeution of the kinds of spei�ations developed above, we need tobe able to handle two kinds of omponent|units, and bridge rules (multi-ast bridgerules between modules are just bridge rules whih onnet every soial managers toevery other soial manager). We treat both these omponents in the same way, givingthem the struture pitured in Figure 12. Thus every omponent has, at its ore, atheorem prover written as a meta-interpreter in Prolog. Thus every unit is just aProlog-based meta-interpreter, as is every bridge rule. Now, beause we want theseunits and bridge rules to run onurrently, we wrap the Prolog engine whih exeutesthe meta-interpreter in a Java wrapper and this wrapper is set running in its ownthread (from outside the wrapper it looks just like any other Java objet).These omponents need to be onneted, and we want these onnetions to beasynhronous. The idea is that eah omponent runs its meta-interpreter on theurrent ontents of its theory, omputes the losure of this, outputs the relevantresults, looks at what new input has arrived, updates its theory, and then startsomputing the losure of the theory one again. To get this asynhroniity we provideeah omponent with an input bu�er by using a Java objet alled bu�er-in. Thisstores inoming information until the meta-interpreter �nishes running. To ensurethat the right information is sent to the right other omponents we provide eahomponent with a Java distributor whih provides this routing apability.The operating yle of this struture an be split in four stages:Update: All ations (asserts and retrats) that have been aumulated during25



the inferene stage in the bu�er-in objet are applied to the working memoryof the relevant Prolog proess through the wrapper lass.Inferene: A new inferene yle is launhed in the Prolog engine.Distribution: All formulae dedued during the inferene stage are sent to the dis-tributor objet as soon as they are dedued.Atualization: The hanges noti�ed during the inferene proess, and aumulatedin the distributor, are transmitted to the bu�er-in objets of the relevant om-ponents.The update, inferene and distribution stages are arried out sequentially in a singleexeution thread while the atualization stage has its own exeution thread to allowthe hanges performed during the inferene stage (asserts and retrats in the Prologengine) to be transmitted to the other omponents without delaying the exeution ofthe other stages.6.2 From omponents to modulesTaking the general struture of a omponent, we obtain units and bridge rules byspeialization5. Usually, eah struture implements a single omponent, that is, oneunit, or one bridge rule. There is only one exeption to this: if bridge rules Bri andBrj have a onsumption ondition from the same unit, then they must be plaedin the same omponent. The reason for doing this is to avoid a situation in whihseveral bridge rules with a ommon onsumption ondition �re at the same time, andto understand why this might our is it is neessary to understand in more detailhow the bridge rules are implemented.In order to redue the messages between units and bridge rules, eah bridge rulehas a partial image of the units related with it, in the sense that it only has aess tothose literals whih appear in its anteendents (sine these may easily be indenti�edfrom the bridge rule itself, this is easy to ahieve). This image is updated when thereis a hange in the unit, and the update is via the messages from the unit's distributorto the bridge rule's bu�er-in. Eah distributor \knows" whih formulae of the theoryould math the premises of the bridge rules to whih it is onneted, and only thoseformulae will be sent. This implementation is eÆient. However, onsumption bridgerules an ause unwanted inonsistenies between di�erent images of the same unit.It's easy to see the problem with an example. Consider the two bridge rules inFigure 13 (BR1 and BR3) implemented using two di�erent omponents and supposez is in Unit2. From this Unit1 dedues x . Bridge rules BR3 and BR1 are noti�edabout this hange and BR3 is �red. Meanwhile, Unit1 dedues r and BR1 is alerted.Unit1 reeives a message from BR3 telling it to remove x , but by this time BR1 hasalready been sent r and has �red. The solution to this problem is to make thosebridge rules with oinident onsumption onditions (in our example BR1 and BR3)share a ommon vision of the units related with them (in our example Unit1 andUnit2). In our implementation this is done inluding those bridge rules into the same5As a result, our approah has an even more objet-oriented avour than might be �rst thought.Not only is everything made up of units and bridge rules, but the units and bridge rules themselvesare basially variations on the same thing. 26



