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ABSTRACT
This paper proposes a model of selective attention for visual
search tasks, based on a framework for sequential decision-
making. The model is implemented using a �xed pan-tilt-
zoom camera in a visually cluttered lab environment, which
samples the environment at discrete time steps. The agent
has to decide where to �xate next based purely on visual in-
formation, in order to reach the region where a target object
is most likely to be found. The model consists of two inter-
acting modules. A reinforcement learning module learns a
policy on a set of regions in the room for reaching the tar-
get object, using as objective function the expected value of
the sum of discounted rewards. By selecting an appropriate
gaze direction at each step, this module provides top-down
control in the selection of the next �xation point. The sec-
ond module performs \within �xation" processing, based
exclusively on visual information. Its purpose is twofold: to
provide the agent with a set of locations of interest in the
current image, and to perform the detection and identi�-
cation of the target object. Detailed experimental results
show that the number of saccades to a target object signif-
icantly decreases with the number of training epochs. The
results also show the learned policy to �nd the target object
is invariant to small physical displacements as well as object
inversion.

1. MOTIVATION
The problem of visual search is to �nd a small object in a

large usually cluttered environment (e.g. a pen on a desk).
In solving such a problem it is preferable to use wide �eld-
of-view images. On the other hand, small objects require
high resolution images, which in combination with the wide
�eld-of-view requirement leads to a very high dimensional
input array. Foveated vision is nature's method of choice in
solving this problem and is a dominant characteristic of the
vision system of virtually any vertebrate species with well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01, May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

developed eyes [1]. The fovea is anatomically de�ned as a
small, central region on the retina, with a very high den-
sity of receptive cells (cones). The density of the receptors
(and with it the visual acuity as well) decreases exponen-
tially from the fovea towards the periphery. To make up for
any potential loss of information incurred by the decrease in
resolution in the periphery, the eyes are rapidly re-oriented
via very fast (up to 900Æ=s ), ballistic motions called sac-
cades. Fixations are the periods between saccades during
which the eyes remain relatively �xed, the visual informa-
tion is processed and the location of the next �xation point
is selected. Figure 1 shows human scan patterns in an indoor
scene recorded with an eye-tracker. Note how the �xation
points (the green points) tend to cluster on objects in the
image and avoid large 
at uniform surfaces (e.g. walls, ceil-
ings, 
oors, desktops, etc.).

Figure 1: Recorded human scan patterns. Fixa-
tions (the green dots) tend to cluster on objects.
Courtesy of John M. Henderson, Eye-Lab, Michi-
gan State University

Foveal image processing reduces the dimension of the in-
put data, but in turn generates an additional sequential de-
cision problem. Choosing the next �xation point requires an
eÆcient gaze control mechanism in order to direct the gaze
at the most visually salient object.
From an engineering standpoint, a sequential attention

mechanism is a very attractive approach, because it has the
potential of requiring only sparse local models [2]. How-
ever, the visual attention mechanism raises a plethora of
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diÆcult questions. In the �rst place, since the next �xation
point is generally not in the fovea, its selection must be done
based on coarse, low resolution visual information, without
a thorough understanding of its semantics. The question is
then, what low level features are necessary in order to decide
what to attend to in the next �xation. Koch and Ulmann [8]
propose a saliency map theory which is a task independent,
bottom-up model of visual attention. In this framework, Itti
and Koch [6], extract three types of feature maps (a color
map, an edge map and an intensity map) and fuse them
together in a unique map (termed saliency map). How-
ever, the selection of the next �xation must require some
top-down control since low-level visual information is not
usually suÆcient. Hence the second major question is how
to implement a high level, top-down mechanism, to control
the low level, reactive attention? Tsotsos et. al. [14] pro-
pose a model of visual attention which tries to selectively
tune visual processing by means of a top-down hierarchy
of winner-take-all processes. Finally, since the vision sys-
tem samples the environment, some information must be
retained from one �xation to the next, and integrate across
saccades, to produce a global understanding of the scene.
We propose an overall model that integrates top-down gaze
control with bottom-up reactive saliency map processing,
based on reinforcement learning.

