Autonomous Mobile Robots, Chapter 3

M otion Control (wheeled robots)

» Requirements for Motion Control

» Kinematic / dynamic model of the robot

» Modd of the interaction between the
wheel and the ground

» Definition of required motion ->
speed control, position control

» Control law that satisfies the requirements

"Position”
Global Map
Environment Model Path
Local Map
I
Perception Real World

Environment

© R. Siegwatrt, |. Nourbakhsh



Autonomous Mobile Robots, Chapter 3

Introduction: M oblle Robot Kinematics

* Alm

» Description of mechanical behavior of the robot for
design and control

» Smilar to robot manipulator kinematics

» However, mobile robots can move unbound with respect to its
environment

0 thereisno direct way to measure the robot’s position

0 Position must be integrated over time

0 Leadsto inaccuracies of the position (motion) estimate
-> the number 1 challenge in mobile robotics

» Understanding mobile robot motion starts with under standing wheel
constraints placed on the robots mobility
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Introduction: Kinematics M odd

» Goal:
> establish the robot speed X = [X y q ]Tasafunction of the whed speeds!
steering angles b, , steering speeds b, and the geometric parameters of the
robot (configuration coordinates).
» forward kinematics a 0
éxu
=Yg = T g d Dy D By, B ) d
o
> Inverse kinematics -

iy i by oo by By b = (k)

exu
V5= T 1o 0Dy by) => not straight forward

g1f
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Representing Robot Position

 Representing to robot within an arbitrary initial frame
> Initial frame: X,V K
> Robot frame:  {Xp,Yx}

» Robot position: X, =[x y OI]T
_____ X

» Mapping between the two frames |
-~ Xp=REK =R@) vy d] ' - %
écosq s9ng Ou

R)= 4 sng cosq Og

0 0 1§

D

T D

» Example: Robot aligned with Y,

» 7l
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Example

| cosO sinB 0_
R(©) = | _sin® cosO 0
0 0 1

| . Joro
Sk = RGE = |1 00

0 01]|¢

3.2.1
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Forward Kinematic Models

* Presented on blackboard
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Whed Kinematic Constraints; Assumptions

Y

A

Movement on a horizontal plane
Point contact of the wheels
Wheels not deformable T

Purerolling ﬂ L
V

v = 0 at contact point
No glipping, skidding or sliding

o X

No friction for rotation around contact point
Steering axes orthogonal to the surface
Wheels connected by rigid frame (chassis)
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Wheel Kinematic Constraints:

Fixed Standard Whed

Yp
A

¢, r
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Example

:cos((x+ B) sin(o+ ) {SiﬂB:IR(e)E;i =

 Suppose that the wheel A isin position such that

la=0andb =0

3.2.3

sin(ot+ ) —cos (o + PB) (—1)cosB:|R(9.)E:.1—f'*fP =0

 Thiswould place the contact point of the wheel on X, with the plane of
the wheel oriented parallel to Y,. If q = 0, then ths sliding constraint

reduces to:

[1 0 0]

1 0 0]

010

00 1]]¢

=110 0]
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Wheel Kinematic Constraints: —

Steered Standard Whes|

Yp
A
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Autonomous Mobile Robots, Chapter 3
Wheel Kinematic Constraints:

Castor Whedl

Yp
A

3.2.3
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Wheel Kinematic Constraints:

Swedish Whesel

Yp
&

/
/
/X[} -
_|Robot chassis D i q Vi
AW~
[ ~
o |

3.2.3
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Wheel Kinematic Constraints:

Spherical Wheel

Yp
A
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Robot Kinematic Constraints

Given arobot with M whedls

each wheel imposes zero or more constraints on the robot motion
only fixed and steerable standard wheels impose constraints

What is the maneuverability of arobot considering a combination of
different wheels?

Suppose we have atotal of N=N; + N, standard wheels
We can develop the equations for the constraints in matrix forms:

Rolling
: N f() Jir U .
Ji(b)R@)X, +IJ" =0 | (1)= “ Ji(b s)‘“ a J,=diag(r---ry)
s(t)u ?Jls(b )
(N N ) 1 N +NJ 3

Lateral movement .
e Cy l,J

C,(bg)R@)X, =0 Cilb)=es byl
N;+N 73
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Example: Differential Drive Robot

* Presented on blackboard
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Example: Omnidirectional Robot

* Presented on blackboard
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M obile Robot M aneuverability

The maneuverability of a mobile robot is the combination

of the mobility available based on the diding constraints
plus additional freedom contributed by the steering

Three wheedls is sufficient for static stability
additional wheels need to be synchronized
thisis also the case for some arrangements with three wheels

It can be derived using the equation seen before
Degree of mobility d,
Degree of steerability ds
Robots maneuverability ~ dw =dm +ds
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M obile Robot M aneuverability: Degree of Mobility

» To avoid any latera dlip the motion vector R(q)x, hasto satisfy the
following constraints:

CitR@)X; =0 6 C; U
. Cl(bS):gC (1;; )Q
Ci (b )R@)X, =0 1s\Ps)U

» Mathematically:
> R(@)x, must belong to the null space of the projection matrix Cy(by)
» Null space of C,(b,) isthe space N such that for any vector nin N

Ci(by)=0

» Geometrically this can be shown by the Instantaneous Center of Rotation
(ICR)
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M obile Robot Maneuver ability: Instantaneous Center of Rotation

« Ackermann Steering Bicycle
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M obile Robot M aneuver ability: More on Degree of Mobility

Robot chassis kinematicsis afunction of the set of independent
constraints rank[C,(bg)]

the greater the rank of , C;(b) the more constrained is the mobility

Mathematically
d., =dimN[C,(b)]=3- rank|C,(by)] O£ rank[C,(b.)| £3
no standard wheels rank[Cl(bS)] =0
all direction constrained ¢ ank[Cl(bS)] =3
Examples:

Unicycle: One single fixed standard wheel

Differential drive: Two fixed standard whedls

wheels on same axle
wheels on different axle
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M obile Robot Maneuverability: Degree of Steerability

Indirect degree of motion
d, = rank[ClS(bS)]
The particular orientation at any instant imposes a kinematic constraint

However, the ability to change that orientation can lead additional

degree of maneuverability
Rangeof
d

S

0£d_£2

Examples:
one steered wheel: Tricycle
two steered wheels. No fixed standard wheel
car (Ackermann steering): N; = 2, N=2 -> common axle
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M obile Robot M aneuverability: Robot M aneuverability

» Degree of Maneuverability
dy =d,, +dg

» Two robots with same d,, are not necessary equal
» Example: Differential drive and Tricycle (next dide)

» For any robot with dy, =2 the ICRis always constrained
tolieonaline

» For any robot with dy, =3 the ICRis not constrained an
can be set to any point on the plane

» The Synchro Drive example: dy =d,, +d =1+1=2
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M obile Robot M aneuver ability: Wheel Configurations

* Differential Drive Tricycle

a) b)
| |
| |
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Five Basic Types of Three-Whedl Configurations

[

Omnidirectional Differential Tricycle Two-Steer
6M =3 5M =2 6M =2 5M =3
0,, =3 O = 0,, =1 0,, =1
o, =0 o, = ), =1 o, =2
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Synchro Drive

dy =d,,+d,=1+1=2

Steering pulley

Direction of motion Drive pulley

Wheel

s =y
I
/ .
/ 7 Stunng motor
Turret pulley
J / Steering belt

Drive belt

= . Rolling axis

Drive motor

Wheel steering axis
<+~ wregivart, 1. Nourbakhsh



M obile Robot Workspace: Degrees of Freedom

Maneuverability is equivalent to the vehicle' s degree of freedom

(DOF)

But what is the degree of vehicle s freedom in its environment?
Car example

Workspace
how the vehicle is able to move between different configuration in its
wor kspace?

The robot’ s independently achievable velocities
= differentiable degrees of freedom (DDOF) = d,,
Bicycle: d,, =d,,+d,=1+1 DDOF=1; DOF=3
Omni Drive: dy, =d,+d,=1+1 DDOF=3; DOF=3
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M obile Robot Workspace: Degrees of Freedom, Holonomy

* DOF degrees of freedom:
» Robots ability to achieve various poses

« DDOF differentiable degrees of freedom:
» Robots ability to achieve various path

DDOF £d,, £ DOF

» Holonomic Robots

» A holonomic kinematic constraint can be expressed a an explicit function
of position variables only

» A non-holonomic constraint requires a different relationship, such as the
derivative of a position variable

» Fixed and steered standard wheels impose non-holonomic constraints
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M obile Robot Wor kspace:
Examples of Holonomic Robots
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Autonomous Mobile Robots, Chapter 3
Path / Trajectory Considerations. Omnidirectional Drive

X,y 0
A
()
- “— X1
7 0(1)
L~ -t/ [5]
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3.4.3
Path / Trajectory Considerations. Two-Steer

Yy
A le’ BSZ
! A
60°% By
-~ ~ -
60%F = r — By
X, 0
A
(1)
_ Z x(t)
7 0
-
-.¢ 1 2 3 4 5 t/[s]
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Beyond Basic Kinematics
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Motion Control (kinematic control)

The objective of akinematic controller isto follow atraectory
described by its position and/or velocity profiles as function of time.

Motion control is not straight forward because mobile robots are non-
holonomic systems.

However, it has been studied by various research groups and some
adeguate solutions for (kinematic) motion control of a mobile robot
system are available.

Most controllers are not considering the dynamics of the system

© R. Siegwatrt, |. Nourbakhsh



Motion Control: Open L oop Control

trajectory (path) divided in motion segments of
clearly defined shape: ‘

straight lines and segments of a circle. 8
control problem:

pre-compute a smooth trajectory
based on line and circle segments

Disadvantages.
It isnot at all an easy task to pre-compute
a feasible trajectory

limitations and constraints of the robots
velocities and accelerations

does not adapt or correct the trajectory if dynamical X|
changes of the environment occur.

