Chapter 2: Evaluative Feedback

A Evaluating actions vsinstructing by giving correct actions

 Pure evaluative feedback depends totally on the action take
Pure instructive feedback depends not at all on the action te

 Supervised learning is instructive; optimization is evaluative
 Associativevs. Nonassociative

= Associative: inputs mapped to outputs; learn the best oul
for each input

= Nonassociative: “learn” (find) one best output
A n-armed bandit (at least how we treat it) is:

= Nonassociative

« Evaluative feedback
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The n-Armed Bandit Problem

[ Choose repeatedly from onerméactions; each choice is
called aplay

1 After each playa, ,yougetareward ,where

E(r,|a)=Q (&)

These are unknowaction values
Distribution of I, depends only oA,

 Objective is to maximize the reward in the long term, e.g.,
over 1000 plays

To solve then-armed bandit problem,
you musexplore a variety of actions
and theexploit the best of them
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The Exploration/Exploitation Dilemma

[ Suppose you form estimates
Q(a)=Q (a)  action value estimates
 Thegreedyaction at is
3 =argmax(a)
a =a [ exploitatior
a #a [ exploration

[ You can’t exploit all the time; you can’t explore all the time

[ You can never stop exploring; but you should always reduce
exploring
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Action-Value Methods

1 Methods that adapt action-value estimates and nothing
else, e.q.: suppose by tht play, actiona had been

chosenk, times, producing rewandsr,, ..., I, , then
SR PR I
Q(a) = " :

“sample average”

7 lim Q(a) =Q (a)

ka—>00
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e-Greedy Action Selection

 Greedy action selection:
a =a =argmaxQ(a)

A e-Greedy:

3 = a. with probabilityl— ¢

random action with probability

.. . the simplest way to try to balance exploration and exploita
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10-Armed Testbed

[ n= 10 possible actions

3 EachQ'(a) is chosen randomly from a normal distributip(@, 1)
A each ', is also normal)(Q (a,),1)

[ 1000 plays

 repeat the whole thing 2000 times and average the results
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e-Greedy Methods on the 10-Armed Testbed
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Softmax Action Selection

[ Softmax action selection methods grade action probs. by
estimated values.

[ The most common softmax uses a Gibbs, or Boltzmann,
distribution:

Choose actiom on play with probabi
th(a)/T

n
Z th (b)/T
b=1

wherer is the
“computational temperature”
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Binary Bandit Tasks

Suppose you have justo actions: a =1 or a =2
and justwo rewards: = success or r = falure

Then you might infer garget or desired action

d = a, Ifsuccess
t the other action ifailure

and then always play the action that was most often the tar

Call this thesupervised algorithm
It works fine on deterministic tasks...
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Contingency Space

The space of all possible binary bandit tasks:
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Linear Learning Automata

Let t(a) = Pa = a} be the only adapted param

L ._, (Linear, reward - inaction)
Onsuccess :7,,(a) =7 (a) +a(l-m ) O< <1
(the other action probs. are adjusted to still sun
Onfailure : no change

L .- (Linear, reward - penalty)
Onsuccess :7t,(8) = m(a)+a(l-1 & ) O< <1
(the other action probs. are adjusted to still sun
Onfailure : m,,(a)=m(a)+a(0-m & )) Oa <1

For two actions, a stochastincremental version of the supervisggorithm
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Performance on Binary Bandit Tasks A and B
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Incremental Implementation

Recall the sample average estimation method:

The average of the firgt rewards is [+r,+-e1,
(dropping the dep@ence ona ): Q = K

Can we do this incrementally (without storing all the rewards)

We could keep a running sum and count, or, equivalently:

1
Qk+1 = Qk + m[rk+1 - Qk]

This iIs a common form for update rules:
NewEstimate = OldEstimate + StepSze] Target — OldEstimate]
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Tracking a Nonstationary Problem

ChoosingQ, to be a sample average is appropriate in a
stationary problem,

i.e., when none of th@ (a)  change over time,

But not in a nonstationary problem.

Better in the nonstationary case is:

Qk+1 = Qk + a[rk+1 - Qk]

forconstant a, O0<a <1
k
=(1-a)Q,+ Za(l_ a)<'r
1=1

exponential, recency-weighted average
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Optimistic Initial Values

A All methods so far depend a@,(a) , I.e., theybaaeed.
 Suppose instead we Initialize the action valgsmistically,

i.e., on the 10-armed testbed, usg,(a) =5 for alla
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Reinforcement Comparison

O Compare rewards to a reference redydy , e.g., an
average of observed rewards

O Strengthen or weaken the action taken dependingd,onf,
1 Let p(a) denote thareferencefor action a

 Preferences determine action probabilities, e.g., by Gibbs

distribution:
ept(a)

)
D 61 €

m(a)=P{a =a} =

[ Then:
P.a(a) = p(a) +[rt - r_t] and 1, =F + a[rt B rt]
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Performance of a Reinforcement
Comparison Method
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Pursuit Methods

[ Maintain both action-value estimates and action preference:

A Always “pursue” the greedy action, i.e., make the greedy
action more likely to be selected

3 After thet-th play, update the action values to det,
7 The new greedy action isa,,, = argmaxQ,,(a)

3 Then:
m+1(a:+1) = nj[<i+l) T 18[1_ n:t(a*t+1)]

and the probs. of the other actions decremented to
maintain the sum of 1
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Performance of a Pursuit Method
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Assoclative Search

Imagine switching bandits at each play

& actions
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Conclusions

[ These are all very simple methods

« but they are complicated enough—we will build on them
1 Ideas for improvements:

= estimating uncertainties . . . interval estimation

= approximating Bayes optimal solutions

« Gittens indices
A The full RL problem offers some ideas for solution . . .
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