IMPLEMENTATION of MODULE-X
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Figure 13: How a module is implementedstruture and passing the update message to that struture just one. This ensuresthat only one bridge rule with a onsuming ondition will respond to a given update,and has proved suÆient for our purposes so far. However, it does not provide aperfet solution in that it does not seek to mediate between two bridge rules whihompete to onsume the same literal6.The last thing that needs desribing is the timeout manager. This is the entityresponsible for monitoring timeout bridge rules. When the preonditions of a bridgerule with a timeout hold, the bridge rule tells the timeout manager. The timeoutmanager has a list with pairs:(htimeri; hbridge rule referenei)The timers in the list are initialized to the values in the timeout bridge rules andderease synhronously. When a timer beomes 0, the timeout manager informs theorresponding bridge rule struture that it is authorised to �re if the onditions stillhold.These omponents an then be slotted together to make a module as shown inFigure 13. This shows a module made up of three units|a ommuniation unit andtwo units named Unit1 and Unit2, three bridge rules|named BR1, BR2 and BR3,6As the implementation stands it odes the bridge rules into this ommon struture in a givenorder and then passes the message to the rules in that order, thus ensuring that the �rst rule witha onsuming ondition always has preedene. One might argue that the message should be passedto a randomly seleted bridge rule, but equally one might argue that it is wrong to build agents insuh a way that several units are ompeting for the same literal.27



and a multiast bridge rule named MBR. The timeout manager is also depited. Asan example of how the module works, onsider the following:0. Unit1 ontains r. BR1-BR3 have been noti�ed.1. The Prolog engine in Unit1 dedues x.2. The distributor in Unit1 is noti�ed about the dedution of x.3. The distributor in Unit1 sends x to the BR1-BR3 bu�er-in.4. The bu�er-in of BR1-BR3 sends x to the Prolog engine5. As a result of �ring BR1, the distributor is noti�ed that y must be added tothe Communiation Unit and that x must be removed from Unit1.6. The bu�er-in of Unit1 reeives a request to remove x and the bu�er-in of theCommuniation Unit is noti�ed about y7. x is removed from the Prolog engine of Unit1 and y is added to the Prologengine of the Communiation Unit8, 9 and 10. The Prolog engine of BR1-BR3 is noti�ed about the elimination ofx.6.3 From modules to agentsLittle more needs to be added to this piture to get a omplete agent. The main ad-dition to a olletion of modules, eah as desribed above, is a set of multiast bridgerules whih onnet modules together. These are implemented in exatly the sameway as the intra-module bridge rules. As disussed earlier in the paper, eah agentinludes a soial manager module whih, while strutured exatly like every othermodule, handles the interations with other agents|the detail of this, whih learlyhanges from agent to agent, is enoded in the units that make up the soial managerand the bridge rules whih onnet them. Building soial managers with di�erentunits or di�erent theories in the same units makes it possible to implement di�erentsoial onventions sine it is these units and theories whih de�ne the agent ommu-niation protool. The protool we use here is based on that desribed in [21, 27℄, andthe inter-agent messages are transferred by autonomous software entities known asinteragents. The interagents we use in our urrent implementation are similar to thesystem JIM desribed in [17, 18℄, and are built on top of JADE [2℄, an implementa-tion of the mandatory elements ontained within the FIPA [10℄ spei�ation for agentinteroperability.The implementation desribed here is the beginning of a bridge between spe-i�ation and exeution. The modular multi-ontext approah gives us a means ofspeifying agents. The implementation, as it stands, gives us a means of exeutingthese spei�ations, albeit one the theories in eah unit have been translated into aform whih an be exeuted on the appropriate Prolog engine, and it is this transla-tion whih is the missing setion of the bridge. One eah Prolog engine is equippedwith a suitable meta-interpreter for the logi employed by that unit, it will be possibleto take the spei�ation, enter the theory in eah unit into the meta-interpreter, anddiretly exeute it. 28