2. PROBLEM DEFINITION AND GENERAL
APPROACH

Given an object and an environment (see Figure 2), we ad-
dress the problem of how to build a vision agent that learns
where that object is most likely to be found, and how to di-
rect its gaze towards the object. The system must produce a
set of landmarks fL0; L1 : : : Lng (regions in the room) and a
policy on this set, which leads the camera towards the most
probable region containing the target object.
The idea is to learn the approximate region where the

target can normally be found, solely based on visual infor-
mation (i.e. no pan-tilt information) 1.
Our general approach is to use reinforcement learning to

select the coarse direction of the saccades. Although rein-
forcement learning has been proposed as a promising ap-
proach for the problem of gaze control in vision (e.g. [3]),
to our knowledge, few, if any, previous systems have been
implemented that found actual objects in real cluttered en-
vironments. Darrel [4] used reinforcement learning in a task
related to gesture recognition. However, this system as-
sumed a set of feature detectors that are task-dependent
(e.g. person-present?, smile? etc.) which were computed
using both a low-resolution wide �eld-of-view camera and
a high-resolution narrow �eld-of-view camera. The policy
learned by reinforcement learning in Darrel's system is based
on these high-level feature detectors. Our approach, by con-
trast, does not require any high level feature detectors, and
the policy learned through reinforcement learning is based
on the actual images seen by the camera.
Once the direction has been selected, the precise location

of the next �xation point is determined by means of visual
saliency. Unless the object is detected in the current �eld-
of-view, a new saccade is carried out. The camera takes low

1Our goal is to extend this approach to a camera mounted
on a mobile robot, in which case the target object may have
any (pan,tilt) coordinates with respect to the camera.

resolution/wide �eld-of-view images 2 at discrete time inter-
vals. The system tries to recognize the region in the image,
as well as whether or not the target object is present, by
using a low resolution template of the object. Since reason-
able detection of an object of the size of a book or smaller,
in a room, is diÆcult at low resolution, we can only hope
to get some candidate locations for the target object. We
simulate foveated vision by zooming in and grabbing high
resolution/narrow �eld-of-view images centered at the can-
didate locations, and compare them with a high resolution
color template of the target. (Figure 2).

Figure 2: Color template of the target object, and
the environment in which it must be found.

Prior to describing the model and its functionality in Sec-
tion 5, we shall sketch the basic ideas in the reinforcement
learning paradigm and how we can exploit them for build-
ing a visual search agent. We also brie
y explain the visual
routines that we use towards de�ning saliency in an image
and for recognition of the target object.

3. REINFORCEMENT LEARNING
We adopt the framework of reinforcement learning in this

paper, as a model of sequential decision-making [12]. In this
approach, an agent is embedded in an environment, which
it perceives to be in one of many possible states. In each
state, the agent can choose and execute an action. After
each action, the agent re-estimates the state by observing
the environment, and gets rewarded for the action it just
completed. Given a speci�c task, the goal is to learn an
optimal action in each state, in order to accomplish the task.
The agent starts in some state s0, takes an action a1 and
reaches some state s1 (possibly equal to s0), and so on. In
general, for any time step t, the transition from st to st+1
could depend on the previous history (i.e. on the sequence
s0; a1; : : : ; st; at+1), but if it only depends on st and at+1,
the system is said to have the Markov property.
To estimate the state, the agent gets an observation (a

vector) describing the environment. If based on that vector,
the agent can uniquely determine the state, and the envi-
ronment is Markov, then the resulting sequential decision-
making problem can be modeled as a Markov Decision Pro-
cess (MDP). An MDP is a system (S;A; P;R), where S is
the set of states of the system, and A is the set of actions
available to the agent. P = fP (s0js; a)g is the set of proba-
bilities which govern the transitions from state s to s0 as a
result of action a, and R = fr(s; a; s0)g is the set of rewards.
A (stationary) policy is a function � : S �! A. The agent
follows a policy � if in any state s it always chooses the same
action �(a).
The goal of the agent is to �nd a policy which is optimal

with respect to some objective function. One well-known

2For our camera, the largest �eld-of-view is approximately
48 � 33 degrees. The human �eld-of-view is approximately
180Æ.

