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A B S T R A C T  
In this paper, we report on novel reinforcement learning tech- 
niques applied to a real-world application. The problem do- 
main, a traffic engineering application, is formulated as a 
distributed reinforcement learning problem, where the re- 
turns of  many agents are simultaneously updating a single 
shared policy. Learning occurs off-line in a traffic simulator, 
which allows us to retrieve and exploit good transient poli- 
cies even in the presence of  instabilities in the learning. We 
introduce two new algorithms developed for this situation, 
one which is a value function based, and one that employs 
a direct policy evaluation approach. While the latter is the- 
oretically better motivated in several ways than the former, 
we find both perform comparably well in this domain and 
for the formulation we use. 

1 I N T R O D U C T I O N  
In reinforcement learning (RL), the problem is most com- 
monly formulated to involve finding a good policy for a s- 
ingle agent situated in some environment. Although several 
workers have investigated multi-agent reinforcement learn- 
ing for a small number of  agents (typically less than 10), less 
work has been done in multi-agent RL involving much larger 
numbers of  agents. In this paper, we investigate a formula- 
tion of  the RL problem that involves integrating the experi- 
ences of  a large number of  agents sharing a partially observ- 
able environment in order to learn a common observation- 
based policy that seeks to optimize a group metric of  perfor- 
mance rather than the rewards for any particular individual 
agent. 
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In this formulation, each agent shares a common policy, 
and so we have a homogeneous population of  agents where 
specialization will not occur, as may be the case when each 
agent learns an individual policy (e.g., Mataric 1996). The 
"state" of  the world, from each agent's point of  view, may 
involve some other nearby agents in the immediate vicinity, 
but not others that are beyond sensing range. Since sensing 
the true state of  the world would involve knowing about the 
situation of  every agent in it, the environment is only partial- 
ly observable to each agent in it. 

At each time-step, there is a single global reinforcement 
signal. (In the problem domain we consider, this is actually 
an aggregate of  the immediate reward of  each individual a- 
gent, but it need not be so.) Considered as an optimization 
problem, we are searching over the space of  possible shared 
policies in order to find the policy that results in group be- 
haviour that maximizes a particular global objective func- 
tion. 

2 T H E  P R O B L E M  D O M A I N  
The motivation for the distributed RL formulation described 
above may be clearer once we describe the particular prob- 
lem domain that has led to this work. The problem domain 
is a traffic engineering problem, in which a population of  
cars, each with its own desired travelling speed, share a free- 
way network. We suppose a subpopulation of  these cars are 
equipped with a short-range (,-~ 100m) radar capability to 
detect the relative speeds and distances of  cars immediate- 
ly ahead, behind and around them)  This sensor-equipped 
subpopulation of  cars can potentially provide services to the 
driver that are unavailable to the drivers of  cars without this 
sensing ability; one such application is a lane-change advi- 
sory system. 

The purpose of  a lane-change advisory system is to rec- 
ommend to the driver a lane change to the left or right on 

tThis radar capability, used as part of an advanced cruise- 
control system, is currently available as optional equipment on 
high-end Mercedes-Benz vehicles; we expect it to become avail- 
able from other manufacturers on a wider range of car models in 
the near future. 
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the basis of  the sensed pattern of  nearby traffic at any given 
point in time. A simple reactive scheme that maps advice di- 
rectly from sensory inputs would seem to be well-motivated. 
Such a system could conceivably be evaluated using differ- 
ent metrics. We will be attempting to optimize a group met- 
ric in order to maximize overall utilization of  the freeway as 
a shared resource. 
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3 P R O B L E M  F O R M U L A T I O N  
In this domain, we formulate the problem so the goal to op- 
timize is a per time-step average reward, rather than a future 
discounted reward metric. More specifically, we are inter- 
ested in minimizing the average per-step normalised global 
loss value 

n- - I  
~'~'i=0 [Vd( / )  - -  Va(i)] (1) 

n 

where vd(i)  is the desired speed of  the i th Car, and va(i) is 
the actual speed of  the i th car. 2 We normalise the total loss 
by dividing by n, the the number of  cars in the simulation 
on a particular time-step. This yields a per-car average loss 
at each time-step, which is a simple but natural economic 
utility metric. 

