
Distributed Reinforcement Learning for a Traffic
Engineering Application

Mark D. Pendrith*
DaimlerChrysler Research & Technology Center

1510 Page Mill Rd
Palo Alto, CA 94304, USA

E-mail: pendrith@ieee.org

*Author's current address/affiliation: SRI International,
333 Ravenswood Ave, Menlo Park, CA 94025, USA.

A B S T R A C T
In this paper, we report on novel reinforcement learning tech-
niques applied to a real-world application. The problem do-
main, a traffic engineering application, is formulated as a
distributed reinforcement learning problem, where the re-
turns of many agents are simultaneously updating a single
shared policy. Learning occurs off-line in a traffic simulator,
which allows us to retrieve and exploit good transient poli-
cies even in the presence of instabilities in the learning. We
introduce two new algorithms developed for this situation,
one which is a value function based, and one that employs
a direct policy evaluation approach. While the latter is the-
oretically better motivated in several ways than the former,
we find both perform comparably well in this domain and
for the formulation we use.

1 I N T R O D U C T I O N
In reinforcement learning (RL), the problem is most com-
monly formulated to involve finding a good policy for a s-
ingle agent situated in some environment. Although several
workers have investigated multi-agent reinforcement learn-
ing for a small number of agents (typically less than 10), less
work has been done in multi-agent RL involving much larger
numbers of agents. In this paper, we investigate a formula-
tion of the RL problem that involves integrating the experi-
ences of a large number of agents sharing a partially observ-
able environment in order to learn a common observation-
based policy that seeks to optimize a group metric of perfor-
mance rather than the rewards for any particular individual
agent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Agents 2000 Barcelona Spain
Copyright ACM 2000 1-58113-230-I/00/6...$5.00

In this formulation, each agent shares a common policy,
and so we have a homogeneous population of agents where
specialization will not occur, as may be the case when each
agent learns an individual policy (e.g., Mataric 1996). The
"state" of the world, from each agent's point of view, may
involve some other nearby agents in the immediate vicinity,
but not others that are beyond sensing range. Since sensing
the true state of the world would involve knowing about the
situation of every agent in it, the environment is only partial-
ly observable to each agent in it.

At each time-step, there is a single global reinforcement
signal. (In the problem domain we consider, this is actually
an aggregate of the immediate reward of each individual a-
gent, but it need not be so.) Considered as an optimization
problem, we are searching over the space of possible shared
policies in order to find the policy that results in group be-
haviour that maximizes a particular global objective func-
tion.

2 T H E P R O B L E M D O M A I N
The motivation for the distributed RL formulation described
above may be clearer once we describe the particular prob-
lem domain that has led to this work. The problem domain
is a traffic engineering problem, in which a population of
cars, each with its own desired travelling speed, share a free-
way network. We suppose a subpopulation of these cars are
equipped with a short-range (,-~ 100m) radar capability to
detect the relative speeds and distances of cars immediate-
ly ahead, behind and around them) This sensor-equipped
subpopulation of cars can potentially provide services to the
driver that are unavailable to the drivers of cars without this
sensing ability; one such application is a lane-change advi-
sory system.

The purpose of a lane-change advisory system is to rec-
ommend to the driver a lane change to the left or right on

tThis radar capability, used as part of an advanced cruise-
control system, is currently available as optional equipment on
high-end Mercedes-Benz vehicles; we expect it to become avail-
able from other manufacturers on a wider range of car models in
the near future.

404

the basis of the sensed pattern of nearby traffic at any given
point in time. A simple reactive scheme that maps advice di-
rectly from sensory inputs would seem to be well-motivated.
Such a system could conceivably be evaluated using differ-
ent metrics. We will be attempting to optimize a group met-
ric in order to maximize overall utilization of the freeway as
a shared resource.

AL

CL

BL

AC AR

A CR

BC BR

3 P R O B L E M F O R M U L A T I O N
In this domain, we formulate the problem so the goal to op-
timize is a per time-step average reward, rather than a future
discounted reward metric. More specifically, we are inter-
ested in minimizing the average per-step normalised global
loss value

n- - I
~'~'i=0 [Vd(/) - - Va(i)] (1)

n

where vd(i) is the desired speed of the i th Car, and va(i) is
the actual speed of the i th car. 2 We normalise the total loss
by dividing by n, the the number of cars in the simulation
on a particular time-step. This yields a per-car average loss
at each time-step, which is a simple but natural economic
utility metric.