458



optimality metric is the expected value of the sum of dis-
counted rewards:

V �(s) = E�(
1X
t=1


t�1 � r(st�1; �(st�1))

= r(s; �(s)) + 
 �
X
s02S

P (s0js; �(s))V (s0) (1)

where s0 = s and 
 (the discount factor) is a constant be-
tween 0 and 1.
Optimizing this objective function amounts to �nding a

policy ��, such that V � =
def
= V �� satis�es the optimality

equations

V �(s) = max
a2A

(r(s; a) + 
 �
X
s02S

P (s0js; a)V �(s0)) 8s 2 S (2)

The agent may, or may not know a priori the transition
probabilities and the reward. In the �rst case, the agent has
a model of the problem, and dynamic programming tech-
niques (value iteration, policy iteration) could be used to
compute an optimal policy [10]. In the visual search prob-
lem, the transition probabilities and the reward are not
known to the agent. A model-free Q-learning algorithm [15]
can be used to �nd optimal policies. Essentially, with each
state-action pair (s; a), the agent stores a value Q(s; a). Ini-
tially, the matrix Q is initialized to 0 (or randomly). Itera-
tively, the Q-values are updated by the rule

Qn+1(s; a) = (1� �)Qn(s; a) +

�(r(s; a) + 
 �max
a02A

Qn(s
0; a0)) (3)

where s is the state and a is the action at iteration n
and � is a learning rate parameter. Q-learning is proven to
converge [15], provided all pairs (s; a) are visited in�nitely
often. If we denote the limit by Q�, then optimal policies
can be obtained by de�ning

��(s) = argmax
a

Q�(s; a)

3.1 States, Actions and Rewards
States Recorded scan patterns from human subjects show

that people �xate from object to object [5]. It would, there-
fore, be natural to de�ne the states of an arti�cial vision
agent as objects in the environment. In doing so, we face
a paradox: objects must be recognized as worth attending
to, before they are �xated on. However, an object cannot
be recognized prior to �xation, since it is perceived at a low
resolution (e.g. faces in the visual periphery cannot usually
be recognized).
We de�ne states as clusters of images representing the

same region in the environment. We represent each image
essentially by color histogram on a reduced number of bins.
These bins are speci�c to a given environment, and represent
only the colors that occur more often than a certain percent-
age (0:5%). In the cluttered lab environment in which the
experiments reported in this paper were carried out, we were
left only with 48 colors. Obviously, the use of histograms in-
troduces perceptual aliasing, as two di�erent images could
have identical histograms. To reduce the aliasing, rather
than representing each image by a single global histogram,
we compute the histograms on each of the quadrants, in or-
der to retain some of the spatial distribution of colors. The

observation vector has dimension 196 = 4 � 48 and is the
concatenation of these 4 color histograms. Certainly, this
does not eliminate the aliasing, for two completely white,
but di�erent walls, would still look the same using this rep-
resentation. However, natural environments are suÆciently
rich, and perceptual aliasing in such environments is often
minimal. We use the symmetric Kullback distance as a mea-
sure of how di�erent two images are. The Kullback contrast
between two probability distributions p and q is de�ned as

k(p; q) = Eq(log2
1

p(x)
� log2

1

q(x)
)

=

Z
q(x) � log2

q(x)

p(x)
dx (4)

It can be proven [7] that k(p; q) is positive de�nite, but it is
not symmetric. To transform the above Kullback contrast
into a metric, we symmetrize it in the standard way:

K(p; q) =
k(p; q) + k(q; p)

2
(5)

To determine the separation threshold between pairs of
similar images and pairs of dis-similar images, we collected
a set of similar images, by choosing 50 �xation points from
a gaussian distribution with small variance, and a set of
dis-similar images, by choosing 50 �xation points uniformly
in the whole room. We computed K(I; J) for all pairs, and
plotted the resulting distributions for the two classes of pairs
(similar/non-similar). The results are shown in Figure (3).
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Figure 3: Distribution Kullback distances of pairs of
similar images (red) and on di�erent images (green)

The separation threshold between pairs of similar images
and non similar images is around 2. However, there is a
signi�cant overlap between the two distributions, so, in order
to reduce the false alarms we moved the threshold to the left,
at 1.5.
Actions. We de�ne actions A1; : : : A8 as saccades to the

most salient point in one of eight 90Æ equally spaced central
angles in the image. We explain in the next section how
saliency is computed. In addition to these actions, the agent
can also choose action A0, which is a saccade to the most
salient point in the whole image.
Reward. The agent receives positive reward for a sac-

cade which brings the target object in the �eld-of-view (the
closer to the optical axis, the higher the reward), and a small
negative reward otherwise. Speci�cally, if x is the distance
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from the target object to the center of the image and � is
the scale factor, then

r(s; a; s0) =

(
100 � e

�
x
2

2�2 if target found in state s0

�10 otherwise

(6)
This function rewards the agent preferentially for �nding

the object using short saccades (near the target). Longer
saccades are given less reward since they tend to be more
unreliable in �nding the target (as the target is more dis-
placed from the optical axis, and consequently might not be
in the frame of reference upon a subsequent visit).