We use two learning algorithms, the first being a Monte 
Carlo style of  algorithm that attempts to maximize the aver- 
age reward directly, and the second being a Q-learning style 
of  algorithm that uses discounting. Although there are argu- 
ments that suggest that this indirect approach of  attempting 
to find a good average reward policy via learning on the ba- 
sis of  discounted rewards shouldn't work very well (see, for 
example, Schwartz (1993) for some discussion), in practice 
we find it often does anyway) To add an extra dimension 
to this study, we thought it would be interesting to compare 
the two approaches directly for this problem, since it was 
reasonably straightforward to devise a distributed variant of  
the standard Q-leaming algorithm suitable for this domain. 
The representation we chose, as described in the next sec- 
tion, was selected to allow us to do this comparison in direct 
a way as possible. 

4 R E P R E S E N T A T I O N  
The view of  the world from the perspective of  each car (a- 
gent) is described in an eight-dimensional feature vector, 
which encodes information about the distance and relative 

2The actual speed of a vehicle may reach but will never ex- 
ceed its desired speed, at least not in the scenario simulated, and so 
va( i) - va( i) never becomes negative. 

3From a theoretical viewpoint, this is actually not very surpris- 
ing, since it is not difficult to show that for any (unichain) MDP, 
there will be a critical discount factor Yc such that an optimal dis- 
counted policy for a discount factor 7 E [Vc, 1) will also represent a 
gain optimal (i.e. optimal simple average reward) policy. The trick 
is guess what a good choice of ' / is  for any particular problem for- 
mulation; too high a value will slow convergence, too low a value 
will fall below the critical discount factor. 

Figure 1: The eight features encoding an agent's state 
representation arranged as a grid. /k represents the po- 
sition of the agent. The three grid positions in the top 
row hold integer values that encode information about 
cars ahead in the left (AL), current (AC) and right (AR) 
lanes respectively. The three grid positions in the bottom 
row encode information about cars behind in the same 
three lanes. The two grid positions CL (clear left) and 
CR (clear right) each hold a bit indicating whether a lane 
change in that direction is legal at that time. 

speeds of  other cars immediately in front, to the side and 
behind. (See Figure 1.) 

The first three dimensions of  the feature vector encode 
the pattern of  cars in front of  the agent, in the lane immedi- 
ately to the left, the current lane, and the lane immediately to 
the right, respectively. Each of  these first three features hold 
integer ranking values in the range zero to three: 

• Zero indicates that the lane is clear; that is, that there 
is no car in that lane within radar range, or that the 
nearest car in front in that lane is currently travelling 
faster than the agent's desired travelling speed. 

• One indicates that of  the cars immediately ahead that 
are travelling less than the agent's desired speed, this 
car is fastest. 

• Two indicates a car that slower. 

• Three indicates a car that is slower still. 

I f  two slow cars are travelling at the same speed, then 
they will be given the same speed ranking according to this 
scheme. 

The last three dimensions of  the feature vector encode the 
pattern of  cars behind the agent, similar to the above scheme 
except in this case zero indicates that there is no car within 
radar range, or that the nearest car in that lane is travelling 
s lower  than the agent's current  speed. One indicates the s- 
lowest car behind that is travelling faster than the agent's 
current speed, etc. 

Finally, the remaining two dimension correspond to bits 
encoding whether a lane change to the left or a lane change to 
the right is currently a valid recommendation. I f  there is not 
a safe gap in front and behind, a lane change is considered 
illegal. 

We also experimented with a reduced version of  the state 
representation which only involves the first five features (ef- 
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fectively ignoring cars behind). It enabled us to measure the 
advantage gained by cars being able to look behind them. 4 

The representation used to map sensory inputs to an ob- 
servation for each agent is a simplified version of  the repre- 
sentation used in (Moriarty & Langley, 1998). We chose to 
simplify the representation for a number of  reasons. First- 
ly, the relatively small state space made a table-lookup rep- 
resentation of  the Q-function possible, which obviated the 
need for using a function approximator such as the ANN 
that was used in (Moriarty & Langley, 1998). This simpli- 
fied matters conceptually, as RL with function approxima- 
tion still has many theoretical and practical problems, and 
the table-lookup scheme allowed for a "neutral" representa- 
tion to more fairly compare the behaviour of  the learning al- 
gorithms we will be testing in these experiments. Secondly, 
the "ranking" representation allowed us to fairly compare the 
performance of  learnt policies with that of  a hand-crafted, 
psychologically plausible benchmark policy, since our stan- 
dard "selfish drone ''5 policy (Moriarty & Langley, 1998) can 
be written straightforwardly as a deterministic policy given 
this input representation. 6 

5 T H E  A L G O R I T H M S  
The first new algorithm we describe (see Figure 2) is a 
Monte Carlo-based method that searches the space of  de- 
terministic policies directly, without representing the value 
function. From a dynamic programming perspective, it is 
conceptually closer to policy iteration than to value iteration. 