We use two learning algorithms, the first being a Monte
Carlo style of algorithm that attempts to maximize the aver-
age reward directly, and the second being a Q-learning style
of algorithm that uses discounting. Although there are argu-
ments that suggest that this indirect approach of attempting
to find a good average reward policy via learning on the ba-
sis of discounted rewards shouldn't work very well (see, for
example, Schwartz (1993) for some discussion), in practice
we find it often does anyway) To add an extra dimension
to this study, we thought it would be interesting to compare
the two approaches directly for this problem, since it was
reasonably straightforward to devise a distributed variant of
the standard Q-leaming algorithm suitable for this domain.
The representation we chose, as described in the next sec-
tion, was selected to allow us to do this comparison in direct
a way as possible.

4 R E P R E S E N T A T I O N
The view of the world from the perspective of each car (a-
gent) is described in an eight-dimensional feature vector,
which encodes information about the distance and relative

2The actual speed of a vehicle may reach but will never ex-
ceed its desired speed, at least not in the scenario simulated, and so
va(i) - va(i) never becomes negative.

3From a theoretical viewpoint, this is actually not very surpris-
ing, since it is not difficult to show that for any (unichain) MDP,
there will be a critical discount factor Yc such that an optimal dis-
counted policy for a discount factor 7 E [Vc, 1) will also represent a
gain optimal (i.e. optimal simple average reward) policy. The trick
is guess what a good choice of ' / is for any particular problem for-
mulation; too high a value will slow convergence, too low a value
will fall below the critical discount factor.

Figure 1: The eight features encoding an agent's state
representation arranged as a grid. /k represents the po-
sition of the agent. The three grid positions in the top
row hold integer values that encode information about
cars ahead in the left (AL), current (AC) and right (AR)
lanes respectively. The three grid positions in the bottom
row encode information about cars behind in the same
three lanes. The two grid positions CL (clear left) and
CR (clear right) each hold a bit indicating whether a lane
change in that direction is legal at that time.

speeds of other cars immediately in front, to the side and
behind. (See Figure 1.)

The first three dimensions of the feature vector encode
the pattern of cars in front of the agent, in the lane immedi-
ately to the left, the current lane, and the lane immediately to
the right, respectively. Each of these first three features hold
integer ranking values in the range zero to three:

• Zero indicates that the lane is clear; that is, that there
is no car in that lane within radar range, or that the
nearest car in front in that lane is currently travelling
faster than the agent's desired travelling speed.

• One indicates that of the cars immediately ahead that
are travelling less than the agent's desired speed, this
car is fastest.

• Two indicates a car that slower.

• Three indicates a car that is slower still.

I f two slow cars are travelling at the same speed, then
they will be given the same speed ranking according to this
scheme.

The last three dimensions of the feature vector encode the
pattern of cars behind the agent, similar to the above scheme
except in this case zero indicates that there is no car within
radar range, or that the nearest car in that lane is travelling
s lower than the agent's current speed. One indicates the s-
lowest car behind that is travelling faster than the agent's
current speed, etc.

Finally, the remaining two dimension correspond to bits
encoding whether a lane change to the left or a lane change to
the right is currently a valid recommendation. I f there is not
a safe gap in front and behind, a lane change is considered
illegal.

We also experimented with a reduced version of the state
representation which only involves the first five features (ef-

405

fectively ignoring cars behind). It enabled us to measure the
advantage gained by cars being able to look behind them. 4

The representation used to map sensory inputs to an ob-
servation for each agent is a simplified version of the repre-
sentation used in (Moriarty & Langley, 1998). We chose to
simplify the representation for a number of reasons. First-
ly, the relatively small state space made a table-lookup rep-
resentation of the Q-function possible, which obviated the
need for using a function approximator such as the ANN
that was used in (Moriarty & Langley, 1998). This simpli-
fied matters conceptually, as RL with function approxima-
tion still has many theoretical and practical problems, and
the table-lookup scheme allowed for a "neutral" representa-
tion to more fairly compare the behaviour of the learning al-
gorithms we will be testing in these experiments. Secondly,
the "ranking" representation allowed us to fairly compare the
performance of learnt policies with that of a hand-crafted,
psychologically plausible benchmark policy, since our stan-
dard "selfish drone ''5 policy (Moriarty & Langley, 1998) can
be written straightforwardly as a deterministic policy given
this input representation. 6

5 T H E A L G O R I T H M S
The first new algorithm we describe (see Figure 2) is a
Monte Carlo-based method that searches the space of de-
terministic policies directly, without representing the value
function. From a dynamic programming perspective, it is
conceptually closer to policy iteration than to value iteration.