4. WITHIN-FIXATION PROCESSING
The \within �xation" processing comprises computation

of two components. The �rst component is a set of two
feature maps implementing low-level visual attention, used
to select the next �xation point. The second component
is a recognizer, used at low resolution for the detection of
candidate target locations, and at high resolution for high
con�dence recognition of the target.
Histogram intersection [13] can be used to match two

images I and M (of the same size) using color information.
Given two color histograms hI and hM on the same number
of bins, we de�ne the similarity measure

d(hI ; hM) = 1�

P
min(hI(i); hM (i))P

hI(i)
(7)

It can be shown (see [13]) that d is a distance if
P

hI(i) =P
hM (i) (which is always the case if the two images have

the same size). It is diÆcult to de�ne a threshold based
on which to discriminate between pairs of similar images
and pairs of dis-similar images, if both I and M vary. For
this reason, we did not use the histogram intersection for
clustering. However, if one of the images (the model M) is
�xed , then a reliable threshold can be found. This is the
case when we search for a pre-speci�ed object.
As with the histogram intersection, the histogram back-

projection was also introduced in [13]. Given two images
I (the search image) and M (the model), we want to locate
M in I. To this end, we compute the color histograms hI
and hM on the same number of color bins, and then a ratio
histogram

R(i) = min(
hM (i)

hI(i)
; 1) (8)

The ratio histogram is then back-projected on a blank
gray-scale image B of the same size as the search image I.
This operation requires one pass through I: for each pixel
(x; y) we set B(x; y) = R(j) i� I(x; y) falls in bin j.
Histogram back-projection works very well on realistic im-

ages (see Figure 4), but has the disadvantage that it al-
ways produces candidate locations, even if the target is not
present. The actual presence of the target at the candidate
locations must be decided using a recognizer, our choice be-
ing histogram intersection.
We use a symmetry operator in order to �xate on ob-

jects, since most (man-made) objects in a room have verti-
cal, horizontal or radial symmetry. The symmetry operator,
introduced in [11], computes an edge map �rst, and then
has each pair pi; pj of edge pixels vote for its midpoint by

(a) (b) (c)

Figure 4: (a) Sample search image. (b) Model (target)

image. (c) Histogram back-projection of (b) onto (a).

vote(pi; pj) = D(pi; pj) � P (pi; pj) � ri � rj (9)

whereD is a distance factor (gaussian in terms of jjpi � pj jj),
P is a phase factor, which is maximal for pixels whose gra-
dients are parallel and point in opposite directions, and
ri = log(1 + jjrIjj). See Figure (4).

(a) (b)

Figure 5: (a) Sample image. (b) Symmetry map.

5. MODEL DESCRIPTION
Each low resolution image is processed along two streams

- the two main modules of our model (see Figure 6). The
top module (which uses reinforcement learning) learns a set
of clusters online consisting of images with similar color his-
tograms. The clusters represent physical regions in the en-
vironment, and are used as states in the Q-learning method.
This module learns a policy for saccading from one region
to another toward the region(s) most likely to contain the
target object. By selecting the gaze direction according to
its utility (the Q-value), the reinforcement learning module
provides top-down control to a lower, purely vision based
module. The second module consists of low-level visual rou-
tines and its purpose is to compute two feature maps (color
map and symmetry map) for representing saliency 3 in an
area of interest in the image, and to recognize the target
object, both at low resolution and at high resolution. All
computations in this module are performed in exocentric co-
ordinates 4. Unlike [6], we do not attempt to combine the
feature maps to form a unique, task independent saliency
map, but rather use them sequentially, �rst the color map
(for �nding candidate target locations), then the symme-
try map (if the target was not found and a new saccade is
necessary).

3The next �xation point is the resulting most salient point.
4Obviously, image coordinates must be transformed to cam-
era coordinates, in order to physically carry out the saccade,
but the decision making does not use pan-tilt information.
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Figure 6: Overall architecture of the visual search
agent.

