Cellular Communication

Towers (Cellular Communication)

Channels & Frequencies

(Animations left out.)

RL for Dynamic Channel Allocation in Cellular Telephone Systems

Satinder Singh, Dimitri Bertsekas

Neural Information Processing Systems 1996

The Problem

Area Divided into Cells

Constraints (The Problem)

Channels may be reused in cells far apart

Channel Reuse Constraint is min. distance

Cell phones may wander from cell to cell

Constraints (The Problem)

No channel available:

- Existing call dropped call
- New call blocked call
- Blocked calls preferable to dropped calls.
- 49⁴⁹ states brute force ruled out

Example (The Problem)

Fixed Assignment Algorithm

- Channels partitioned
- Cells have a fixed subset of channels
- Most popular system
- Busy cell may block calls even when channels available in neighbors.

Dynamic Channel Allocation

Channels still partitioned between cells.

Share channels between cells.

Keeps track of:

Occupied and Unoccupied channels.

Event type: { arrival, departure, handoff }

Borrowing with Directional Channel Locking

```
partition and assign
on { arrival, handoff } {
    if (local channel available) {
          use smallest
   else {
          if (remote channel available) {
                     borrow largest from neighbor with max free
          else {
                     block call
on { departure } {
   if (channel borrowed) {
          reassign and return
}
```

Borrowing with Directional Channel Locking

- Zhang & Yum (1989)
- Frequent reassignments
- Cascading reassignments / large grids
- Regarded as "best" heuristic algorithm

RL Algorithm

Unlike Power Grid, rewards are more immediate

Unlike Robot Problem, system is continual

Decision Function (RL Algorithm)

Discounting factor

Temporal Difference Learning

"TD learning is a combination of Monte Carlo ideas and dynamic programming ...TD methods can learn directly from raw experience without a model of the environment's dynamics."

Book:

$$V(s_t) \leftarrow V(s_t) + \alpha \Big[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \Big].$$

Paper: $J_{new}(\tilde{x}) = (1 - \alpha)J_{old}(\tilde{x}) + \alpha \left(c(x, a, \Delta t) + \gamma(\Delta t)J_{old}(\tilde{y})\right)$

RL Algorithm


```
RL Algorithm
```

```
partition and assign
on { arrival, handoff } {
   if (local channel available) {
          use smallest
    }
   else {
          if (remote channel available) {
                    borrow from neighbor with maximum expected reward
          }
          else {
                    block call
          }
on { departure } {
   if (channel borrowed) {
          reassign and return with minimum expected penalty
    }
}
```

Fixed-Rate Traffic Results

- Quick learning due to TD(0) function.
- Learning curve "disadvantage" ruled out.

Fixed-Rate Traffic Results

- FA optimal as # calls $\rightarrow \infty$
- No short term fluctuations to exploit.

Variable Traffic Results

• FA, BDCL ignore traffic patterns

• Learning allows pattern recognition

Variable Traffic Results

Decentralized Training (Future Work)

- Policies and values are on a per-cell basis.
- Small networks pose a problem, decisions impact other cells. (Competition.)
- Large networks more feasible, cells with large distance have little relation.

Related Works

- Admission Control
 S. Singh, T.X. Brown, H. Tong in NIPS 1998 http://www.eecs.umich.edu/~baveja/Papers/NIPS98Hui.ps.gz
- Predicting Temporal Differences (H0)
 R. Sutton in Machine Learning, 3:9-44