The resulting trajectories are usually not smooth
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Motion Control: Feedback Control, Problem Statement

Find a control matrix K, if
exists

_&ky Ky KU

B 8<21 k22 kZSH
with k;;=k(t,e)

such that the control of v(t)

K

and w(t)
R, <

(D)C éxu
MDU_ =k x &yl
() eu
&g

drives the error e to zero.
lime(t) =0

® ¥
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M otion Control:

Kinematic Position Control

The kinematic of adifferential drive mobile

robot described in the initial frame {x,, y;, q}
isgiven by,

XU ecosq  Ou

“evu
s o
gy €0

where and arethelinear velocmesinthe
direction of the x; and y, of the initial frame.

Let a denote the angle between the x; axis
of the robots reference frame and the vector
connecting the center of the axle of the
wheels with the final position.
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Autonomous Mobile Robots, Chapter 3
Kinematic Position Control: Coordinates Transfor mation

Coordinatestransformation into polar coordinates
with itsorigin at goal position:

p = J&xz + A}-’E

o = —0+atan2(Ay, Ax)

B=-0-q
System description, in the new polar coordinates
] -—COSOt 0- ] cosa. 0
P : P :
; sin o v : sin o v
@l = | — -1 el = |-—— 1
5 P Q) _B P )
=i _SlllOﬁ 0 - SInoL 0
P | P
s
for [, = (_E' g] for [, = (-m—-n/2]u(n’/2,n]
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Kinematic Position Control: Remarks

The coordinates transformation 1s  asin such
a point the determinant of the Jacobian matrix of the transformation
IS not defined, i.e. it is unbounded

For o e [, theforward direction of the robot points toward
thegodl, for o e 7, itisthe backward direction.

By properly defining the forward direction of the robot at itsi nitial
configuration, it is aways possibleto have « < 7,1 t=0. However
this does not mean that a remainsin I, for al timet.
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Kinematic Position Control: The Control Law

It can be shown, that with

v = kyp
I
the feedback controlled system

P
X,

B

will drivetherobot to (r,a,b)=(00,0)
The control signal v has always constant sign,

® = kyo + kP

—k,pcosa.

k,sino.— ko — kg

—k,sino.

the direction of movement is kept positive or negative during movement
parking maneuver is performed always in the most natural way and

without ever inverting its motion.
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Kinematic Position Control: Resulting Path

Robot trajectory
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Autonomous Mobile Robots, Chapter 3 3.6.2

Kinematic Position Control: Stability I ssue

« It can further be shown, that the closed loop control systemis locally
exponentially stable if

k. >0 ; k, <0 ; k,-k >0

* Proof:
for small x->cosx=1, Sinx = X
RN E: ;0 0] o] —k, 0 0
o = 0 —(A'ﬂ—kp) —f'\'-|_>, ol A = 0 _(ka_kp) _kﬁ
Bl 0 & O [IB] 0 -k, 0

and the E:haracteristic poiynomial of the matrix A of all roots
(A+ k)M + Ak — k) =k ky)
have negative real parts.
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Mobile Robot Kinematics: Non-Holonomic Systems

Yi X1, Y1

<= O
S17=S2 5 S1IRTSor 1 S1.7Sy. /

but: le X5 Y1 iyz SIL [S1 SIR

2L X2, Y2

// S v} @

/ S2R

Non-holonomic systems - X

differential equations are not integrable to the final position.

the measure of the traveled distance of each whedl i1s not sufficient to

calculate the final position of the robot. One has also to know how this
movement was executed as a function of time.
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Non-Holonomic Systems. Mathematical | nterpretation

* A mobilerobot is running along atrgjectory s(t). Y
At every instant of the movement its velocity v(t) is: V()
fix fly q

():ﬁ—ﬁcosq +ﬁan

ds =dxcosqg +dysnq

y

> X

 Function v(t) is said to be integrable (holonomic) if there exists a trgjectory function s(t)
that can be described by the values x, y, and g only.

s=s(x¥.q)

1%s _ s  T°s _ s s _ 1%s
™y TYix = Mg 9% = Tyga  Taly

Condition for integrable function

* With s= g(x,y,q) we get for ds ds-ﬂ—dx+ﬂ—dy+ﬂ—dq

X Ty 19

* Thisisthe caseif
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Non-Holonomic Systems. The Mobile Robot Example

In the case of a mobile robot where
ds =dxcosqg +dysnqg
and by comparing the equation above with

ds =18 gy + 1S gy 4 18 g
™ Ty f9
we find
E:cosq ; E—sinq ; E:O
T Ty Tig

Condition for an integrable (holonomic) function:
s _ s 1% _ s  9°s _ T°s
Ty fyfix = IxTa  faTx ~ g Tafy

the second (-sing=0) and third (cosg=0) term in equation do not hold!
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