Policy iteration is a policy improvement method that 
starts with an arbitrary deterministic policy for a diven 
Markov decision process, and generates a better policy by 
calculating what is the best single improvement in policy 
available for each state individually, then combining all these 
individual changes in policy to generate a successor policy. 
The process is reapplied in turn to each successive policy. 
When a policy is encountered such that no improvement in 
policy for any single state is possible, then the method halts; 
such a policy can be shown to be optimal (Puterman, 1994). 

The new algorithm, which we will refer to as APPIA, 
might be considered to perform approximate piecewise pol- 
icy iteration, where the the possible policy changes for each 
state are evaluated by Monte Carlo estimation, rather than, 
for example, by matrix calculations. By "piecewise", we 
mean that the policy for each state is changed one at a time, 
rather than in parallel as in standard policy iteration. The 

4We note that in the current Mercedes-Benz models that employ 
these radar sensors, they are only configured to "see" forward. 

5The "selfish drone" rule is simply to change to the lane that 
has lowest integer ranking in the top three grid positions, i.e. always 
greedily change what appears to be the fastest moving lane in front. 
Only legal lane changes are considered (the two "lane change clear" 
bits are respected.) If there is a tie between changing fight and 
changing left, left lane changes win. If the current lane ties as the 
lowest integer, no lane change is initiated. 

6We note the smaller version of the representation is still pow- 
erful enough to represent the "selfish drone" policy. 

policy improvement theorem guarantees that this approach 
still results in effective hill-climbing through the policy s- 
pace. Moreover, if these individual change were cached and 
applied together at the end of  one pass through all the states, 
the evolution through the policy space would be identical to 
that of  classical policy iteration, 7 which is known to be an 
efficient method to arrive at an optimal policy for infinite- 
horizon Markov decision problems (Puterman, 1994). 

The second algorithm we describe is a variant of  Watkin- 
s' well-known Q-learning algorithms (Watkins, 1989; 
Watkins & Dayan, 1992). 

In standard Q-learning, Q-value estimates are updated af- 
ter each time-step based on the transition from state s to suc- 
cessor state s ~ by the RL agent, after selecting action a from 
state s. For each time-step there is one state transition and 
one action to deal with in order to update the Q-value esti- 
mates. 

In the distributed variant of  Q-learning we describe, 
which we will refer to as algorithm DQL (see Figure 3), we 
have potentially as many different state transitions to deal 
with per time-step as there are agents. 

We deal with this straightforwardly by taking an average 
backup value for a state/action pair (s, a) over all agents that 
selected action a from state s at the last time-step. We note 
that the successor state for these agents may not be the same 
in a domain where state transition probabilities are not de- 
terministic. We also note that the backup values may not be 
the same even for all agents that make the transition to the 
same successor state, even though all agents share the same 
immediate reward. This is because not all agents will nee- 
essarily have the same actions available from the same state 
at any given time; for example, they cannot initiate another 
lane change until the current lane change has been complet- 
ed. In this case the Qma~ component of  the backup value 
is calculated over the actions that are valid for a particular 
agent to select at the next time-step. 

One of  the theoretically interesting things about this 
team-learning approach is that as the number of  agents n ---} 
0% the sample distribution of  the successor state used for 
the backups for each state/action pair approaches the real 
underlying distribution, reducing one source of  variance in 
the backup values. So theoretically, a massively distributed 
backup could accurately model the transition probabilities 
in as little as one time-step. This provides some motivation 
for combining learning a transition model with a method like 
this, and comparing it to a simple model-free approach as we 
have described here. This remains as potential future work. 