Our color map is the histogram back-projection B of the
(low-resolution) target template M on the current (low-
resolution) frame (see Figure 4). Let p1; p2; p3 be the bright-
est points in B. We match the model M with a neighbor-
hood of pi for each i = 1; 2; 3 using histogram intersection,
producing distances d1; d2; d3. At low resolution, however,
histogram intersection is not reliable enough, and the sepa-
ration threshold varies from frame to frame. To solve this
problem, the camera must zoom in at each of the pis, grab
a new image and do a �ne match. However, since histogram
back-projection produces candidate locations whether or not
the target is present, the camera will have to zoom in three
times per frame, most of the time unsuccessfully. We reduce
substantially the number of times we zoom in by scoring each
of the points pi by

si = const �
d2i
gi

(10)

where gi is the gray level of pi in B (the color saliency),
and di is the histogram intersection distance (7). The lower
the score si, the better the candidate pi. Using the score
(rather than just the histogram distance di), it is possible
to separate the good candidates from the bad ones in most
images from the same cluster, but we could not �nd a unique
separation threshold across clusters. The solution is to have
each cluster keep track of its own threshold (call it T ) and
dynamically adjust it as follows. First, in a newly created
cluster set T = 1. Since all si are less than the threshold,
the camera zooms in at each pi. If the target was not found
at any of the pi, then set T = minfsig. Upon subsequent
visits to that region, locations with scores larger than T need
not be viewed at high resolution.
At each time step, if all the points have a score si > T (in

which case the camera does not zoom in), or if the camera
does zoom in, but it does not �nd the target at any of the
points pis, then a new saccade is necessary. At this point we
make use of the symmetry map. Depending on the request
from the reinforcement learning module, the next �xation
point is selected as the point with the largest symmetry
vote (equation 9).
An \epoch" is a sequence of at most 100 �xations. If

either the goal has been reached, or all 100 time steps have
elapsed, a new epoch is started by pointing the camera to a
random location, in order to ensure suÆcient exploration of

the whole state space. We summarize below the algorithm
used for a single training epoch:

� Initialize the gaze direction of the camera randomly.

� Set the number of iterations n = 0.

� Get a low-resolution image I and extract an observa-
tion vector O (as described in Section 3.1).

� De�ne a cluster c0 = fOg to contain just I, de�ne
T0 = 1, and an array Q(c0 ; � ) of Q-values, initial-
ized to 0.

� While object not found and n < 100

1) Compute the color map by back-projecting a low
resolution target template onto I. Score each of
the top 3 candidates p1; p2; p3 by formula (10).

� If some score si is less than the threshold Tn

� Saccade to pi, zoom in and match the
high resolution target template using
histogram intersection. If object found,
go to step 5.

2) If object not found

� Adjust the threshold Tn by Tn = minfsig.

� With prob. > 1 � � choose next action Ai

to maximize Q(cn; :) (else select random ac-
tion)

� Compute the symmetry map on the sector
corresponding to action Ai.

� Direct the camera toward the most salient
point in that sector.

3) Get a new image I (low-resolution) and extract
the feature vector O.

4) Find the closest cluster cclosest to O in Kullback
distance.

� If the shortest Kullback distance is suÆ-
ciently small, classify I as belonging to clus-
ter cclosest. Otherwise, create a new cluster
cnew = fOg, de�ne Tnew =1 and initialize
an array
Q(cnew ; � ) = 0.

5) Compute reward for action performed using
equation (6)

6) Update the last 5 Q-values by equation (3).

7) Set n n + 1

� end while

6. EXPERIMENTAL RESULTS
We trained the agent to learn in which direction to direct

its gaze in order to reach the region where the target object is
most likely to be found, in trials of 400 epochs each. Every 5-
th epoch was used for testing, i.e. the agent simply executed
the policy learned so far. The performance metric was the
number of �xations to the goal. Within a single trial the
starting position was the same in all test epochs.
Figures 7 and 8 show the number of steps to goal for two

initial starting positions. The results were averaged over
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several trials. It is apparent that in general the number of
�xations decreases with the number of epochs. Occasionally,
there are long �xation sequences toward the end of the trial,
but the agent recovers quickly.
We plotted in Figure (9) two sample scan paths, one at

the beginning of learning, which is very convoluted and has a
large number of �xations, and another one after the system
was trained to �nd the object. Figure (10) shows a sequence
of regions \as seen" by the camera, as it �xated from the
starting position (rightmost image) to the target (leftmost).
The Kullback classi�er had a classi�cation rate well over

90%, which produced \clean" clusters (i.e. clusters contain-
ing almost exclusively images representing the same region).
Often, however, the agent would �xate on a previously vis-
ited region, and would not recognize it as visited, starting
a new cluster. This behaviour is due obviously to the in-
creased sensitivity of the Kullback threshold, which would
pick up even the smallest variations in illumination.
After having trained the agent to �nd the target object

upright, we tested separately if it could �nd the object up-
side down, and in several slightly di�erent locations (about
60 cm) from the original training position. Again, we tested
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Figure 9: Initial scan path (green) and learned scan
path (red). The rectangle [�860; 860]� [�290; 290] rep-
resents the actual pan-tilt range of the camera. The
search starts at (300; 50) and the target object is
found around (�380; 30).

