Chapter 1: Introduction

- **D** Learning from interaction
- **Goal-oriented learning**
- Learning about, from, and while interacting with an external environment
- Learning what to do—how to map situations to actions—so as to maximize a numerical reward signal

Supervised Learning

Error = (target output – actual output)

Objective: get as much reward as possible

Key Features of RL

- Learner is not told which actions to take
- □ Trial-and-Error search
- Possibility of delayed reward
 - Sacrifice short-term gains for greater long-term gains
- **The need to** *explore* and *exploit*
- Considers the whole problem of a goal-directed agent interacting with an uncertain environment

Complete Agent

Temporally situated

Continual learning and planning

- **Object** is to *affect* the environment
- **D** Environment is stochastic and uncertain

Elements of RL

Model: what follows what

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

RL Learning Rule for Tic-Tac-Toe

How can we improve this T.T.T. player?

Take advantage of symmetries

- representation/generalization
- How might this backfire?
- **D**o we need "random" moves? Why?
 - Do we always need a full 10%?
- **C**an we learn from "random" moves?
- **C**an we learn offline?
 - Pre-training from self play?
 - Using learned models of opponent?

] . . .

e.g. Generalization

- ☐ Finite, small number of states
- One-step look-ahead is always possible
- □ State completely observable

□ . . .

TD-Gammon: Tesauro

- world's best backgammon program

- **Elevator Control**: Crites & Barto
 - high performance down-peak elevator controller
- **Inventory Management**: Van Roy, Bertsekas, Lee&Tsitsiklis
 - 10-15% improvement over industry standard methods
- **Dynamic Channel Assignment**: Singh & Bertsekas, Nie & Haykin
 - high performance assignment of radio channels to mobile telephone calls

TD-Gammon

Start with a random network

Play very many games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Elevator Dispatching

Crites and Barto, 1996

10 floors, 4 elevator cars

<u>STATES</u>: button states; positions, directions, and motion states of cars; passengers in cars & in halls

<u>ACTIONS</u>: stop at, or go by, next floor

<u>REWARDS</u>: roughly, -1 per time step for each person waiting

Conservatively about 10²² states

Performance Comparison

Some RL History

Trial-and-Error learning	Temporal-difference learning	Optimal control, value functions
Thorndike (Ψ) 1911	Secondary reinforcement (Ψ)	Hamilton (Physics) 1800s
		Shannon
Minsky	Samuel	Bellman/Howard (OR)
Klopf	Holland	
Barto et al.	Witten	Werbos
	Sutton	
		Watkins

MENACE (Michie 1961)

"Matchbox Educable Noughts and Crosses Engine"

The Book

- **D** Part I: The Problem
 - Introduction
 - Evaluative Feedback
 - The Reinforcement Learning Problem
- **D** Part II: Elementary Solution Methods
 - Dynamic Programming
 - Monte Carlo Methods
 - Temporal Difference Learning
- **D** Part III: A Unified View
 - Eligibility Traces
 - Generalization and Function Approximation
 - Planning and Learning
 - Dimensions of Reinforcement Learning
 - Case Studies

- One chapter per week (with some exceptions)
- **Read the chapter for the first class devoted to that chapter**
- Written homeworks: basically all the non-programming assignments in each chapter. Due second class on that chapter.
- Programming exercises (not projects!): each student will do approximately 3 of these, including one of own devising (in consultation with instructor and/or TA).
- Closed-book, in-class midterm; closed-book 2-hr final
- Grading: 40% written homeworks; 30% programming homeworks; 15% final; 10% midterm; 5% class participation
- **I** See the web for more details

Next Class

- □ Introduction continued and some case studies
- **Read Chapter 1**
- □ Hand in exercises 1.1 1.5