7We assume the Monte Carlo estimation method is sufficient- 
ly accurate to identify the best one-state change in policy at each 
step. In practice, we would only have an arbitrarily high level of 
confidence, depending on how much sampling we are willing to 
perform. This is why we characterise the method as a form of ap- 
proximate piecewise policy iteration. 
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algorithm APPIA0/*  Monte Carlo-based approximate piecewise policy iteration */ 
begin 

set arbitrary initial policy; set all states as eligible 
global_policy_value = best_policy_value = Monte_Carlo(num_monte_carlo_steps); 
while (not all states ineligible) do 

policy_value = Monte_Carlo(num_monte_carlo_steps); 
global_policy_value = ct * global_policy_value + (1 - ct) * policy_value; 
/* update current policy value estimate with exponentially weighted 

moving average, et E [0, 1]. */ 
state = select_next_eligible_state(); 
best_action = cur_policy = state.policy; 
best_policy_value = global_policy_value; 
for (a E valid actions for state) do 

i f  (a # cur_policy) then 
state.policy = a; 
policy_value = Monte_Carlo(num_monte_carlo_steps); 
i f  (policy_value > best_policy_value) then 

best_action = a; 
best_policy_value = policy_value; 
i f  (policy_value > global_policy_value) then 

global_policy_value = policy_value; 
endif 

endif 
endif 

endfor 

i f  (cur_policy # best_action) then/* suggests a policy change */ 
state.policy = best_action; 
set all states as eligible 

else 
state.policy = cur_policy; 

endif 
state.eligible = False;/* set this state as ineligible */ 

endwhile 
end 

Figure 2: The approximate piecewise policy iteration algorithm (APPIA). The selection of the next eligible state is 
stochastic, but weighted according to the total number of times that state has been visited in Monte Carlo trials so that 
selection is biased towards the most frequently visited states. This simple selection heuristic sped up learning in this 
particular domain; however, any selection strategy that guarantees that all eligible states will eventually be selected will 
suffice. 
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algorithm DQL(double global_reward)/* multi-agent distributed Q-learning algorithm */ 
begin 

for (s E all states) do 
for (a E all actions) do 

qtable[s][a].count = 0; 
qtable[s] [a].r_sigma = 0.0; 

endfor 
endfor 
for (agent E all agents) do 

new_state = agent.state; 
last_state = agent.prey_state; 
if  (last_state ~ Nil) then/* state initially Nil */ 

last_action = agent.prev_action; 
qtable[last_state] [last_action].r_sigma += q_max(agent,new_state); 
qtable[last_state] [last_action].count++; 

endif 
endfor 
for (s E all states) do 

for (a E all actions) do 
if(qtable[s][a].count > 0)then 

qtable[s] [a] .value = ( 1 - 13)qtable[s] [a].value + 
13(global_reward + ),(qtable[s] [a].r_sigma/qtable[s] [a].count)); 
/* 13 is the stepsize parameter, • is the discount factor */ 

endif 
endfor 

endfor 
end 

Figure 3: The distributed Q-learning algorithm (DQL). The value of  the q_max0 function depends on the agent as well 
as the successor state in this domain,  because not all agents will have the same actions available to them from the same 
state in the same time-step. In this case, we return the max imum Q-value estimate over the valid actions available to 
the agent in that state at that t ime-step. 
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6 E X P E R I M E N T A L  M E T H O D O L O G Y  
For this traffic engineering application, we chose to write a 
purpose-built traffic simulator, and leam the desired reactive 
policies off-line. As in the elevator scheduling application 
of  Crites & Barto (1996), off-line reinforcement learning us- 
ing a simulator has many methodological advantages for this 
particular problem domain. 

First and foremost it means that with an omniscient view- 
point we can actually measure directly the loss metric we are 
trying to minimise (see Equation 1). We also have the ad- 
vantage of being able run the simulator faster than real time, 
making many long learning trials feasible. Finally, we don't 
need to instrument a fleet of  real cars to learn a policy, and, 
even if we wanted to, it would be unclear that the drivers 
would be happy with the consequences of  active exploration 
until the final policy was learnt. The development plan is to 
learn appropriate policies off-line using a simulator of  ap- 
propriate fidelity, and then testing the candidate policies in 
real vehicles with learning turned off. As part of  a prod- 
uct, the final policy would be integrated into an intelligent 
cruise control system which provides lane changing advice, 
possibly along with other telematic services such as route 
planning, etc. 

The specification for the traffic simulation follows that 
described in Moriarty & Langley (1998). A three-lane 
stretch of freeway 13.3 miles long is populated by 200 cars, 
half of  which follow the fixed "selfish drone" policy, and the 
other half are learning cars that follow the current learnt pol- 
icy, modulo active exploration decisions. 8 The end of  the 
stretch of road joins to the start, creating an endless loop of 
freeway. The cars are created each with a set desired speed 
drawn from a truncated Gaussian distribution, with a mean 
desired speed of  60 mph. All the cars share low level colli- 
sion avoidance strategies that governs acceleration, deceler- 
ation and legality of  lane changes. The only strategy that the 
drones and learning cars will differ in is in lane selection. 

