
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 3: The Reinforcement Learning Problem

p describe the RL problem we will be studying for the
remainder of the course

p present idealized form of the RL problem for which we
have precise theoretical results;

p introduce key components of the mathematics: value
functions and Bellman equations;

p describe trade-offs between applicability and
mathematical tractability.

Objectives of this chapter:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment Interface

Agent

Environment

action
atst

reward
r t

r t+1

st+1

state

Agent and environment interact at discrete time steps:

 Agent observes state at step :

 produces action at step

 gets resulting reward :

 and resulting next state :

t

t s S

t a A s

r

s

t

t t

t

t

=
∈

∈
∈ℜ+

+

0 1 2

1

1

, , ,

: ()

K

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Policy at step :

 a mapping from states to action probabilities

 probability that when

t

s a a a s s

t

t t t

,

(,)

π

π = = =

The Agent Learns a Policy

p Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

p Roughly, the agent’s goal is to get as much reward as it
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Getting the Degree of Abstraction Right

p Time steps need not refer to fixed intervals of real time.

p Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.

p States can low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state
of being “surprised” or “lost”).

p An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.

p The environment is not necessarily unknown to the agent,
only incompletely controllable.

p Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Goals and Rewards

p Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

p A goal should specify what we want to achieve, not how
we want to achieve it.

p A goal must be outside the agent’s direct control—thus
outside the agent.

p The agent must be able to measure success:

n explicitly;

n frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Returns

Suppose the sequence of rewards after step is :

What do we want to maximize?

t

r r rt t t+ + +1 2 3, , ,K

In general,

we want to maximize the , , for each step expected return E R tt{ } .

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R r r rt t t T= + + ++ +1 2 L ,

where T is a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

where is the .

R r r r rt t t t
k

t k
k

= + + + =

≤ ≤

+ + + + +
=

∞

∑1 2
2

3 1
0

0 1

γ γ γ

γ γ

L ,

, , discount rate

shortsighted 0 farsighted← →γ 1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward for each step before failure

 return number of steps before failure

= +
⇒ =

1

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward upon failure; 0 otherwise

 return , for steps before failure

= −

⇒ = −

1

γ k k

In either case, return is maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Another Example

Get to the top of the hill
as quickly as possible.

reward for each step where at top of hill

 return number of steps before reaching top of hill

= −
⇒ = −

1 not

Return is maximized by minimizing
number of steps reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

A Unified Notation

p In episodic tasks, we number the time steps of each
episode starting from zero.

p We usually do not have distinguish between episodes, so
we write instead of for the state at step t of
episode j.

p Think of each episode as ending in an absorbing state that
always produces reward of zero:

p We can cover all cases by writing

st st j,

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

where can be 1 only if a zero reward absorbing state is always reached.

R rt
k

t k
k

= + +
=

∞

∑γ

γ

1
0

,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Markov Property

p By “the state” at step t, the book means whatever information is
available to the agent at step t about its environment.

p The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

p Ideally, a state should summarize past sensations so as to retain
all “essential” information, i.e., it should have the Markov
Property:

Pr

for all and histories .

s s r r s a r s a r s a

s s r r s a

s r s a r s a r s a

t t t t t t t

t t t t

t t t t t

+ + − −

+ +

− −

= ′ ={ } =

= ′ ={ }
′

1 1 1 1 1 0 0

1 1

1 1 1 0 0

, , , , , , , , ,

Pr , ,

, , , , , , , , , ,

K

K

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

Markov Decision Processes

p If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

p If state and action sets are finite, it is a finite MDP.

p To define a finite MDP, you need to give:

n state and action sets
n one-step “dynamics” defined by transition probabilities:

n reward probabilities:

P s s s s a a s s S a A sss
a

t t t′ += = ′ = ={ } ′ ∈ ∈Pr , , , ().1 for all

R E r s s a a s s s s S a A sss
a

t t t t′ + += = = = ′{ } ′ ∈ ∈1 1, , , , (). for all

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Recycling Robot

An Example Finite MDP

p At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

p Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

p Decisions made on basis of current energy level: high, low.

p Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Recycling Robot MDP

search

high low
1, 0

 1–
β , –3

search

recharge

wait

wait

search1–
α , R

β , R search

α, R search

1, R wait

1, R wait

S

A

A

= { }
= { }

= { }

high low

high search wait

low search wait recharge

,

() ,

() , ,

R

R

R R

search

wait

search wait

=

=

>

 expected no. of cans while searching

 expected no. of cans while waiting

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Value Functions

State - value function for policy :π

γπ
π πV s E R s s E r s st t

k
t k t

k

() = ={ } = =








+ +
=

∞

∑ 1
0

Action - value function for policy π

γπ
π π

:

(,) , ,Q s a E R s s a a E r s s a at t t
k

t k t t
k

= = ={ } = = =








+ +
=

∞

∑ 1
0

p The value of a state is the expected return starting from
that state; depends on the agent’s policy:

p The value of taking an action in a state under policy π
is the expected return starting from that state, taking that
action, and thereafter following π :

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Bellman Equation for a Policy π

R r r r r

r r r r

r R

t t t t t

t t t t

t t

= + + +

= + + +()
= +

+ + + +

+ + + +

+ +

1 2
2

3
3

4

1 2 3
2

4

1 1

γ γ γ

γ γ γ

γ

L

L

The basic idea:

So: V s E R s s

E r V s s s

t t

t t t

π
π

π γ

() = ={ }
= + () ={ }+ +1 1

Or, without the expectation operator:

V s s a P R V sss
a

ss
a

sa

π ππ γ() (,) ()= + ′[]′ ′
′

∑∑

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

More on the Bellman Equation

V s s a P R V sss
a

ss
a

sa

π ππ γ() (,) ()= + ′[]′ ′
′

∑∑
This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

s,as

a

s'

r

a'

s'
r

(b)(a)

for Vπ for Qπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Gridworld

p Actions: north, south, east, west; deterministic.

p If would take agent off the grid: no move but reward = –1

p Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Golf

p State is ball location

p Reward of –1 for each stroke
until the ball is in the hole

p Value of a state?

p Actions:

n putt (use putter)

n driver (use driver)

p putt succeeds anywhere on
the green

−3
−4

−3 −2

−4

Vputt

s a n d

green

−1

s a
n
d

−2−2
−3

−1

−5
−6

−4

∞
−

0

∞
−

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

π π π π≥ ′ ≥ ∈′ if and only if for all V s V s s S() ()

Optimal Value Functions

p For finite MDPs, policies can be partially ordered:

p There is always at least one (and possibly many) policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all π *.

p Optimal policies share the same optimal state-value function:

p Optimal policies also share the same optimal action-value
function:

V s V s s S∗ = ∈() max ()
π

π for all

Q s a Q s a s S a A s∗ = ∈ ∈(,) max (,) ()
π

π for all and

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Optimal Value Function for Golf

p We can hit the ball farther with driver than with putter,
but with less accuracy

p Q*(s,driver) gives the value or using driver first, then
using whichever actions are best

Q*(s,driver)
s a n d

green

−1

s a
n
d

−2

−3

−20

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Bellman Optimality Equation for V*

s

a

s'

r

(a)

max

V s Q s a

E r V s s s a a

P R V s

a A s

a A s
t t t t

a A s ss
a

s
ss
a

∗

∈

∈ +
∗

+

∈ ′
′

′
∗

=

= + = ={ }
= + ′[]

∗

∑

() max (,)

max () ,

max ()

()

()

()

π

γ

γ

1 1

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.V∗

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Bellman Optimality Equation for Q*

s,a

a'

s'
r

(b)

max

Q s a E r Q s a s s a a

P R Q s a

t
a

t t t

ss
a

ss
a

a
s

∗
+ ′

∗
+

′ ′ ′

∗

′

= + ′ = ={ }
= + ′ ′[]∑

(,) max (,) ,

max (,)

1 1γ

γ

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.Q*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Why Optimal State-Value Functions are Useful

a) gridworld b) V* c) π*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

What About Optimal Action-Value Functions?

Given , the agent does not even
have to do a one-step-ahead search:

Q*

π ∗

∈

∗=() arg max (,)
()

s Q s a
a A s

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Solving the Bellman Optimality Equation

p Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

n accurate knowledge of environment dynamics;

n we have enough space an time to do the computation;

n the Markov Property.

p How much space and time do we need?

n polynomial in number of states (via dynamic
programming methods; Chapter 4),

n BUT, number of states is often huge (e.g., backgammon
has about 10**20 states).

p We usually have to settle for approximations.

p Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Summary

p Agent-environment interaction

n States

n Actions

n Rewards

p Policy: stochastic rule for
selecting actions

p Return: the function of future
rewards agent tries to maximize

p Episodic and continuing tasks

p Markov Property

p Markov Decision Process

n Transition probabilities

n Expected rewards

p Value functions

n State-value function for a policy

n Action-value function for a policy

n Optimal state-value function

n Optimal action-value function

p Optimal value functions

p Optimal policies

p Bellman Equations

p The need for approximation