Policy iteration is a policy improvement method that
starts with an arbitrary deterministic policy for a diven
Markov decision process, and generates a better policy by
calculating what is the best single improvement in policy
available for each state individually, then combining all these
individual changes in policy to generate a successor policy.
The process is reapplied in turn to each successive policy.
When a policy is encountered such that no improvement in
policy for any single state is possible, then the method halts;
such a policy can be shown to be optimal (Puterman, 1994).

The new algorithm, which we will refer to as APPIA,
might be considered to perform approximate piecewise pol-
icy iteration, where the the possible policy changes for each
state are evaluated by Monte Carlo estimation, rather than,
for example, by matrix calculations. By "piecewise", we
mean that the policy for each state is changed one at a time,
rather than in parallel as in standard policy iteration. The

4We note that in the current Mercedes-Benz models that employ
these radar sensors, they are only configured to "see" forward.

5The "selfish drone" rule is simply to change to the lane that
has lowest integer ranking in the top three grid positions, i.e. always
greedily change what appears to be the fastest moving lane in front.
Only legal lane changes are considered (the two "lane change clear"
bits are respected.) If there is a tie between changing fight and
changing left, left lane changes win. If the current lane ties as the
lowest integer, no lane change is initiated.

6We note the smaller version of the representation is still pow-
erful enough to represent the "selfish drone" policy.

policy improvement theorem guarantees that this approach
still results in effective hill-climbing through the policy s-
pace. Moreover, if these individual change were cached and
applied together at the end of one pass through all the states,
the evolution through the policy space would be identical to
that of classical policy iteration, 7 which is known to be an
efficient method to arrive at an optimal policy for infinite-
horizon Markov decision problems (Puterman, 1994).

The second algorithm we describe is a variant of Watkin-
s' well-known Q-learning algorithms (Watkins, 1989;
Watkins & Dayan, 1992).

In standard Q-learning, Q-value estimates are updated af-
ter each time-step based on the transition from state s to suc-
cessor state s ~ by the RL agent, after selecting action a from
state s. For each time-step there is one state transition and
one action to deal with in order to update the Q-value esti-
mates.

In the distributed variant of Q-learning we describe,
which we will refer to as algorithm DQL (see Figure 3), we
have potentially as many different state transitions to deal
with per time-step as there are agents.

We deal with this straightforwardly by taking an average
backup value for a state/action pair (s, a) over all agents that
selected action a from state s at the last time-step. We note
that the successor state for these agents may not be the same
in a domain where state transition probabilities are not de-
terministic. We also note that the backup values may not be
the same even for all agents that make the transition to the
same successor state, even though all agents share the same
immediate reward. This is because not all agents will nee-
essarily have the same actions available from the same state
at any given time; for example, they cannot initiate another
lane change until the current lane change has been complet-
ed. In this case the Qma~ component of the backup value
is calculated over the actions that are valid for a particular
agent to select at the next time-step.

One of the theoretically interesting things about this
team-learning approach is that as the number of agents n ---}
0% the sample distribution of the successor state used for
the backups for each state/action pair approaches the real
underlying distribution, reducing one source of variance in
the backup values. So theoretically, a massively distributed
backup could accurately model the transition probabilities
in as little as one time-step. This provides some motivation
for combining learning a transition model with a method like
this, and comparing it to a simple model-free approach as we
have described here. This remains as potential future work.

7We assume the Monte Carlo estimation method is sufficient-
ly accurate to identify the best one-state change in policy at each
step. In practice, we would only have an arbitrarily high level of
confidence, depending on how much sampling we are willing to
perform. This is why we characterise the method as a form of ap-
proximate piecewise policy iteration.