The results in Moriarty & Langley (1998) were derived 
from a simple cellular automata style of  simulator that al- 
lowed for instantaneous lane changes, and did not otherwise 
attempt to model the spatial extension of the cars realistical- 
ly. For the results we present in this paper, we use a simulator 
that is more realistic in this regard; cars now have a contin- 
uous spatial extension, and take several seconds to complete 
a lane change. Further, while a lane change is in progress, 
both lanes are unavailable for another car to occupy. This 
was felt necessary to more realistically simulate the conges- 
tion consequences of  excessive lane changing. In this way 
it was not necessary to add an arbitrarily penalty for lane 
changing in the reward function, as described in Moriarty & 
Langley (1998); any negative consequences stemming from 
excessive lane changing will automatically be reflected in 
the global loss metric. 

8For DQL, a simple epsilon-greedy active exploration policy 
was followed. 
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Figure 5: Learning curves for the DQL algorithm, plot- 
ted against the hand-crafted "selfish drone" policy. 

7 E X P E R I M E N T A L  R E S U L T S  
The selfish drone policy was subjected to a long term eval- 
uation (1,000,000 simulation time-steps using this as a fixed 
policy) over several runs. These consistently resulted in a 
per-step average reward of  - 11 .9  (significant to three fig- 
ures) per agent; we can interpret this directly as each agen- 
t, on average, travels at about 11.9 mph below its desired 
speed. This baseline of  performance is represented as a s- 
traight line in both Figures 4 and 5, which show the learning 
curves for runs of  the APPIA and DQL algorithms respec- 
tively. 

We found that in this case the hand-crafted policy was 
not easy to beat; for the problem formulation and represen- 
tation we are using, we now have reason to believe it is ac- 
tually close to being an optimal policy, which was not ob- 
vious. Nevertheless, both algorithms did find policies that 
were marginally superior, in the order of  3-5% better. 

Closer inspection of the learning curves for the APPIA 
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and DQL algorithms (Figures 4 and 5) reveal that for both 
algorithms, learning with the simpler "look ahead only" rep- 
resentation yielded marginally better results for the trials, 
which was also not expected. The best policies were ex- 
tracted from the learning trials using the simpler representa- 
tion for both algorithms. The policy corresponding to AP- 
pin_ at timestep 139,900 for the trial plotted turned out to 
evaluate at 4.2% better than the hand-crafted "selfish drone" 
policy with a long-term average per-step reward of - 11.4. 
(To get this value, the candidate policy was evaluated on a 
further, fixed-policy run over 1,000,000 time-steps, in the 
same manner as the evaluation of the hand-crafted policy 
as described above.) The policy corresponding to DQL at 
timestep 428,000 evaluated at - 11.6, a 2.5% improvement 
over the hand-crafted policy. 

We also note that for both APPIA and DQL, while the 
extended "look behind" representation did not result in dis- 
covering better policies, they did seem to effect more sta- 
ble learning. We note the "crises" of  temporarily losing a 
good policy that both learning algorithms suffer periodical- 
ly; the effect is much more pronounced for both when the 
more compact representation is used. 

This phenomenon might be an effect of  increased s- 
tate aliasing in the compact representation; interestingly, al- 
though dealiasing the states by introducing additonal fea- 
tures makes the learning more stable, these additional fea- 
tures seemed not to be useful in learning a better policy. In- 
deed, it appears that there is a trade-offbetween learning sta- 
bility and the quality of  policy learnt in this domain, which 
as far as we know is an effect that has not been reported pre- 
viously in the RL literature. 9 

Because we are learning off-line in simulation, these in- 
stabilities do not represent the problem they would in an 
on-line setting. When learning off-line, asymptotic conver- 
gence of  learning is not necessary for discovering a good 
policy, since we can potentially extract a good policy from 
any stage of  the learning process. Indeed, both the learnt 
policies that beat the hand-crafted reference policy were ex- 
tracted by simply inspecting the respective learning curves 
of  Figures 4 and 5, and noticing where the learning algo- 
rithms were doing well, and finding out what the policy had 
been at stage. This might seem a simple or even obvious 
methodology for off-line reinforcement learning, but it also 
seems worth mentioning. 10 

Finally, these learning "crises" are very reminiscent of  
observed learning performance in a walking robot domain 
which also used a compact but heavily state-aliased repre- 
sentation (Pendrith & Ryan, 1997). In this situation, an au- 

9Although there may be a connection to recent work by Gomes, 
Selman & Kautz (1998) investigating the role of randomization in 
search. 

l°Ofcourse, this process could be automated by caching the best 
policies as is routinely the practice in, for example, simulated an- 
nealing; but a direct inspection of a learning curve in itself can be 
enlightening, so the manual approach is not necessarily without its 
advantages. 

tomatically adjusting step size parameter algorithm (ccBeta) 
was used to help stabilise learning. We anticipate such an 
approach could potentially be a useful extension of  the DQL 
algorithm. 

