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The Problem

Base Station Handoffs

Area Divided
Into Cdlls



Constraints
(The Problem)

m Channels may be reused In cells far apart
m Channel Reuse Constraint is min. distance

m Cell phones may wander from cell to cell



Constraints
(The Problem)

m No channel available:
Existing call — dropped call
New call — blocked cal
Blocked calls preferable to dropped calls.

m 49%° states — brute force ruled out



Example
(The Problem)




Fixed Assignment Algorithm

m Channels partitioned

m Cells have a fixed subset of channels

m Most popular system

m Busy cell may block calls even when
channels available in neighbors.
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Dynamic Channel Allocation
m Channels still partitioned between cells.
m Share channels between cells.

m Keeps track of:
Occupied and Unoccupied channels.

Event type: { arrival, departure, handoff }
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Borrowing with
Directional Channel Locking

partition and assign
on { arrival, handoff } {
if ( local channel available ) {

use smallest
}
else {
if ( remote channel available ) {
borrow largest from neighbor with max free
}
else {
block call
}
}

}

on { departure } {
if ( channel borrowed ) {
reassign and return

}
}
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Borrowing with
Directional Channel Locking

m Zhang & Yum (1989)
m Frequent reassignments
m Cascading reassignments / large grids

m Regarded as “best” heuristic algorithm
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RL Algorithm

m Unlike Power Grid, rewards are more
Immediate

m Unlike Robot Problem, system is continual



Decision Function
(RL Algorithm)

Infinite Horizon

J=E {fﬂm emc(\t)dt} f

Ongoing calls at t

Discounting factor
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Temporal Difference Learning

“TD learning is a combination of Monte Carlo ideas
and dynamic programming ... TD methods can learn
directly from raw experience without a model of the
environment's dynamics.”

Book:
Vist) «— V{se) + &[Ft-}l + AV (st41) — V{St)]-

Paper:
Jnew(Z) = (1 —a)Jouq(Z) + al(e(x,a, At) + y(At)Jo1q(Y))
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RL Algorithm

# of free channels TD(0) Training
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RL Algorithm

partition and assign
on { arrival, handoff } {
if ( local channel available ) {

use smallest
}
else {
if ( remote channel available ) {
borrow from neighbor with maximum expected reward
}
else {
block call
}
}

}

on { departure } {
if ( channel borrowed ) {
reassign and return with minimum expected penalty

}
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Fixed-Rate Traffic Results
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e Quick learning due to TD(O) function.

e Learning curve “disadvantage” ruled out.




Fixed

-Rate Traffic Results
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Variable Traffic Results

Non—Uniform
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 FA, BDCL ignore traffic patterns

e Learning allows pattern recognition
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Variable Traffic Results

Patterns
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B ) (Fixed Assignment)
77777 BDCL (Dynamic Programmin

R,

RL (Reinforcement Learning)
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s "« lLargest margin:

o * Mostly low volume

s Sudden changes

e

10% 20% 0% 40%

L = low, M = medium, H = hiqg



Decentralized Training
(Future Work)

m Policies and values are on a per-cell basis.

m Small networks pose a problem, decisions
Impact other cells. (Competition.)

m Large networks more feasible, cells with
large distance have little relation.
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Related Works

m Admission Control

S. Singh, T.X. Brown, H. Tong in NIPS 1998
http://www.eecs.umich.edu/~baveja/Papers/NIPS98Hui.ps.gz

m Predicting Temporal Differences (HO)
R. Sutton in Machine Learning, 3:9-44