406

algorithm APPIA0/* Monte Carlo-based approximate piecewise policy iteration */
begin

set arbitrary initial policy; set all states as eligible
global_policy_value = best_policy_value = Monte_Carlo(num_monte_carlo_steps);
while (not all states ineligible) do

policy_value = Monte_Carlo(num_monte_carlo_steps);
global_policy_value = ct * global_policy_value + (1 - ct) * policy_value;
/* update current policy value estimate with exponentially weighted

moving average, et E [0, 1]. */
state = select_next_eligible_state();
best_action = cur_policy = state.policy;
best_policy_value = global_policy_value;
for (a E valid actions for state) do

i f (a # cur_policy) then
state.policy = a;
policy_value = Monte_Carlo(num_monte_carlo_steps);
i f (policy_value > best_policy_value) then

best_action = a;
best_policy_value = policy_value;
i f (policy_value > global_policy_value) then

global_policy_value = policy_value;
endif

endif
endif

endfor

i f (cur_policy # best_action) then/* suggests a policy change */
state.policy = best_action;
set all states as eligible

else
state.policy = cur_policy;

endif
state.eligible = False;/* set this state as ineligible */

endwhile
end

Figure 2: The approximate piecewise policy iteration algorithm (APPIA). The selection of the next eligible state is
stochastic, but weighted according to the total number of times that state has been visited in Monte Carlo trials so that
selection is biased towards the most frequently visited states. This simple selection heuristic sped up learning in this
particular domain; however, any selection strategy that guarantees that all eligible states will eventually be selected will
suffice.

407

algorithm DQL(double global_reward)/* multi-agent distributed Q-learning algorithm */
begin

for (s E all states) do
for (a E all actions) do

qtable[s][a].count = 0;
qtable[s] [a].r_sigma = 0.0;

endfor
endfor
for (agent E all agents) do

new_state = agent.state;
last_state = agent.prey_state;
if (last_state ~ Nil) then/* state initially Nil */

last_action = agent.prev_action;
qtable[last_state] [last_action].r_sigma += q_max(agent,new_state);
qtable[last_state] [last_action].count++;

endif
endfor
for (s E all states) do

for (a E all actions) do
if(qtable[s][a].count > 0)then

qtable[s] [a] .value = (1 - 13)qtable[s] [a].value +
13(global_reward +),(qtable[s] [a].r_sigma/qtable[s] [a].count));
/* 13 is the stepsize parameter, • is the discount factor */

endif
endfor

endfor
end

Figure 3: The distributed Q-learning algorithm (DQL). The value of the q_max0 function depends on the agent as well
as the successor state in this domain, because not all agents will have the same actions available to them from the same
state in the same time-step. In this case, we return the max imum Q-value estimate over the valid actions available to
the agent in that state at that t ime-step.

408

6 E X P E R I M E N T A L M E T H O D O L O G Y
For this traffic engineering application, we chose to write a
purpose-built traffic simulator, and leam the desired reactive
policies off-line. As in the elevator scheduling application
of Crites & Barto (1996), off-line reinforcement learning us-
ing a simulator has many methodological advantages for this
particular problem domain.

First and foremost it means that with an omniscient view-
point we can actually measure directly the loss metric we are
trying to minimise (see Equation 1). We also have the ad-
vantage of being able run the simulator faster than real time,
making many long learning trials feasible. Finally, we don't
need to instrument a fleet of real cars to learn a policy, and,
even if we wanted to, it would be unclear that the drivers
would be happy with the consequences of active exploration
until the final policy was learnt. The development plan is to
learn appropriate policies off-line using a simulator of ap-
propriate fidelity, and then testing the candidate policies in
real vehicles with learning turned off. As part of a prod-
uct, the final policy would be integrated into an intelligent
cruise control system which provides lane changing advice,
possibly along with other telematic services such as route
planning, etc.

The specification for the traffic simulation follows that
described in Moriarty & Langley (1998). A three-lane
stretch of freeway 13.3 miles long is populated by 200 cars,
half of which follow the fixed "selfish drone" policy, and the
other half are learning cars that follow the current learnt pol-
icy, modulo active exploration decisions. 8 The end of the
stretch of road joins to the start, creating an endless loop of
freeway. The cars are created each with a set desired speed
drawn from a truncated Gaussian distribution, with a mean
desired speed of 60 mph. All the cars share low level colli-
sion avoidance strategies that governs acceleration, deceler-
ation and legality of lane changes. The only strategy that the
drones and learning cars will differ in is in lane selection.