8 R E L A T E D  W O R K  
The problem domain was first described by Moriarty & Lan- 
gley (1998), in which some early results using Moriarty's 
SANE reinforcement learning scheme were reported. SANE 
is a unconventional and somewhat elaborate RL scheme 
that incorporates a genetic search over the space of  possi- 
ble hidden-layer neurons for an ANN. The work described 
in the present paper was motivated in part to better under- 
stand some of the results from this earlier study. 

McCallum (1995) studied RL in the context of  an agen- 
t learning a driving policy in a simulated freeway domain. 
This work formulated the problem in terms of  classical self- 
ish 11 single agent RL. Using an evolutionary method, Suk- 
thankar, Baluja & Hancock (1997) also investigated learning 
of  tactical driving skills for a single agent. 

Of  the work in multi-agent RL, one paradigm has in- 
volved learning individual policies for each of  the agents, 
and the challenge has been to see if  co-operation can be 
learnt (e.g., Gordon (1993), Mataric (1996, 1997)). For 
learning a single shared control policy among multiple a- 
gents, the work of Crites & Barto (1996) in the elevator con- 
trol domain is most well-knownJ 2 The main difference be- 
tween their paradigm and the one we are presenting in this 
paper is that they were including the states of  all other agents 
in their state description. This is feasible when the number 
of  agents if  fixed and small, as was the case for three eleva- 
tor cars working together, but this approach would not scale 
to a large and open ended population, as we require for this 
domain. 

Wolpert et al. (1999) have investigated the problem of  de- 
signing large decentralized multi-agent systems in the con- 
text of  their COIN (collective intelligence) paradigm, which 
assumes a team of  RL agents. The Ant-Q algorithm by Dori- 
go (1996) should also be mentioned, as it is also an example 
of  many RL agents contributing to learning a single policy, 
but in the Ant-Q paradigm the sub-policy of  the "ants" were 
part of  the larger policy, and so they were not homogeneous 
agents in the sense described above. 

Stone and Veloso (1997) have written a survey of  multi- 
agent systems literature from a machine learning point of  
view, with a useful taxonomy of  system and problem types. 

11 Hence the term "New York driving" applied to the learning 
problem. The reference to "New York" describes a driving philos- 
ophy, rather than to the actual scenario. 

12 Actually, the authors experimented with learning a shared pol- 
icy and learning individual policies, and found it did not make a 
significant difference in the final performance; this result was at- 
tributed to the symmetry of the problem from the point of view of 
each agent (i.e., each of the three elevator cars). 
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9 C O N C L U S I O N S  
Traffic engineering, which to date has largely relied on tradi- 
tional operations research techniques like classical dynamic 
programming (e.g. Hall (1995), Ramaswamy et el. (1997)), 
offers a rich a challenging set of problems for which both s- 
ingle and multi-agent reinforcement learning methods might 
be useful. Some of these problem domains are naturally 
cast as on-line learning problems, while others, such as the 
one we describe in this paper, lend themselves to an off-line 
learning formulation. 

By experimenting with two new algorithms develope- 
d for this application, we have shown that successful dis- 
tributed multi-agent reinforcement learning, as formulated 
in this paper, is possible using both a direct policy-space ap- 
proach and a value-function learning approach. Interesting- 
ly, in spite of some theoretical considerations, neither ap- 
proach was obviously superior to the other for learning in 
this domain. In both cases, the distributed multi-agent re- 
inforcement learning algorithms found policies that outper- 
formed the benchmark hand-crafted policy, even though the 
magnitude of improvement was relatively small in absolute 
terms. 

We have observed that in an off-line learning setting, 
learning instabilities are not as important as they will be in 
on-line reinforcement learning; good transient policies more 
important. Interestingly, for this domain and problem for- 
mulation, the best transient policies were observed using the 
representation resulting in the least stable learning curves. 
The apparent trade-offs at work here are worth further inves- 
tigation and attempts at characterisation. 
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