Chapter 3: The Reinforcement L earning Problem

Objectives of this chapter:

1 describe the RL problem we will be studying for the
remainder of the course

1 present idealized form of the RL problem for which we
have precise theoretical results;

 introduce key components of the mathematics: value
functions and Bellman equations;

1 describe trade-offs between applicability and
mathematical tractability.
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The Agent-Environment I nterface
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The Agent Learnsa Policy

Policy at stept, T, :
a mapping from states to action probab
1T (s, & = probability thag = a wheg= ¢

A Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

[ Roughly, the agent’s goal is to get as much reward as it
can over the long run.
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Getting the Degree of Abstraction Right

A Time steps need not refer to fixed intervals of real time.

 Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.

A States can low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state
of being “surprised” or “lost”).

[ An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.

 The environment is not necessarily unknown to the agent,
only incompletely controllable.

[ Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.
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Goals and Rewards

1 Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

A goal should specifywhat we want to achieve, nobw
we want to achieve it.

1 A goal must be outside the agent’s direct control—thus
outside the agent.

 The agent must be able to measure success:
« explicitly;
« frequently during its lifespan.

R. S.Sutton and\. G. Barto: Remforcement.earning:An Introducton



Returns

Suppose the sequence of rewards aftertste

liv1 Feaoo Tiagn - o
What do we want to maximize?

In general,
we want to maximize thexpected return E{R} , for each st

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R = |;+1+rt+2+“'+rT’

whereT is a final time step at whichtarminal stateis reached,
ending an episode.
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Returnsfor Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

R=b,+tYh,+Yr,+ ; Vot

wherey,0<y <1, isthaliscount rate .

shortsighted Q- y - 1 farsight
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An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track.
— N —

As anepisodic task where episode ends upon failure:
reward =+1 for each step before failure
[ return = number of steps before fall

As acontinuingtask with discounted return:
reward =-1 upon failure; O otherwise

O return= -y*, fok steps before failt

In either case, return is maximized by
avoiding failure for as long as possible.
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Another Example

Get to the top of the hill
as quickly as possible.

reward = -1 for each step whamet  at top of hill
[1 return = — number of steps before reaching top o

Return is maximized by minimizing
number of steps reach the top of the hill.
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A Unified Notation

 In episodic tasks, we number the time steps of each
episode starting from zero.

[ We usually do not have distinguish between episodes, so
we write § Instead ofS ; for the state at st@fp
episodg.

[ Think of each episode as ending in an absorbing state that
always produces reward of zero:

C r=+1 3 rp=+1 C ry=+1 Qrfg
I'g=

1 We can cover all cases by writing = iyk
k=0

E+k+l’

wherey can be 1 only if a zero reward absorbing state is always re
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The Markov Property

By “the state” at step the book means whatever information
available to the agent at stegbout its environment.

[ The state can include immediate “sensations,” highly proces
sensations, and structures built up over time from sequence
sensations.

1 Ideally, a state should summarize past sensations so as to 1
all “essential” information, i.e., it should have tearkov
Property:

Pr{5t+1 — g, f+1: r‘ $’ ﬁ'-’ r’ $—1’ a—l"“ 1 [’%’ % =

PAS.=S.1,=1|s.4}
for all s, r, and histories, a,[,$.;,&,...,1,$,8 .
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M ar kov Decision Processes

A If a reinforcement learning task has the Markov Property, it |
basically aMarkov Decision Process (M DP).

A If state and action sets are finite, it iIf@te M DP.
[ To define a finite MDP, you need to give:
» State and action sets
= One-step “dynamics” defined liyansition probabilities:

F)Q:Pr{ﬁﬂ:§‘ s= s a= }a forall s's1 S@ A

= reward probabilities;

R,=Hr,|s=sa= ag =93 foral s& S@ (A
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An Example Finite MDP

Recycling Rbot

At each step, robot has to decide whether it should (1) active
search for a can, (2) wait for someone to bring it a can, or (3
go to home base and recharge.