The results in Moriarty & Langley (1998) were derived
from a simple cellular automata style of simulator that al-
lowed for instantaneous lane changes, and did not otherwise
attempt to model the spatial extension of the cars realistical-
ly. For the results we present in this paper, we use a simulator
that is more realistic in this regard; cars now have a contin-
uous spatial extension, and take several seconds to complete
a lane change. Further, while a lane change is in progress,
both lanes are unavailable for another car to occupy. This
was felt necessary to more realistically simulate the conges-
tion consequences of excessive lane changing. In this way
it was not necessary to add an arbitrarily penalty for lane
changing in the reward function, as described in Moriarty &
Langley (1998); any negative consequences stemming from
excessive lane changing will automatically be reflected in
the global loss metric.

8For DQL, a simple epsilon-greedy active exploration policy
was followed.

-10

-11

-12

-13

-14

-15

-16

-17

"Selfish" policy (hand-crafted I - -
APPIA (looking forward only
APPIA (also looking beh ind)

,: ,:., ,, \i ',,,,;'..,

200'000 ,oo;oo 6oo'000 80o'000 , ~

Figure 4: Learning curves for the APPIA algorithm,
plotted against the hand-crafted "selfish drone" policy.

- I0 , , , "Selfish"policy hand-crafted' - - '
DQL (looking forward only) J
DQL (also looking behind)~

" / : 1
i , i A ~ v . ,/

"14 i [i ~ l / !

v i'
-15

-16

-17 = I t 80010 200000 400000 600000 00 1 e+06

Figure 5: Learning curves for the DQL algorithm, plot-
ted against the hand-crafted "selfish drone" policy.

7 E X P E R I M E N T A L R E S U L T S
The selfish drone policy was subjected to a long term eval-
uation (1,000,000 simulation time-steps using this as a fixed
policy) over several runs. These consistently resulted in a
per-step average reward of - 11 .9 (significant to three fig-
ures) per agent; we can interpret this directly as each agen-
t, on average, travels at about 11.9 mph below its desired
speed. This baseline of performance is represented as a s-
traight line in both Figures 4 and 5, which show the learning
curves for runs of the APPIA and DQL algorithms respec-
tively.

We found that in this case the hand-crafted policy was
not easy to beat; for the problem formulation and represen-
tation we are using, we now have reason to believe it is ac-
tually close to being an optimal policy, which was not ob-
vious. Nevertheless, both algorithms did find policies that
were marginally superior, in the order of 3-5% better.

Closer inspection of the learning curves for the APPIA

409

and DQL algorithms (Figures 4 and 5) reveal that for both
algorithms, learning with the simpler "look ahead only" rep-
resentation yielded marginally better results for the trials,
which was also not expected. The best policies were ex-
tracted from the learning trials using the simpler representa-
tion for both algorithms. The policy corresponding to AP-
pin_ at timestep 139,900 for the trial plotted turned out to
evaluate at 4.2% better than the hand-crafted "selfish drone"
policy with a long-term average per-step reward of - 11.4.
(To get this value, the candidate policy was evaluated on a
further, fixed-policy run over 1,000,000 time-steps, in the
same manner as the evaluation of the hand-crafted policy
as described above.) The policy corresponding to DQL at
timestep 428,000 evaluated at - 11.6, a 2.5% improvement
over the hand-crafted policy.

We also note that for both APPIA and DQL, while the
extended "look behind" representation did not result in dis-
covering better policies, they did seem to effect more sta-
ble learning. We note the "crises" of temporarily losing a
good policy that both learning algorithms suffer periodical-
ly; the effect is much more pronounced for both when the
more compact representation is used.