(a) 5 (b) 4 (c) 3 (d) 2 (e) 1

(f) 6

Figure 10: The sequence of �xations corresponding to

the learned path (red) in Figure 9. The camera starts

from region (1) and gradually moves toward the goal

region (5), Here, a suÆciently good candidate is found

at low resolution (1), the camera zooms in (6) and does

a high resolution match.
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starting from a few initial locations and we averaged over
several test trials. The agent successfully found the object
in a small number of �xations, as shown in Figures (11) and
(12).
Finally, comparison with random search is in order. We

evaluated the performance of the agent with the RL module
suppressed (but still �xating on the salient regions produced
by the vision module). The results over 400 epochs are pre-
sented in Figure 13. The agent managed to �nd the object
after 50-60 saccades (on average), depending on the starting
position.
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Figure 11: Number of saccades per epoch in �nd-
ing the object inverted, displaced by 60cm from the
training position. Testing from pan=500, tilt=�100.
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Figure 12: Number of saccades per epoch in �nd-
ing the object inverted, displaced by 60cm from the
training position. Testing from pan=200, tilt=0.

7. CONCLUSIONS AND FUTURE WORK
In the context of active vision we develop a model of se-

lective attention for a visual search task. Our model is a
combination of bottom-up visual processing and top-down
control for visual attention. Top-down control is achieved
by means of reinforcement learning over a low level, visual
mechanism of selecting the next �xation, by specifying the
gaze direction. Color and symmetry are two low level fea-
tures that can be used in the selection of the next �xa-
tion point. It is not necessary to combine them in a unique

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

nu
m

be
r o

f f
ix

at
io

ns

epochs

NUMBER OF FIXATIONS IN RANDOM SEARCH

"random02"

Figure 13: Number of saccades per epochs in a ran-
dom search, testing from (500, -100). Average: 66.9

saliency map, but rather they can be used sequentially, with
greater importance on the former, since color is our feature
of choice in recognizing the object. The information that
is integrated (\remembered") from saccade to saccade is a
coarse signature of the region under the current �xation (the
color histogram) and the direction toward the goal region.
The overall performance of our gaze control system can be

improved in a number of directions. The Q-learning method
can be improved by using eligibility traces to remember re-
gions visited previously. The histogram representation of
images produces a feature space in which the clusters of im-
ages are not completely separated. We can also improve
this classi�er to produce better separated clusters. We do
not need a perfect classi�er, because if the system is cor-
rect, say, 80-90% of the times, then statistically it will get
rewarded more for taking the right actions.
Our model cannot recognize categories of objects (e.g.

\desk", \pen", \monitor"), and consequently, cannot learn
relationships of the type \the pen is usually on a desk".
In the current model, the region where the target object is
found does not have semantic meaning. We also need to
improve the low-level visual routines to help selecting the
�xation points near the center of objects. Other feature
maps (e.g. color opponency maps, edge orientation maps,
or intensity contrast maps) could be used for a more careful
selection of the next �xation point.
Our goal is to extend this approach to develop a gaze

control system that can be used on a mobile robot. Here,
the problem of visual search is more challenging as the po-
sition, and consequently the appearance, of the object can
change with the robot's position. In this case, the appear-
ance of the target object changes as the robot moves, so a
single template will probably not be suÆcient. The distribu-
tion of colors in the target object, however, will not change
signi�cantly with the point of view, so we expect that the
histogram intersection recognizer will still work, even if the
robot moves, provided the matching is done at several scales.
Throughout, we have assumed that the environment is

suÆciently rich in objects (of various colors), so that we did
not have to deal with perceptual aliasing. Extention to a
mobile robot, will inevitably lead to learning in inherently
perceptually aliased environments (e.g. hallways in a build-
ing), in which case, no visual information might be suÆcient
to classify a new image into one of the already learned clus-
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ters. We see this as a much more challanging extention. In
this case, we will have to resort to using memory to dis-
ambiguate the perceptually aliased states, using techniques
similar to the ones described in [9].
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