 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

 Decisions made on basis of current energy lévegh, | ow.
[ Reward = number of cans collected
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Recycling Robot MDP

S={hi gh,| ow} R°¥ " = expected no. of cans while searcl
A(hi gh) ={sear ch,wai t} R*™' = expected no. of cans while waiting
A(l ow) ={sear ch,wai t,r echar ge} Reeareh > Rait
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Value Functions

1 Thevalue of a state is the expected return starting from
that state; depends on the agent’s policy:

State- value function for policy rt:

V(9= E{R| 5= b= ED V"

L
>
L

 Thevalue of taking an action in a state under policy T
IS the expected return starting from that state, taking that
action, and thereafter following:

Action - value function for policy r:

Q'(sad= E[{ Rl s= s& }':1: ﬁézyk kst

0

L
S 8 & [
C
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Bellman Equation for a Policy T

The basic idea:
_ n 4 2 43
R _ rt+1 yrt+2 y rt+3 y rt+4'”
i y(rt+2 YT yzrt+4'”)
e th+1

So: Vi(9=E{R| s= b
= E,T{ oa + YV(8.)| § = %

Or, without the expectation operator:

V(9= (s a3y B[ R+y V(9
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More on the Bellman Equation

Vi(9=Y (s3y B[ R+y V(9]

This is a set of equations (in fact, linear), one for each state
The value function forr is its unique solution.

Backup diagrams:

©) 2 (b) >4

for V™ for Q"
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Gridworld

[ Actions:nort h, sout h, east , west ; deterministic.
A If would take agent off the grid: no move but reward = -1

[ Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

Al |B\ 3.3(8.8]4.4/5.3|15
+5 15/30] 23/19/05]  State-value function
40| | B <—I—> 0.1)0.7107/04/-04  for equiprobable
_ -1.0-04-04-06-1.2  random policy;
A-f Actions 19-1.3-1.2-14-20 y= 0.9
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Golf

1 State is ball location

[ Reward of —1 for each stroke

until the ball is in the hole
[ Value of a state?
[ Actions:

= putt (use putter)

« driver (use driver)

Vputt

Q
T

-6

A putt succeeds anywhere on

the green
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Optimal Value Functions

A For finite MDPs, policies can hwartially ordered:
m=m ifand only if V(9= V' (9 foralld] !

 There is always at least one (and possibly many) policies
IS better than or equal to all the others. This isgmmal
policy. We denote them aitr*.

[ Optimal policies share the samatimal state-value function:
V() =maxV' (s forall 7 !
[ Optimal policiesn also share the saoptimal action-value
function:

Qs a= mingT(s g forall €1 Snd A)

This is the expected return for taking acteoim states
and thereafter following an optimal policy.
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Optimal Value Function for Golf

[ We can hit the ball farther wiithr i ver than withput t er,
but with less accuracy

[ Q*(s,dri ver) gives the value or usirdy i ver first, then
using whichever actions are best

Q (s, driver)

-3 % green
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Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V(9 = maxJ (s g

alJA(9

= gggg)(E{ r'[+1 + yVD (§+1) $ - S {3: %
:gj]gg)( S, Pss[lf‘s+y\/]($)] - :
The relevant backup diagram: a

r
Sl

V'is the unique solution of this system of nonlinear equation
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Bellman Optimality Equation for Q*

Q(s 3= E{r+1+ymaax<5($+l,ai S= s }<
= 3 P3[R +ymax (s, a

()  Sa

The relevant backup diagram: r

max
a

Q is the unigue solution of this system of nonlinear equati
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Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect ¥M-is anoptimal policy.

Therefore, givenV[ , one-step-ahead search produces the

long-term optimal actions.

E.g., back to the gridworld:

Ad |By 22.0(24.4(22.0[19.4/17.5 — <—I—> .« <—I—> —

+5 19.822.0/19.817.816.0 Lt Jd|« |«

40| | B’ 17.8/19.8/17.8/16.0| 14.4 Lt 0

16.0/17.8/16.0{14.4/13.0 T_. 1 4_T J J

A"f 14.4/16.0{14.4/13.0/11.7 L O
a) gridworld b) V* c) T*
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What About Optimal Action-Value Functions?

Given Q |, the agent does not even
have to do a one-step-ahead search:

T(s) =argmaxQ’ s,a

allA(s)
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Solving the Bellman Optimality Equation

A Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

»« accurate knowledge of environment dynamics;
= We have enough space an time to do the computation;
« the Markov Property.

[ How much space and time do we need?

« polynomial in number of states (via dynamic
programming methods; Chapter 4),

= BUT, number of states is often huge (e.g., backgammor
has about 10**20 states).

[ We usually have to settle for approximations.

[ Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.
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Summary

[ Agent-environment intaction ([ Value functions

» States » State-value function fa policy
= Actions = Action-value function foa policy
= Rewards » Optimal state-value function

[ Policy: stochastic rule for » Optimal action-value functro
selecting actions 7 Optimal value functions

O Return: the function oufture 3 Optimal policies
rewards agent tries to maximiz§ ga.jiman Equations

[ Episodic and continuing tasks 7 The need for approxiation
Markov Property
[ Markov Decision Process

= Transition probabilities

» EXxpected rewards

-
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