This phenomenon might be an effect of increased s-
tate aliasing in the compact representation; interestingly, al-
though dealiasing the states by introducing additonal fea-
tures makes the learning more stable, these additional fea-
tures seemed not to be useful in learning a better policy. In-
deed, it appears that there is a trade-offbetween learning sta-
bility and the quality of policy learnt in this domain, which
as far as we know is an effect that has not been reported pre-
viously in the RL literature. 9

Because we are learning off-line in simulation, these in-
stabilities do not represent the problem they would in an
on-line setting. When learning off-line, asymptotic conver-
gence of learning is not necessary for discovering a good
policy, since we can potentially extract a good policy from
any stage of the learning process. Indeed, both the learnt
policies that beat the hand-crafted reference policy were ex-
tracted by simply inspecting the respective learning curves
of Figures 4 and 5, and noticing where the learning algo-
rithms were doing well, and finding out what the policy had
been at stage. This might seem a simple or even obvious
methodology for off-line reinforcement learning, but it also
seems worth mentioning. 10

Finally, these learning "crises" are very reminiscent of
observed learning performance in a walking robot domain
which also used a compact but heavily state-aliased repre-
sentation (Pendrith & Ryan, 1997). In this situation, an au-

9Although there may be a connection to recent work by Gomes,
Selman & Kautz (1998) investigating the role of randomization in
search.

l°Ofcourse, this process could be automated by caching the best
policies as is routinely the practice in, for example, simulated an-
nealing; but a direct inspection of a learning curve in itself can be
enlightening, so the manual approach is not necessarily without its
advantages.

tomatically adjusting step size parameter algorithm (ccBeta)
was used to help stabilise learning. We anticipate such an
approach could potentially be a useful extension of the DQL
algorithm.

8 R E L A T E D W O R K
The problem domain was first described by Moriarty & Lan-
gley (1998), in which some early results using Moriarty's
SANE reinforcement learning scheme were reported. SANE
is a unconventional and somewhat elaborate RL scheme
that incorporates a genetic search over the space of possi-
ble hidden-layer neurons for an ANN. The work described
in the present paper was motivated in part to better under-
stand some of the results from this earlier study.

McCallum (1995) studied RL in the context of an agen-
t learning a driving policy in a simulated freeway domain.
This work formulated the problem in terms of classical self-
ish 11 single agent RL. Using an evolutionary method, Suk-
thankar, Baluja & Hancock (1997) also investigated learning
of tactical driving skills for a single agent.

Of the work in multi-agent RL, one paradigm has in-
volved learning individual policies for each of the agents,
and the challenge has been to see if co-operation can be
learnt (e.g., Gordon (1993), Mataric (1996, 1997)). For
learning a single shared control policy among multiple a-
gents, the work of Crites & Barto (1996) in the elevator con-
trol domain is most well-knownJ 2 The main difference be-
tween their paradigm and the one we are presenting in this
paper is that they were including the states of all other agents
in their state description. This is feasible when the number
of agents if fixed and small, as was the case for three eleva-
tor cars working together, but this approach would not scale
to a large and open ended population, as we require for this
domain.

Wolpert et al. (1999) have investigated the problem of de-
signing large decentralized multi-agent systems in the con-
text of their COIN (collective intelligence) paradigm, which
assumes a team of RL agents. The Ant-Q algorithm by Dori-
go (1996) should also be mentioned, as it is also an example
of many RL agents contributing to learning a single policy,
but in the Ant-Q paradigm the sub-policy of the "ants" were
part of the larger policy, and so they were not homogeneous
agents in the sense described above.

Stone and Veloso (1997) have written a survey of multi-
agent systems literature from a machine learning point of
view, with a useful taxonomy of system and problem types.

11 Hence the term "New York driving" applied to the learning
problem. The reference to "New York" describes a driving philos-
ophy, rather than to the actual scenario.

12 Actually, the authors experimented with learning a shared pol-
icy and learning individual policies, and found it did not make a
significant difference in the final performance; this result was at-
tributed to the symmetry of the problem from the point of view of
each agent (i.e., each of the three elevator cars).

410

9 C O N C L U S I O N S
Traffic engineering, which to date has largely relied on tradi-
tional operations research techniques like classical dynamic
programming (e.g. Hall (1995), Ramaswamy et el. (1997)),
offers a rich a challenging set of problems for which both s-
ingle and multi-agent reinforcement learning methods might
be useful. Some of these problem domains are naturally
cast as on-line learning problems, while others, such as the
one we describe in this paper, lend themselves to an off-line
learning formulation.