7 Related WorkThere are two main strands of work to whih ours is related|work on exeutableagent arhitetures and work on multi-ontext systems. As mentioned above, mostprevious work whih has produed formal models of agent arhitetures, for exampledMARS [14℄, Agent0 [26℄ and GRATE* [15℄, has failed to arry forward the larity ofthe spei�ation into the implementation|there is a leap of faith required betweenthe two. Our work, on the other hand, maintains a lear link between spei�ationand implementation promising to allow the diret exeution of the spei�ation asdisussed above. This relation to diret exeution also distinguishes our work fromthat on modelling agents in Z [7℄, sine it is not yet possible to diretly exeute a Zspei�ation7.More diretly related to our work is that on DESIRE and Conurrent MetateM.DESIRE [5, 30℄ is a modelling framework originally oneived as a means of speifyingomplex knowledge-based systems. DESIRE views both the individual agents and theoverall system as a ompositional arhiteture. All funtionality is designed as a seriesof interating, task-based, hierarhially strutured omponents. Though there areseveral di�erenes, from the point of view of the proposal advoated in this paperwe an see DESIRE's tasks as modules and information links as bridge rules. Inour approah there is no an expliit task ontrol knowledge of the kind found inDESIRE. There are no entities that ontrol whih units, bridge rules or modulesshould be ativated nor when and how they are ativated. Also, in DESIRE theommuniation between tasks is arried out by the information links that are wired-in by the design engineer. Our inter-module ommuniation is organized as a bus andthe independene between modules means new ones an be added without modifyingthe existing strutures. Finally the ommuniation model in DESIRE is based on aone-to-one onnetion between tasks, in a similar way to that in whih we onnetunits inside a module. In ontrast, our ommuniation between modules is based on amultiast model. We ould, of ourse, simulate the kind of ontrol found in DESIREby building a entral ontrolling module, if this were required.Conurrent MetateM de�nes onurrent semantis at the level of single rules [9,33℄. Thus an agent is basially a set of temporal rules whih �re when their anteedentsare satis�ed. Our approah does not assume onurreny within the omponents ofunits, rather the units themselves are the onurrent omponents of our arhitetures.This means that our model has an inherent onurrent semantis at the level of theunits and has no entral ontrol mehanism. Though our exemplar uses what isessentially �rst order logi (albeit a �rst order logi labelled with arguments), we oulduse any logi we hoose|we are not restrited to a temporal logi as in MetateM.There are also di�erenes between our work and previous work on using multi-ontext systems to model agents' beliefs. In the latter [12℄, di�erent units, all ontain-ing a belief prediate, are used to represent the beliefs of the agent and the beliefs ofall the aquaintanes of the agent. The nested beliefs of agents may lead to tree-likestrutures of suh units (alled belief ontexts). Suh strutures have then been usedto solve problems like the three wise men [6℄. In our ase, however, any nested beliefs7It is possible to animate spei�ations, whih makes it possible to see what would happen ifthe spei�ation were exeuted, but animating agent spei�ations is some way from providingoperational agents of the kind possible using our approah.29



would typially be inluded in a single unit or module. Moreover we provide a moreomprehensive formalisation of an autonomous agent in that we additionally showhow apabilities other than that of reasoning about beliefs an be inorporated intothe arhiteture.8 Conlusions and future workThis paper has proposed a general approah to de�ning agent arhitetures whihextends the work of [24, 25℄ with the idea of modules and, as a result, links the ap-proah more strongly with the software engineering tradition. This approah providesa means of struturing logial spei�ations of agents in a way whih makes them di-retly exeutable, and we have desribed an implementation whih an arry out thisexeution. The approah has a number of advantages over other work on de�ningagent arhitetures. Firstly it bridges the gap between the spei�ation of agentsand the programs whih implement those spei�ations. Seondly, the modularity ofthe approah makes it easier to build agents whih are apable of arrying out om-plex tasks suh as distributed planning. From a software engineering point of view,the approah leads to arhitetures whih are easily expandable, and have re-useableomponents.From this latter point of view, our approah suggests a methodology for buildingagents whih has similarities with objet-oriented design [4℄. The notion of inheritanean be applied to groups of units and bridge rules, modules and even omplete agents.These elements ould have a general design whih is speialized to di�erent and moreonrete instanes by adding units and modules, or by re�ning the theories inside theunits of a generi agent template. The development of suh a methodology is our longterm goal in this work, but the outline of suh a methodology is, we believe, alreadyvisible in the resuse of the simple autisti agents of Setion 4 as the basis of the moreomplex agents of Setion 5However, before we an develop this methodology, there are some open issues toresolve. The �rst thing that we need to do is to extend both the environment forbuilding agents and the range of agents we an build. Our aim with the environmentis to turn it into a graphial tool for the rapid prototyping of delarative agents, with alibrary of di�erent units and bridge rules whih an be onneted together and editedas required. To be useful this, of ourse, requires us to �rst develop spei�ations foragents whih have greater apabilities than the ones desribed in this paper|agentswhih are apable of a wider range of dialogues, and whih have expertise in areasother than home improvement. The seond thing we need to do is to ensure thatthe module-based approah we have desribed sales up for more omplex agents,something that an only be ensured by building suh agents. Experiene gained heremight well lead to some modi�ations in our approah, for instane allowing nestedhierahies of modules. The last thing we need to do is to resolve the question of thesemantis of the omsuming onditions and time-outs in bridge rules. Though last inthe list, this is possibly the most important in terms of ensuring that we an buildpreisely spei�ed agents.
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