By experimenting with two new algorithms develope-
d for this application, we have shown that successful dis-
tributed multi-agent reinforcement learning, as formulated
in this paper, is possible using both a direct policy-space ap-
proach and a value-function learning approach. Interesting-
ly, in spite of some theoretical considerations, neither ap-
proach was obviously superior to the other for learning in
this domain. In both cases, the distributed multi-agent re-
inforcement learning algorithms found policies that outper-
formed the benchmark hand-crafted policy, even though the
magnitude of improvement was relatively small in absolute
terms.

We have observed that in an off-line learning setting,
learning instabilities are not as important as they will be in
on-line reinforcement learning; good transient policies more
important. Interestingly, for this domain and problem for-
mulation, the best transient policies were observed using the
representation resulting in the least stable learning curves.
The apparent trade-offs at work here are worth further inves-
tigation and attempts at characterisation.

References
Crites, R., & Barto, A. (1996). Improving elevator perfor-

mance using reinforcement learning. In Advances in
Neural Information Processing Systems 8 Cambridge,
MA. MIT Press.

Dorigo, M. (1996). A study of some properties of Ant-Q.
In H.-M. Voigt, W. Ebeling, I. R., & Schwefel, H.-S.
(Eds.), Proceedings of the Fourth International Con-
ference on Parallel Problem Solving from Nature, pp.
656-665 Berlin. Springer-Verlag.

Gomes, C. P., Selman, B., & Kautz, H. (1998). Boosting
combinatorial search through randomization. In Pro-
ceedings of the Fifteenth National Conference on Ar-
tificial Intelligence, pp. 431-437. MIT Press.

Gordon, D., & Subramanian, D. (1993). A multistrategy
learning scheme for agent knowledge acquisition. In-
formatica, 17, 331-344.

Hall, R. (1995). Lontitudinal and lateral throughput on an
idealiized highway. Transportation Science, 29, 118-
127.

Mataric, M. J. (1996). Reinforcement learning in the multi-
robot domain. Autonomous robotics, 4(1), 73-83.

Mataric, M. J. (1997). Using communication to reduce lo-
cality in multi-robot learning. In Proceedings of the
Fourteenth National Conference on Artificial Intelli-
gence, pp. 643-648.

McCallum, A. (1995). Reinforcement Learning with S-
elective Perception and Hidden State. Ph.D. the-
sis, Department of Computer Science, University of
Rochester.

Moriarty, D. E., & Langley, P. (1998). Learning cooperative
lane selection strategies for highways. In Proceedings
of the Fifteenth National Conference on Artificial In-
telligence, pp. 684-691.

Pendrith, M., & Ryan, M. (1997). Estimator variance in re-
inforcement learning: Theoretical problems and prac-
tical solutions. In On-line Search: Collected Papers
from the 1997 Workshop. AAAI Technical Report WS-
97-10, pp. 81-88. AAAI Press.

Puterman, M. (1994). Markov decision processes: Discrete
stochastic dynamic programming. New York: John
Wiley & Sons.

Ramaswamy, D., Medanic, J., Perkins, W., & Benekohal,
R. (1997). Lane assignment on automated highway
systems. IEEE Transactions on Vehicular Technology,
46, 755-769.

Schwartz, A. (1993). A reinforcement learning method
for maximizing undiscounted rewards. In Machine
Learning: Proceedings of the Tenth International
Conference San Mateo, CA. Morgan Kaufmann.

Stone, E, & Veloso, M. (1997). Multiagent systems: A sur-
vey from a machine learning perspective. Tech. rep.
CMU-CS-97-193, Carnegie Mellon University.

Sukthankar, R., Baluja, S., & Hancock, J. (1997). Evolving
an intelligent vehicle for tactical reasoning in traffic.
In Proceedings of the IEEE International Conference
on Robotics and Automation.

Watkins, C. (1989). Learning from delayed rewards. PhD
Thesis, King's College, Cambridge.

Watkins, C., & Dayan, E (1992). Technical note: Q-
learning. Machine Learning, 8, 279-292.

Wolpert, D. H., Wheeler, K. R., & Turner, K. (1999). Gen-
eral principles of learning-based multi-agent systems.
In Proceedings of the Third Annual Conference on Au-
tonomous Agents. ACM Press.

411

